ALICE ITS: Operational Experience, Performance and Lessons Learned

Elena Botta

Dipartimento di Fisica dell'Universita' di Torino and Sezione INFN, Torino, Italy

on behalf of the ALICE Collaboration

The 28th International Workshop on Vertex Detectors, 13-18 October 2019 Lafodia Sea Resort, Lopud Island, Croatia

ALICE experiment

ALICE (A Large Ion Collider Experiment)

general purpose heavy-ion experiment at the LHC:

- Strongly interacting matter
- QGP properties

- Central Barrel: pseudorapidity lηl < 0.9</p>
 - > *Tracking* in high density collisions:
 - dN/dη ~ 1600 in central Pb-Pb
 - > *PID* (Particle IDentification):
 - d*E*/d*x* : ITS, TPC
 - Time of flight: TOF
 - Transition radiation: TRD
 - Cherenkov radiation: HMPID

- Low $p_{\rm T}$ reach: ~ 0.1 GeV/c ($p_{\rm T}$: 0.1 100 GeV/c)
 - Moderate magnetic field B = 0.5 T
 - Low material budget: (10% X₀ for ITS+TPC)

Inner Tracking System

Six cylindrical layers of silicon sensors

- Silicon Pixel Detector (SPD): two innermost layers
- Silicon Drift Detector (SDD): two intermediate layers
- Silicon Strip Detector (SSD): two outermost layers

Trade-off between track density and available resources

The ITS is optimized for:

- **primary vertex** reconstruction (resolution better than 100 μ m)
- **impact parameter** determination
- separation of primary and secondary vertices
- **PID** and **tracking** at low p_{T}
- pileup rejection
- charged-particle pseudorapidity distribution determination

Inner Tracking System

- ♦ Radial dimensions:
 - from 3.9 cm (close to beam pipe) to 43.0 cm (close to TPC inner wall)
- ♦ Material Budget (M.B.):
 - > ~ 1% X₀ each layer

Layer	Det.	Radius (cm)	Length (cm)	Channels	Area (m²)	Resolution (µm)		M.B.
						rφ	Z	(/010)
1	SPD	3.9	28.2	3.3 M	0.07	12	100	1.14
2		7.6	28.2	6.6 M	0.14			1.14
3	SDD	15.0	44.4	43 k	0.42	35	25	1.13
4		23.9	59.4	90 k	0.89			1.26
5	SSD	38.0	86.2	1.1 M	2.20	20	830	0.83
6		43.0	97.8	1.5 M	2.80			0.86

Silicon Pixel Detector

\diamond 120 Half-Stave (HS) modules (40+80), grouped in two Half Barrels

- each HS contains 2 ladders:
- > 1 sensor (200 μ m thick) + 5 readout chips (150 μ m thick), bump bonded
- > Hybrid pixel sensors with binary output
- p+n reverse biased (50V)
- cell size 50 μm (rφ) x 425 μm (z) 256(rφ) x 160(z) cells/sensor

Each half-barrel divided into 10 half sectors

- > 6 HS: 2 in Layer 1 + 4 in Layer 2
- $\diamond C_4 F_{10}$ evaporative cooling system

elena.botta@to.infn.it

Silicon Drift Detector

 \diamond Two layers, 260 silicon drift modules (300 $\mu \rm{m}$ thick)

- Layer 3: 14 ladders with 6 modules each
- Layer 4: 22 ladders with 8 modules each
- \Rightarrow 2*256 collection anodes (294 μ m pitch)
- \Rightarrow 2*2*291 p⁺ drift cathode strips (120 μ m pitch)
- ♦ Drift HV: 1.8 kV (E~500 V/cm)

Anodes

elena.botta@to.infn.it

Silicon Strip Detector

- ♦ 1698 silicon strip modules (300 μ m thick)
 - Layer 5: 34 ladders with 22 modules each
 - Layer 6: 38 ladders with 25 modules each
- ♦ 768 double-sided strip sensors per module:
 - > pitch (r ϕ): 95 μ m; length: 40 mm; angle: 35 mrad
- ♦ dE/dx measurement for PID
- ♦ Leak-tight water cooling system + air dryer system

SSD modules: silicon sensor + 2 hybrids with six HAL25 chips each

elena.botta@to.infn.it

Trigger: SPD

♦ L0 Trigger: Minimum Bias

- Fast-OR: at least one hit in a readout chip
- INPUT: 1200 bits every 100 ns from SPD to CTP
- OUTPUT: 10 programmable output based on boolean logic
- Maximum latency at CTP input: 800 ns

L0 Trigger: High multiplicity trigger, enrichm. factor ~100

- Fast-OR signals (100 ns time window)
- Online beam-gas interaction rejection
- Past-future protection
- HM selection: thresholds on hits in layer 1 and layer 2
- ♦ L0 Trigger: Double Gap diffractive trigger, enrichm. factor ~300
 - Low-multiplicity events (2-4 tracks)
 - V0 veto
 - Fast-OR signal in mid-rapidity region
 - > Topological trigger:
 - Opening angle between two cones
 - Minimum and maximum number of tracklets

Detector Control System

Each detector has its DCS to:

- remotely control underground hardware
- apply specific operation strategies
- independent monitoring of operational conditions and data quality (misconfiguration spotted during data taking)
- Each detector has specific security operations for beam injection failures, according to past experience
 - SPD: Beam injection or adjustment → reverse bias voltage to 2V (sensor not depleted) and FEE and read-out electronics power-up
 - > SDD: Beam injection or adjustment \rightarrow HV and LV off, but readout electronics ready
 - SSD: HV and LV always at their nominal value

Experiment Control System

- Each detector has its **ECS** to perform specific operations (stand alone runs, calibrations)
- ♦ Each detector has specific calibration strategy:
 - > SPD:
 - Configuration performed once per data taking, followed by tuning
 - Noisy-pixel mask updated when a noisy pixel is detected
 - online vertex diamond determination
 - > SDD:
 - Baseline, noise, gain and drift speed at the beginning of each physics fill, dedicated runs
 - > SSD:
 - Baseline and noise at the beginning of each physics fill, dedicated calibration runs
- for all detectors, condition data and the online calibration parameters are written in the Offline Condition Data Base (OCDB) at each EoR
- Detector Quality Monitor and offline Quality Assurance to monitor behavior/performance on run/period basis

elena.botta@to.infn.it

Detector Acceptance/Availability

	Acceptance [# of modules]			
	SPD	SDD	SSD	
Run1	92%	87%	91%	
Run2 (2015-2016)	93%	83%	91%	
Run2 (2017)	93%	82%	91%	
Run2 (2018)	92%	81%	91%	

- SPD: 98.8% (3h out due to hardware problem)
- SDD: 95.7% (100% with central barrel, SDD not included in rare triggers)
- SSD: 99.6% (out only during Electro Magnetic Dissociation runs with SPD, V0 and ZDC only)

SPD: reduced acceptance during Run1 due to cooling system filters clogging solved during LS1

SDD: during installation two HL of layer 3 lost communication; sparse modules: DAQ communication problems.

Radiation effects

- ALICE runs at reduced luminosity to cope with TPC read-out rate
 - ALICE luminosity leveled to 2.6 Hz/µbarn
 - the integrated dose of ITS is much lower than the other LHC experiments

Expected integrated dose since LHC startup

Detector (inner radius)	TID (krad)	1 MeV neq (cm ⁻²)
SPD (r = 3.9 cm)	17.4	2.9 10 ¹¹
SDD (r = 15 cm)	1.5	3.6 10 ¹⁰
SSD (r = 38 cm)	0.34	1.6 10 ¹⁰

Delivered Luminosity 2018

No increase in noisy channels and temperature, but increasing leakage current for some SPD Half Staves!

SPD observed effects

- ♦ A continuous slight increase of the bulk leakage current was observed for some HSs
 - > 8/9 belong to Layer 1 (higher dose)
 - tune current limits before data taking (January & August 2018)

♦ Stable number of noisy pixels and temperature

♦ No effects on the performance in terms of detection efficiency and space accuracy

elena.botta@to.infn.it

SPD observed effects

SPDSparseDead fraction vs time

SDD observed effects

♦ Stable drift speed

- measured during the calibration steps with the MOS injectors
- drift speed depends on temperature:

$$v_{drift} \propto T^{-2.4}$$

- 0.8%/K variation at room temperature
- > 0.1% resolution on vdrift to get spatial resolution $\sigma(r\varphi) = 35 \,\mu m$

Noise level is low and stable

Temperature vs. mod. number - Run 297511

€ 310

Side 0 Side 1

Temperature (202

300

295

elena.botta@to.infn.it

ALICE ITS: Operational Experience, Performance and Lessons Learned

0 500 Module Number

SSD observed effects

- issues related to humidity of the air coming from ventilation fixed with new ventilation machine (EYETS 2016) and new cooling unit (EYETS 2017) installation
- ♦ SSD acceptance stable
 - Minor issue related to JTAGs
 - Solved improving cable connections
- Fraction of bad strips:
 - Layer 5:
 - n-side: 10%
 - p-side: 8.7%
 - > Layer 6:
 - n-side: 9.2%
 - p-side: 8.2%

SSD observed effects: Single Event Upset

The Front-End ReadOut Modules (FEROM) are located in the cavern just outside the ALICE solenoid.

SEU cross section not increased throughout RUN2.

elena.botta@to.infn.it

Detector performance

- Particle Identification for pure stand-alone ITS tracks
 - > average d*E*/d*x* vs momentum
 - K- π separation in the range 0.1 ÷ 0.45 GeV/c
 - K-p separation in the range 0.1 ÷ 1 GeV/c

Detector performance

 \diamond

Transverse momentum resolution improved by ITS

$\frac{\sigma_{p_{\rm T}}}{p_{\rm T}} = p_{\rm T} \, \sigma_{1/p_{\rm T}}$

ALICE ITS: Operational Experience, Performance and Lessons Learned

Excellent ITS-TPC track matching performance

Physics performance

elena.botta@to.infn.it

ITS: lessons learned

- SPD+SDD+SSD: successful "co-operation" in Run1 and Run2, excellent performance in vertexing, tracking, PID for low p_T physics
- SPD: lightest vertex detector among LHC experiments, only one to provide L0 trigger signal
 - cooling system issues: positioning of filters
 - ➢ it is important to keep under control mechanical and thermal stress (increase of dead pixels due to bump-bonding detachment) → MAPS in ITS2
- SDD: ALICE is the only HEP experiment which operated successfully SDD, 2-d readout
 - to precisely calibrate drift speed, plan to have other detectors, based on different technologies, to give precise coordinates in drift direction
 - very effective in determining coordinates along the anode row
- SSD: optimal acceptance performance, best time availability performance during 2018 Pb-Pb
 - it is important to keep under control humidity, SEU ...

ITS(1) today

... ready for ITS2 !

elena.botta@to.infn.it

... ready for ITS2 ... and beyond !

The MAPS-based ITS Upgrade for ALICE by Giacomo Contin on Monday 14, 15:00

The ALICE ITS Upgrade Readout and Power System by Pietro Giubilato on Thursday 17, 11:00

Upgrade of the ALICE ITS in LS3 by Magnus Mager on Thursday 17, 11:30

elena.botta@to.infn.it

DQM & QA: data quality

elena.botta@to.infn.it

ALICE ITS: Operational Experience, Performance and Lasson Leasoned 1000

1200

1400

DQM & QA: data quality

Detector performance

ITS stand-alone algorithm extends the p_T range down to 80÷100 MeV/c

