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Deep learning in HEP & Astronomy

http://arxiv.org/abs/1810.00592

https://arxiv.org/abs/1806.11484

Hezaveh, Y. D., et al. Nature 2017.

LHC event reconstruction CTA event reconstruction

Gravitational lensing 
reconstruction

Deep learning (in particular supervised 
learning) techniques are becoming increasingly 

more important for HEP & Astronomy.

 → Faster and more precise inference

http://arxiv.org/abs/1810.00592
https://arxiv.org/abs/1806.11484
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Deep neural networks
Deep neural networks are extremely flexible function approximators

Flexible function 

Image Discrete labels

Image Continuous parameters

Parameters Image

Image Image

Classification

Regression

Generative model

e.g. denoising

Examples
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Deep neural networks
Layer connection: Stacking 
affine and activation function

Typical feed-forward network with 
multiple hidden layers

Network weights
and biases
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Example: Image classification network

Convolutional layer Pooling layer

Image credit: https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2, http://cs231n.github.io/convolutional-networks/

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
http://cs231n.github.io/convolutional-networks/
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Training with gradient decent
1. Define loss function
   (here square error / chi-square)

2. back-propagation

3. parameter update

Stop 
when it 
works 
well on 
separate 
test data
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Example: Gravitational Lensing

Hezaveh, Y. D., Levasseur, L. P. & Marshall, P. J. Fast Automated 
Analysis of Strong Gravitational Lenses with Convolutional 
Neural Networks, Nature 2017.

Gravitational lensing data (HST)

Reconstructed parameters

● Amazing speed up: 1 day  0.01 s→ 
● Somewhat less accurate
● Challenge: Subhalos will show up as O(1%) perturbations of best-

fit model, unclear if models can be trained for that as well?
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What else are gradients good for?
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1) High-dimensional optimization

Very-high dimensional models (for e.g. for gamma-ray emission in the 
Galactic disk) would be extremely hard to optimize without gradient 

information.

Bartels+, Nature Astronomy 2018

Bulge preferred over DM

Some exemplary residuals of gamma-ray emission along the Galactic disk, accounted 
for with 1e5 of nuiscance parameters. We use L-BFGS-B algorithm for optimization.
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2) High-dimensional sampling
Typical goal of Bayesian inference is to evaluate expectation values of the form

The integral is dominated by points in the 
“typical set”, which is not conincident with 
the mode if dimensionality is large

The course of dimensionality

Betancourt, M. A Conceptual Introduction to 
Hamiltonian Monte Carlo (1701.02434).
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2) Hamiltonian Monte Carlo
Goal is to explore the “typical set”, 
using Monte Carlo techniques.

Knowing the direction of the 
typical set would greatly help.

However, simply following the gradient 
would just lead to the mode
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2) Hamiltonian Monte Carlo

Betancourt, M. A Conceptual Introduction to 
Hamiltonian Monte Carlo (1701.02434).

Idea: Introduce momentum, p, such that MC is kept in the “orbit” of highest 
density mass (in the ‘typical set’).

New target function

Sampling
● Pick initial point
● follow Hamiltonian dynamics

● resample momentum from canonical 
distribution, preserve position
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3) Variational Inference

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational Inference: A Review for Statisticians (1601.00670).

Video credit: Jesse 
Bettencourt

Fit parameteric model for posterior, q(z), to true posterior p(z|x).
Sampling problem  Optimization problem→ 

Kullback-Leibler divergence:
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Many recent auto-grad tools

Back-propagation:
Forward-mode
Differentiation:

https://medium.freecodecamp.org/demystifying-gradient-descent-and-backpropagation-via-logistic-regression-based-
image-classification-9b5526c2ed46
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Auto-grad through Euler fluid equations

https://github.com/HIPS/autograd

Optimization goal
Find initial velocity field that does this

flow
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Strong gravitational lensing
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Strong gravitational lensing

● Light from distant 
galaxies is 
deflected by DM 
halos long the line 
of sight

● Leads to multiple 
images, arcs, near-
perfect Einstein 
rings

● Careful analysis of 
lensed images 
reveals 
information about 
DM halos
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Strong lensing basics
Basic geometry

Displacement field from Poisson kernel convolution

Lensed image



19

Probe for DM temperature & mass

Slide credit: John McKean (ASTRON) 2018
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Simple source

We are interested in reconstruction of the 
displacement field & mass distribution of lens

Slide credit: Adam Coogan
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Complex source

Challenge: Sources can be quite complex, with 
substructure etc.

Slide credit: Adam Coogan
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Complex source

Sources are measured multiple times in image plane (which 
makes it possible to search for subhalos)

Slide credit: Adam Coogan
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Some recent examles with CNNs
Morningstar+ 2019, https://arxiv.org/abs/1901.01359
Recurrent inference machines for source modeling
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Some recent examles with CNNs
Brehmer+ 2019, https://arxiv.org/abs/1909.02005
Likelihood free inference for modeling lenses with substructure

Use CNN to estimate 
likelihood ratio*

*what is learned is a binary classifier, whose results are then 
recalibrated to yield a likelihood ratio Cranmer+ 1506.02169
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Our approach
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Differentiable probabilistic programming

Philosophy
● Write traditional lensing pipelines, with 

back-propagation
● Replace individual components by 

deep/physical generative models
● Use gradient based optimization methods
● Use propabilistic programming for posterior 

estimates
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Variational Auto-Encoder as source model

Kingma, D. P. & Welling, M. Auto-Encoding 
Variational Bayes. arXiv [stat.ML] (2013).

Components
● Generative model

● Inference model Difference w.r.t. priorMarginal
log-likelihood

Training by ELBO maximization

64x64 pixels 64x64 pixels
~64 parameters
in latent space
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A simple example for the latent space
Training
1000 sine curves

Learned latent 
space 
representation

Reconstruction
Works reasonbly well

Learned latent space
● Periodic variable (phase)
● Bounded variable (amplitude0

Dense NN Dense NN
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Training data set

Slide credit: Adam Coogan
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Source galaxy reconstruction w/o lensing
Galaxy image  (Encoder)  Latent space  (Decoder)  Reconstruction→ → → → 

Generative model (or “decoder”) seems to be expressive enough to 
model real galaxies (though somewhat blured).

Can we use this in a “traditional” fit to lensed images?
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Source galaxy reconstruction with lensing

Fit with 8 lens parameters 
and 64 source paramters

Mock data Residuals

Original source

Best-fit source

Test system 1
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Source galaxy reconstruction with lensing

Fit with 8 lens parameters 
and 64 source paramters

Mock data Residuals

Original source

Best-fit source

Test system 2
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Parameter reconstruction with HMC
We use Hamiltonian Monte Carlo to sample the ~75 dimensional posterior.

● Works excellent, but results are slightly biased for how S/N images
● Likely due to limited expressiveness of source model
● Estimating effect on subhalo searches is work in progress
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Summary

Thank you

● Deep neural networks are power flexible function 
approximators with many applications

● Gradient decent is one of the key components of training 
neural networks

● Gradients are useful for high-dimensional optimization, 
sampling and variational inference

● First steps towards gradient-based lensing pipeline that 
integrates deep generative models look very promising

● Tons of opportunites for improving physics and data 
analysis, largely unchartered territory
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Backup slides
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The Evidence Lower Bound (ELBO)

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational Inference: A Review for Statisticians (1601.00670).

We can write:

Model evidence,
usually untractable

Define the Evidence Lower Bound:

Since

we find

Optimizing q*(z) equals maximizing ELBO.

Difference w.r.t. priorMarginal likelihood

Note that:
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Rotation test
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