Optical Links for High Energy Physics Experiments in the Next Decade

Francois Vasey CERN-EP-ESE

Many thanks to S. Baron, , A. Kraxner, S. Kulis, P. Moreira, C. Scarcella , J. Troska and many others for providing material for this presentation.

Outline

- Performance and limitations of optical links for HL-LHC
- Trends and options for future developments
- Silicon photonics
- Outlook

The GBT and Versatile Link Projects

Performance of HL-LHC Links

	Versatile Link	Versatile Link PLUS
Upgrade phase	Phase I	Phase II
Optical mode	Single- and multi-mode	Multi-mode
Flavours	1Tx+1Rx, 2Tx	up to 4Tx (+1Rx)
Radiation resistance	Up to Calorimeter grade	Up to Tracker grade
Form factor	SFP+	Custom miniature
Data rate	Tx/Rx: 5 Gb/s	Up: 5/10 Gb/s, Down: 2.5 Gb/s

Tolerance level	Dose and fluence
Calorimeter Grade	1 MGy 1.7 x 10 ¹⁴ neutrons/cm ² 1.7 x 10 ¹⁴ hadrons/cm ²
Tracker Grade	1 MGy 1 x 10 ¹⁵ neutrons/cm ² 1 x 10 ¹⁵ hadrons/cm ²

Limitations of HL-LHC Links

- Datarate limited by serdes design and qualified technology (65nm)
- Density and scalability limited by active opto array sizes
- Power supply rails limited by VCSEL technology (3.3V down to 2.5V)
- Distance limited by dispersion at 850 nm MM
- Radiation hardness limited by active opto

Outline

- Performance and limitations of optical links for HL-LHC
- Trends and options for future developments
- Silicon photonics
- Outlook

ASICs Technology Trend: Technology Nodes

- Data rates are highly correlated with the technology nodes
- Shift in modulation format (not technology) can be seen for highest data rates
 (NRZ -> PAM4)
- Research papers demonstrate 40 Gb/s
 NRZ to be possible for technology nodes
 ≤ 65 nm
- Commercial systems (FPGAs)
 introduced 30Gb/s + data rates for the
 28 nm node and below

Optoelectronics Technology Trend

VERTEX 17 Oct 2019

Development Space

Rate multiplication factor

Future developments: Higher Data rates

Ongoing development: LpGBT-VL+ project HL-LHC, 2020

Future developments:

1. Higher Data rates

Future developments: Si-Photonics

Future developments: Si-Photonics & λ - Muxing & PAM4

Outline

- Performance and limitations of optical links for HL-LHC
- Trends and options for future developments
- Silicon photonics
- Outlook

Silicon Photonics: pros

0

- Leverage existing CMOS infrastructure for Photonic Integration
- The Silicon waveguide embedded into silica cladding medium
- Silicon is patterned (deep UV lithography) with sub-micron precision
- Fabricated in standard CMOS fabs using Silicon SOI wafers
- Large Si/SiO₂ refractive index contrast (~2) allows high device scalability
- Several silicon doping concentrations for high-speed modulators and photodiodes ~ 50 Gb/s
- Ge epitaxy for photodetectors
- Complete platform for optical data links

Silicon Photonics: pros and cons

- Leverage existing CMOS infrastructure for Photonic Integration
- The Silicon waveguide embedded into silica cladding medium
- Silicon is patterned (deep UV lithography) with sub-micron precision
- Fabricated in standard CMOS fabs using Silicon SOI wafers
- Large Si/SiO₂ refractive index contrast (~2) allows high device scalability
- Several silicon doping concentrations for high-speed modulators and photodiodes ~ 50 Gb/s
- Ge epitaxy for photodetectors
- Complete platform for optical data links
- Indirect bandgap material
 no monolithic laser integration
- Large Si/SiO₂ refractive index
 large mode mismatch with fiber

Silicon Photonics: Opportunity for HEP

P

- □Why exploring Silicon Photonics?
 - □DC Laser kept out of extreme radiation environments
 - □Low power consumption (excl. laser)
 - ☐ Single Mode data transfer without dispersion penalty
 - □Potential for: > 25 Gb/s NRZ lane rate, Wavelength division multiplexing

☐ Possibility to design custom circuits in MPW framework

Silicon Photonics Circuit: an Artist Dream

Source: "Silicon Photonics and FDMA PON: Insights from the EU FP7 FABULOUS Project" S. Abrate et all.

Silicon Photonics Circuit: an Engineer Nightmare

SiPh Modulator Radiation Tolerance

O

- □Silicon Photonics is tolerant to displacement damage
- Like for CMOS electronics, Si modulators are sensitive to TID
 - □Optical modulators are based on Silicon p-n junctions embedded in SiO₂ cladding layers
 - □TID generates fix positive charge at the Si/SiO₂ interface that pinches-off the junction in the waveguide core

A Silicon Photonics Test Chip

- IMEC MPW (iSiPP50G)

- Turn around time: 9 months

Conclusions

- Optical Links developed for HL-LHC have reached the limits of the used technologies
 - Active optoelectronics not hard enough for pixels and forward calorimeters
- Technology trends point towards
 - Migration to 28 nm CMOS
 - Development of 25 Gb/s links
 - PAM-4 and λ-WDM for more capacity
- Radiation hardness can only be improved by changing technology
 - Silicon Photonics may be the solution
 - Promising results have been reported
 - R&D must be launched now to thoroughly qualify the technology (or not)
 - Hybrid integration with sensor and electronics will come as a bonus

Backups

High Speed Links in HEP

ASICs Technology Trend: Serializer line rate

- HEP systems are certainly lagging behind research papers (for which the main aim is to demonstrate peak performance) and commercial systems (FPGAs)
- HEP ASIC performance tends to be limited by:
 - Long development cycles: radiation qualification and reduced resources
 - Use of relatively old technology nodes:
 radiation qualification and prototyping cost
 - Circuit techniques: increasing radiation tolerance to TID and SEU
- If a projection can be made in the horizon of 2020 to 2025 the HEP systems should be targeting 20 - 40 Gb/s systems:
 - Well within the capability of today's FPGAs

Silicon photonics modulators

Si Mach Zehnder Modulator

- Optically broadband
- Thermally robust
- ☐ Large footprint (L~1mm)
- ☐ High driving voltage amplitude

Si Ring Modulator

- ☐ Optically narrowband (<1nm)
- ☐ Thermally sensitive (<1K)
- □ Small footprint (R~5µm)
- ☐ Small driving voltage amplitude (1Vpp)

10 Gb/s eye diagram

SiPh Modulator Power Efficiency

40 Gbit/s Mach Zehnder modulator

L=1.8mm => C
$$\sim$$
0.5 pF
 $V_{pp} = 7 \text{ V}$ Laser excluded

Energy/bit ~ 6 pJ/bit

1pJ/bit = 1mW/Gbps

Reading from DRAM

• ~ 30 pJ/bit (Dally, 2009)

Communicating a bit off chip

minumicating a bit on crip

Several to 10's pJ/bit

Floating point operation (FLOP)

~ 1pJ/bit (50 pJ for double precision (64b) operation) (Dally, 2009)

Energy stored in DRAM cell

• ~ 10 fJ

Switching one CMOS gate

4 1 fJ

(1 electron at 1V, or one photon ~ 0.16 aJ)

(one google search ~1kJ)

10 Gbit/s ring modulator

Ring radius of 50 μm => C ~0.08 pF Energy/bit ~ 0.7 pJ/bit

W. Dally, "Power Efficient
Supercomputing," talk at ACS, 2009
R. S. Tucker, "Energy and the Internet,"
OECC '08, Sydney, Australia, July 2008;
also J. Baliga, K. Hinton, and R. S.
Tucker, "Energy Consumption of the
Internet," Optical Internet, 2007 and the
2007 32nd Australian Conference on
Optical Fibre Technology, COIN-ACOFT
2007. Joint International Conference on
24-27 June 2007, Page(s):1 – 3; K. Hinton
et al., "Power Consumption and Energy
Efficiency in the Internet," IEEE Network
25, 2, SI pp6-12 (Mar. Apr. 2011)

A Silicon Photonics Vision

Feasibility study of a 100 Gb/s rad-hard transceiver for space applications based on Silicon Photonics micro-ring