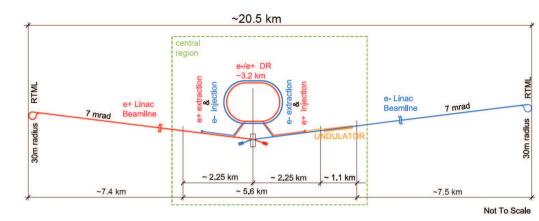
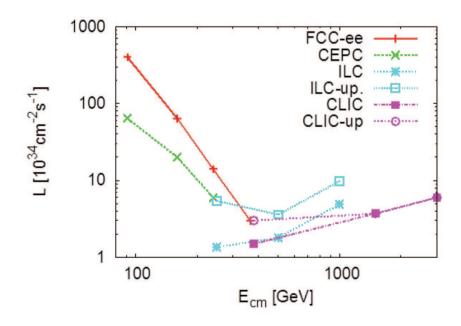
R&D for a Vertex Detector suited to the ILC250 Scientific Goals & Running Conditions

M. Winter (IPHC/CNRS, Strasbourg)

VERTEX-19 Workshop / Lopud Island / 16 Octobre 2019

Contents


- ILC: design, status, ...
- Experimental context
- VXD requirements for physics and running conditions
- Pixel technologies developed: most recent developments
- Developments addressing detector integration
- → partly included in talks addressing running/upgrading expts
- Prospects
- Summary


The International Linear Collider

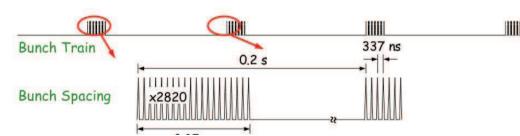
- ILC ≡ Linear e⁺e⁻ collider anticipated to be hosted in Japan (Kitakami mountains)
 - TDR (2012), industrialisation assessed with EU-XFEL, ...
 - ⇒ ready for preparing construction
 - 1st stage ("Higgs factory") under evaluation by Japan. Gvt
 Discussions under way with gvts in US & Europe
 - E $_{cm}$ = **250 GeV**, 350/380 GeV, \gtrsim 500 GeV Extensions: $\nearrow \gtrsim$ 1 TeV, \searrow 90 GeV, 160 GeV
 - Polarised beam(s): typically $P_- = 80 \%$, $P_+ = 30 \%$
 - $_{\circ}$ Timeline (prepa. + construct.) \Rightarrow data taking \lesssim 2035
 - ⇒ O(10) yrs available for R&D on vertex detector
- Updated characteristics of Higgs factory:

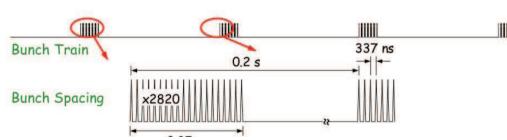
(EPPSU input documents Nr.77 & 66)

- design resumed for 250 GeV (TDR: optimised at 500 GeV)
- $\mathcal{L}_0 = 1.35 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- $_{\circ}$ Upgrades considered: \mathcal{L}_{0} x 4 (ILC-up)
- \hookrightarrow recently \mathcal{L}_0 x 6 (prelim. estimate: < 300 MW, + 1 BUSD)

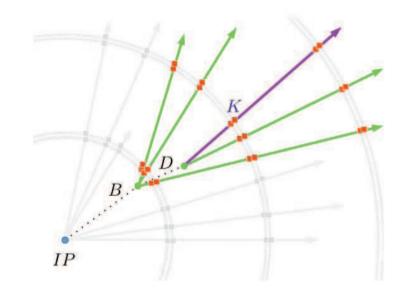
Major Aspects of the Detector Concepts

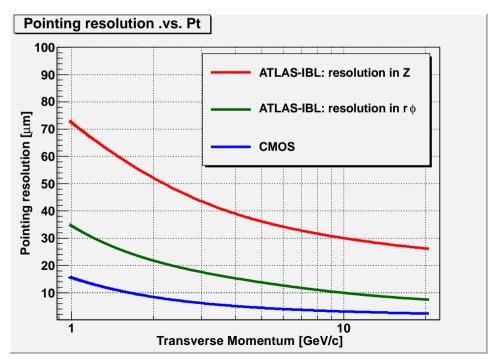
- 2 DETECTOR CONCEPTS:
 - * SiD: full silicon tracker (most compact)
 - * ILD: gaseous main tracker (TPC)




- PRIORITY: GRANULARITY & SENSITIVITY
- **EXPLOIT COLLIDER SPECIFICITIES:**
 - * e⁺e⁻ collisions:
 - o precisely known collision conditions (E_{cm.}, Pol., Lumi.)
 - suppressed QCD background ⇒ moderate radiation level H occur in 1% of coll. (LHC: 1 H for 10¹⁰ collisions)
 - ⇒ triggerless data taking adapted to faint & rare phenomena

beam time structure:

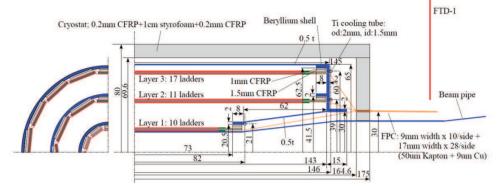

- $_{\circ} \lesssim$ 1% duty cycle \Rightarrow power cycling \equiv saving \Rightarrow allows high granularity
- $_{ extstyle o} \gtrsim$ 300 ns bunch separation \Rightarrow moderate Δt required
- AMBITIONNED PERFORMANCE HIGHLIGHTS:
 - * Δ_{2ryVx} < 10 μm
 - * charged track rec.: $\Delta(1/p) = 2 \cdot 10^{-5} \text{ GeV}^{-1}$ $Q_{2ryVx} \Rightarrow \text{ rec. } P_t \lesssim 100 \text{ MeV tracks}$
 - * mat. budget: \lesssim 10% X $_0$ in front of calorimetres
 - * $\sigma_E^{jet}/E^{jet} \simeq 30\%/\sqrt{E^{jet}}$ (neutral had. !) \Longrightarrow PFA

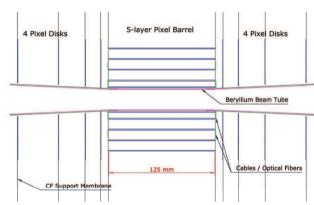

Vertex Detector Performance Goals

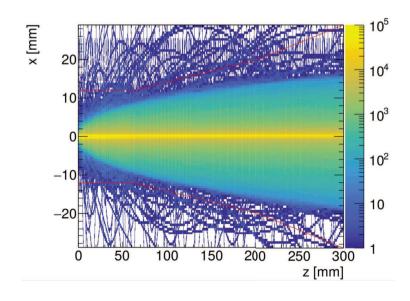
- Vertex detector requirements governed by physics oriented parametres rather than running conditions
 - * emphasis on granularity & material budget (very low power)
 - * much less demanding running conditions than at LHC
 - ⇒ alleviated read-out speed & radiation tolerance requests
 - $_*$ ILC duty cycle \gtrsim 1/200 \Longrightarrow power saving by power pulsing

Vertexing goal:

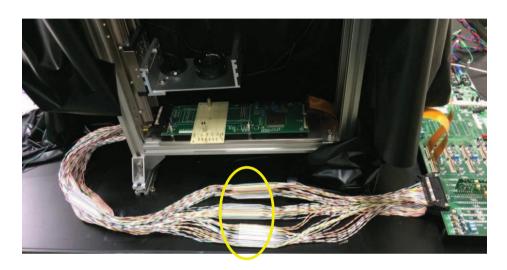
- * achieve high efficiency & purity flavour tagging
- \star reconstruct momentum of soft tracks ($P_t <$ 100 MeV)
- * reconstruct displaced vertex charge
- $\hookrightarrow \sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot sin^{3/2}\theta \ \mu m$ $\Rightarrow \text{ LHC: } \sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2}\theta$
 - $ightharpoontoon{}{>} Comparison: \sigma_{R\phi,Z}(ILD) ext{ with VXD}$ made of ATLAS-IBL or ILD-VXD pixels $ightharpoontoon{}{>}{>}$

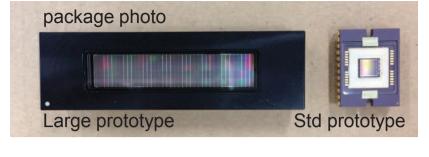



Vertexing Concepts & Challenges


- TWO ALTERNATIVE PIXELATED DESIGNS :
 - * **ILD:** long barrel of 3 dble layers (R: 16 60 mm) 0.3% X $_0$ / layer, $\sigma_{sp}\lesssim$ 3 μm
 - \star **SiD:** short barrel of 5 single layers (R: 14 60 mm) 0.15% X $_0$ / layer, $\sigma_{sp}\lesssim$ 3-5 μm
 - * several (small & thin) pixel technology options under development
 - * other devts: mat. budget suppression, cooling, 2-sided ladders, ...

- \star Radiation doses: O(100) kRad, $< 10^{12} \text{ n}_{eq}/\text{cm}^2/\text{yr}$
- * Rate of e_{BS}^{\pm} impacts: several tens/cm 2 /BX
 - ⇒ governs time resolution requirements
- * sizeable uncertainties: σ_{BS} , luminosity
 - ⇒ substantial safety factors mandatory!

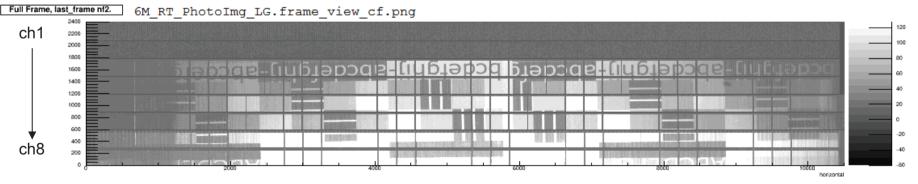



Pixel Technologies under Development

- Two alternative read-out approaches:
 - * continuous during train, possibly alternated with power cycling inbetween trains
 - * delayed after end of train
- FINE PIXEL CCDs (FPCCD): delayed read-out
 - + very granular (5 μm pitch)
- DEPFET: continuous read-out (used in BELLE-II see talk of Björn Spruck)
 - + very low material budget (e.g. 0.19 % X₀ in BELLE-II PXD)
- SILICON ON INSULATOR (SOI): delayed (see talk of Toru Tsuboyama) or continuous read-out
 - + 2-tier process expected to allow very high density integrated μ circuits \Rightarrow pixel dim.
- CMOS PIXEL SENSORS (CPS): delayed (Chronopix) or continuous (PSIRA) read-out
 - **+** exploits CMOS industry evolution (e.g. feature size ⇒ speed, pixel dim., stitching)
- Inverse LGAD:
 - **+** made for high resolution time stamping ⇒ PID
- SYSTEM INTEGRATION DEVELOPMENTS BESIDES PIXEL TECHNOLOGIES:
 - * ultra-light 2-sided ladders * cooling free of extra material in fiducail volume

Large Prototype FPCCD test status

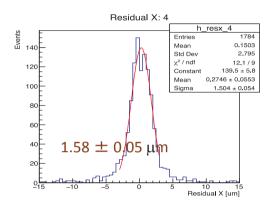
Large prototype die size is 62.4 X 12.3, that is similar size of FPCCD VTX detector 1st layer sensor.

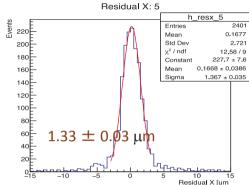


CCD clock: P1H/P2H/P1V/P2V Input capacitances are large, $10nF\sim100nF$. It's important to manage clock cabling. In our test bench, 9 twisted-pare are paralleled for each clocks. $Z_0 = 11\sim12$ [ohm]

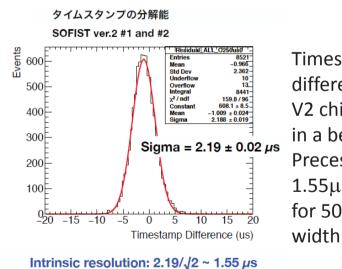
LargeCCD	DUT:CPK1-14-CP01-08						
	V. pix. size	H. pix. Size	Horizontal num. pixel	Vertical num. pixel			
OS8	6 x 6	6 × 6	10400	255	ch1		
OS7	0 X 0				ch2		
OS6	6 x 6	6 x 12	10400	254	ch3		
OS5	0 X 0				ch4		
OS4	8 x 8	8 x 8	7800	191	ch5		
OS3	8 X 8				ch6		
OS2	10 v 10	12 x 12	5200	127	ch7		
OS1	12 x 12				ch8		

Photo Image test, read out 0.625Mpix/sec

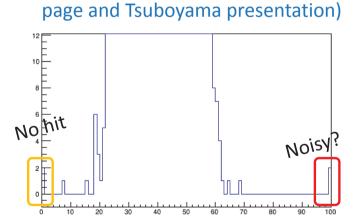

Large prototype CCD is working except ch7 and ch8, of which H. pix size 6 x 6 um². We are working on Fe55 radiation test, and to raise the readout speed up to 10Mpix/sec.


Sol Development (1/2)

SOFIST: SOI Fine measurement of Space and Time


KEK, U Tsukuba, Tohoku U.

Each pixel records multiple hit data (charge and time) to read between beam train



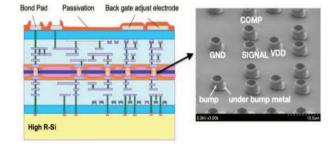
Spatial resolution of $20\mu m$ pixel V1 sensors measured in a beam. (X and Y directions) Values for $100 \ \mu m$ depletion depths are shown

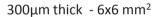
Timestamp difference of two V2 chips measured in a beam. Precession of 1.55µs is obtained for 500µs gate

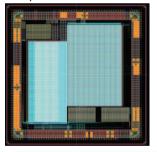
V4: first SOI 3D stack (see next

Hit distribution to β source (top truncated) 0-hit corresponds to 0.04% of failed contact

SOI development at IPHC




New features available in the SOI technology


- Double tier "3D" 5 μm pitch bonding NIMA A 924 (2019) 422–425
- Pinned photo-diode doi : 10.3390/s18010027

Prototyping at IPHC

- Developed a Digital Library in cooperation with KEK
- Submitted two sensors in the last MPW run
 - ➤ Digital for the Digital Library characterization
 - > Analog

Analog Sensor features:

- Pixels in 18 μm pitch
- Matrix of Mimosis pixels
- New amplifier architecture
- Pixels with different collecting diodes

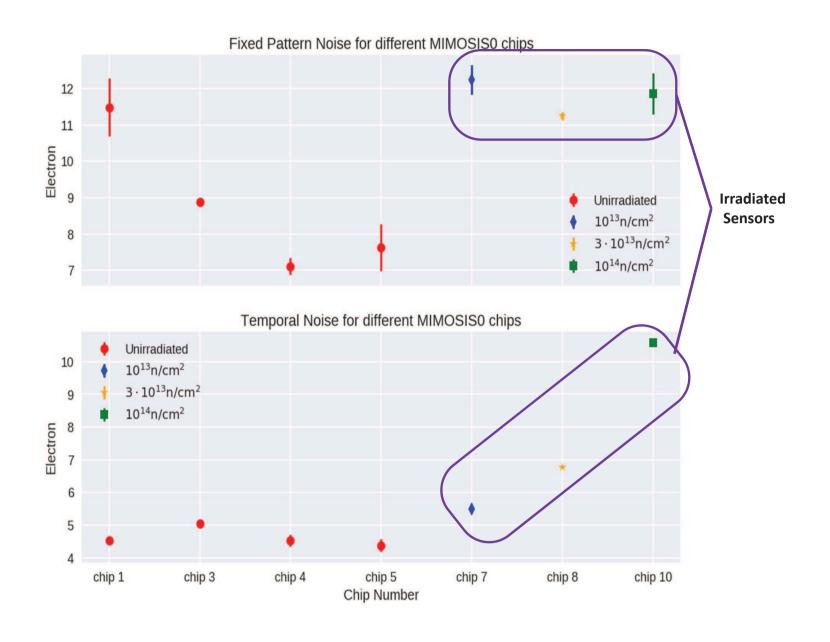
Study:

- Charge collection & Timing
- Radiation damage influence

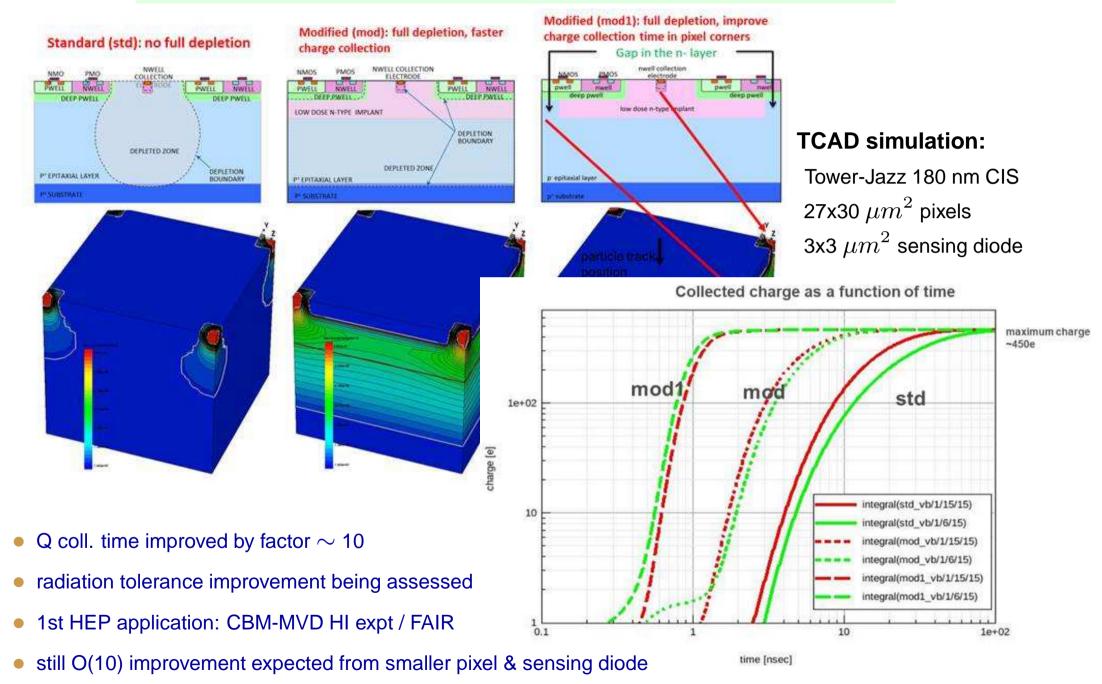
Perspectives

- 20 x 20 μm² Mimosis pixel with a digital tier on top
- Assembled structure thinned down to ~ 50 75 μm

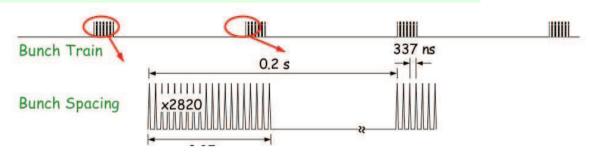
Next MPW submission in May 2020

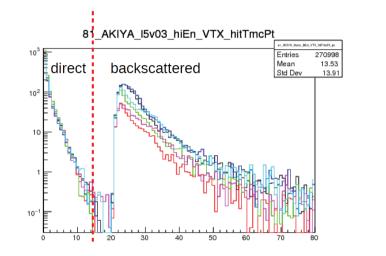

Monolithic CMOS Pixel Sensors (CPS)

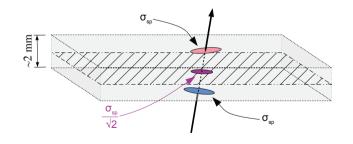
- ILC requirements similar to those of Heavy Ion expts
 - ⇒ CPS developed for CBM expt (FAIR/GSI)
 - ≡ acts as a forerunner for ILC vertex detectors
- Main characteristics of MIMOSIS
 - st TJsc 180 nm imager process with high-res (25 μm thick) epitaxy
 - * modified high-res (25 μm thin) epitaxy \Rightarrow full depletion \Rightarrow sub-ns charge collection time (+ enhanced rad. tol.)
 - * 1024 col. of 504 pixels with asynchronous r.o. (ALPIDE) in-pixel discri. with binary charge encoding
 - $_{*}$ pixel: 27x30 $\mu m^{2} \Rightarrow \sigma_{sp} \gtrsim$ 5 μm (vs depletion depth)
 - \star affordable hit density \simeq 10 8 hits/cm 2 /s
 - st $\Delta t \sim$ 5 μs
 - $_st$ Power density \sim 40–50 mW/cm 2 (vs hit density)
- Step-1: MIMOSIS-0 proto. ≡ 1/32 slice of final sensor
 - st pixel array μ circuitry validated at 5 μs
 - \star measured rad.tol.: 10 MRad, 10¹⁴ n_{eq}/cm²
- Step-2: MIMOSIS-1 full size proto.
 - ⇒ sent for fabrication in Octobre



MIMOSIS-0 Test Results

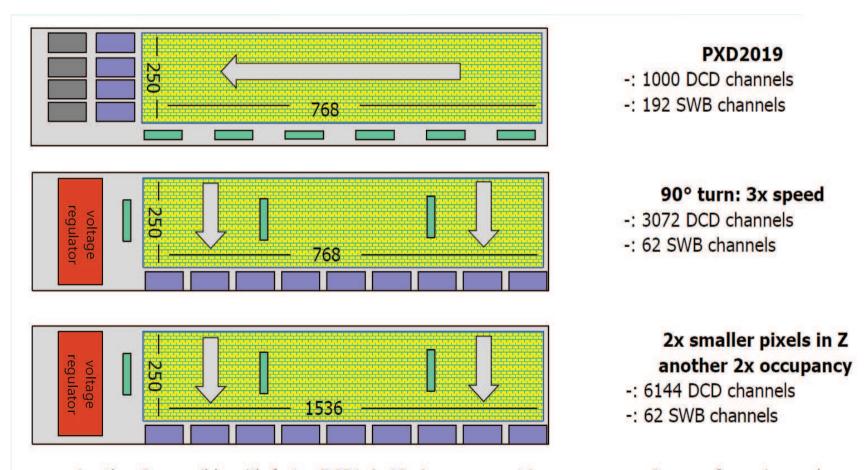



MIMOSIS Spin-Off: Starting Material Options



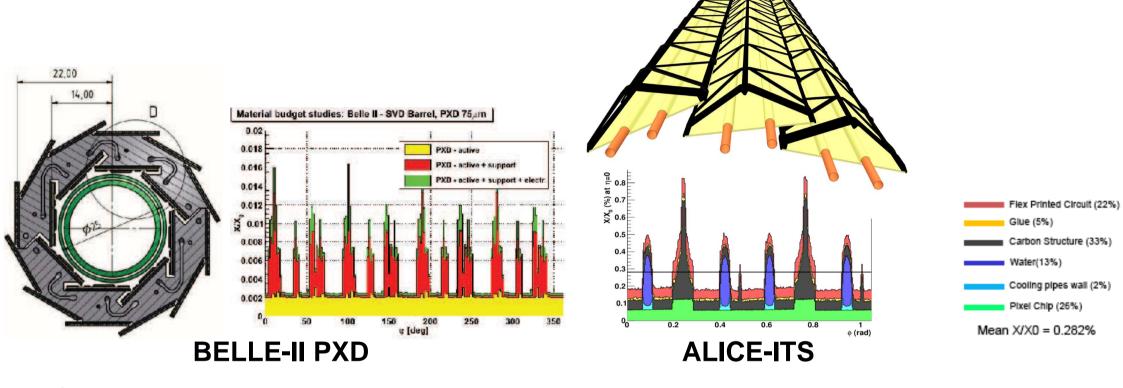
Objectives of R&D in upcoming Years: Time Stamping

- Motivations for time resolution improvements:
 - $_st$ minimise perturbations due to beamstrahlung e $^\pm$
 - * 1st step: single bunch tagging
 - → bunch spacing: 554 or 337 ns (fct of lumi.)
 - st 2nd step: reject backscattered e $_{BS}
 ightarrow \Delta t <$ 20 ns
 - * ultimately: allow for particle ID \Rightarrow O(10) ps
 - extension to fully pixellated tracking
- R&D activities and difficulties.
 - * main difficulty: improve time resolution while keeping high spatial resolution (& affordable power consumption)
 - ⇒ 2 main options addressing single bunch tagging:
 - $_{\circ} <$ 0.1 μm CMOS process (e.g. TJsc 65 nm)
 - 2-tier Sol process
 - e.g.: MIMOSIS may be adapted to 300 ns but granularity
 will be degraded in absence of smaller feature size
 - oversized pixel dimensions (due to in-pixel circuitry)
 may be compensated by 2-sided impact correlations

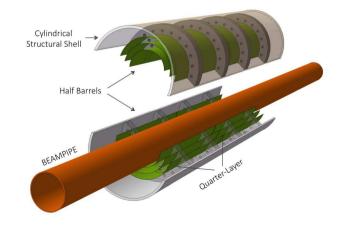


Ex: DEPFET Potential Approach for Shorter Integration Time

ullet DEPFET pixels (50 μm pitch, 20 μs r.o.) equip the PXD detector of BELLE-II



Another 2x possible with faster DCD! \rightarrow 12x improvement in occupancy, ~3µs per frame in reach

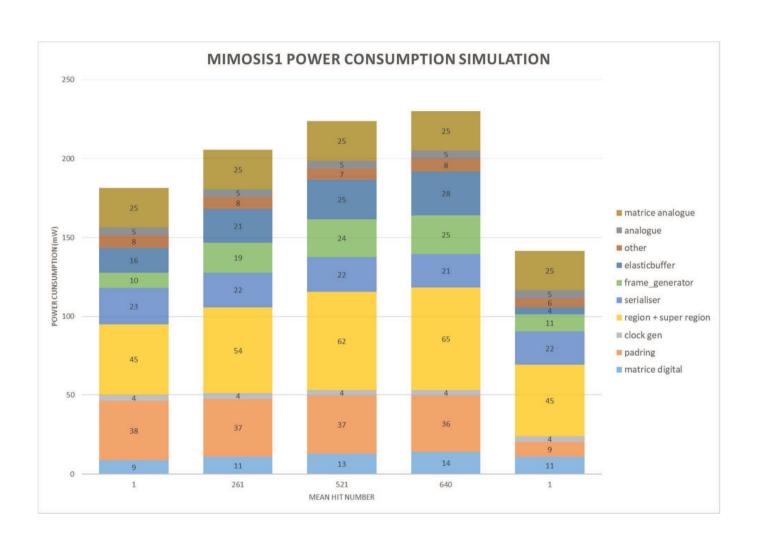

courtesy of Laci Andricek

Objectives of R&D in coming Years: Material budget reduction

Physics perfo. limited by material budget of services & overlaps of neighbouring modules/ladders

- Contribution of sensors to total material budget of vertex detector layer is modest: 15 30%
- R&D objective beyond TDR/DBD concepts:
 - Innermost layer: try stitched & curved CPS along goals of ALICE-ITS3, possibly with 65 nm process
 - Concept with minimised mechanical support
 (e.g. using beam pipe) SEE TALK OF M. MAGER

SUMMARY


- The requirements for an ILC vertex detector are particularly demanding in terms of spatial resolution & material budget. They are addressed with various pixel technologies by compromising the time resolution to a tolerable level (w.r.t. beamstrahlung) and exploiting the modest radiation load
- The performances achieved up to now are quite satisfactory w.r.t. DBD/TDR specs, but:
 - ★ tension between granularity & r.o. speed (⇒ occupancy) → little safety margin
 - * material budget issues (power cycling, cooling) not fully addressed ⇒ room for improvement
- Main present concerns, addressed by emerging R&D steps:
 - * beam related (beamstrahlung) background: rate subject to sizeable uncertainties
 - ⇒ trend of R&D: evolve time stamping toward a few 100 ns (bunch-tagging)
 - → performance perspectives depend on pixel technology: CPS, Sol ?, others ?
 - N.B.: pixel dimensions will depend on process feature size
 - * material budget: reduce impact of mechanical supports and services
 - ⇒ industrial stitching seems promising but there are issues to be addressed soon ...
 - N.B. ILC objectives overlap with those of heavy ion (collider) expts ⇒ shared effort possibilities?
- Timeline:
 - * techno. choices of pixel sensors & system integration for an ILC vertex detector may still wait 5 10 years
 - * physics performances described in TDR/DBD (2012) anticipated to improve significantly meanwhile

Power Consumption of MIMOSIS-1 (1/2)

- Analogue Power: 30 mW (analogue pixel+PLL+DAC+ analogue buffers)
- Total Power = Analogue Power + Digital Power
- Total Power Density 1= Total Power/5.33 cm² (total surface)
- Total Power Density 2= Total Power/4.20 cm² (active surface)
- Power consumption with 8 outputs

	1 pixel/frame	~260 pixels/frame	~520 pixels/frame	~640 pixels/frame	1 pixel/frame 2 outputs
Digital Power mW	150	175	195	200	110
Total Power mW	180	205	225	230	140
Total Power Density 1 mW/cm ²	34	39	42	43	27
Total Power Density 2 mW/cm ²	43	49	53	55	34

Power Consumption of MIMOSIS-1 (2/2)

