

Stockholm University

centre

21 CM COSMOLOGY AND Spin-dependent dark matter

AXEL WIDMARK

JCAP 06(2019)014 arXiv:1902.09552

21 cm cosmology and spin temperature reduction via spin-dependent dark matter interactions

Helpful OKC people:

Garrelt Mellema

Sebastian Baum

Patrick Stengel

Joakim Edsjö

Sunny Vagnozzi

BACKGROUND

HYPERFINE STRUCTURE

HYPERFINE STRUCTURE

AA (triplet) t↓ (singlet)

HYPERFINE STRUCTURE

44 (triplet) 44 (singlet)

 $E_{*} = 5.9 \mu eV$ $T_{*} = 0.068 K$ $\lambda_{\star} = 21 \text{ cm}$

SPIN TEMPERATURE

nat = 3 e Ts

SPIN TEMPERATURE

nat = 3 e Ts

Spontaneous decay rate $A = 2.85 \times 10^{-15} \text{ s}^{-1}$

SPIN TEMPERATURE

Spontaneous decay rate $A = 2.85 \times 10^{-15} \text{ s}^{-1}$

INTRODUCING A DARK SECTOR

DARK SECTOR COOLING

- Can a cold dark matter component explain the EDGES signal?
 - Reduce the kinetic temperature of the hydrogen gas, ~2 % DM subcomponent of milli-charged dark matter (Berlin et al. 2018, Muñoz et al. 2018, Barkana et al. 2018)
- Alternate idea: affect the spin temperature directly, via spin dependent dark matter interactions

SPIN DEPENDENT DARK MATTER

- Light dark matter fermion: χ (~MeV)
- Very light pseudo-vector force mediator: V(~eV)
- Hydrogen and dark fermion masses are mismatched – ineffective momentum transfer
- Cross section is enhanced like v^{-4} , down to $v/c \simeq m_V/m_{\chi}$
- Further enhancement from collision inelasticity

DEEXCITATION (1)

DM fermion

Hydrogen atom

DEEXCITATION (2)

DEEXCITATION (3)

(singlet)

DEEXCITATION (4)

excess energy is carried away by DM fermion

(singlet)

INELASTIC FORM FACTOR

EFFECTIVE TEMPERATURE

• The hydrogen and DM gas temperatures are different $(T_K \neq T_{\chi})$, but the relative velocity between them can be parametrised by an effective temperature

$$\tilde{T}(m_H^{-1} + m_{\chi}^{-1}) = T_H m_H^{-1} + T_{\chi} m_{\chi}^{-1}$$

In the ideal case, where $m_{\chi} \ll m_H$ and $T_{\chi} = 0$, we get

$$\tilde{T} = \frac{m_{\chi}}{m_H} T_H$$

DARK SECTOR LIMITS

COUPLING CONSTANTS

$$\mathcal{L} \supset g_{\chi} V_{\mu} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi + g_{N} V_{\mu} \bar{N} \gamma^{\mu} \gamma^{5} N$$

DM-nucleon interaction:

$$\sigma_{\chi N} = \frac{g_{\chi}^2 g_N^2 m_{\chi}^2}{4\pi [(m_{\chi} v/c)^2 + m_V^2]^2}$$

DM self-interaction:

$$\sigma_{\chi\chi} = \frac{g_{\chi}^4 m_{\chi}^2}{8\pi [(m_{\chi}v/c)^2 + m_V^2]^2}$$

LIMITS FROM DM SELF-INTERACTION

Bullet Cluster:
$$g_{\chi}^4 \lesssim 1.8 \times 10^{-13} \left(\frac{m_{\chi}}{\text{MeV}}\right)^3$$

If we consider a DM subcomponent (<30 %), self-interaction can be arbitrarily strong

$$g_{\chi} \simeq 1$$

Fan et al., Phys. Dark Univ. 2 (2013) 139-156.

SCALAR MEDIATOR 10^{-3} $B \to K \phi$ 10^{-6} n-Xe $K \to \pi \; \phi$ 5th force g_N 10⁻⁹ SN1987a

HB stars

RG stars

keV

 m_V

 10^{-12}

 10^{-15}

eV

 $\phi \overline{t} t$

MeV

GeV

PSEUDO-VECTOR MEDIATOR

- Similar limits apply in the spin-dependent case, although there are some additional complications for pseudo-vector mediators
- Energy/ m_V^2 enhanced coupling to the mediator's longitudinal mode in stellar cooling bounds, giving

$$g_N < 10^{-12} \times \frac{m_V}{10 \text{ keV}}$$

- Such bounds are model dependent, a more complete particle model is highly constrained
- The dominant process of stellar cooling is the Compton process with He, which is suppressed for spin-dependent interactions

RESULTS

DOES IT WORK?

- Significant spin temperature cooling by this mechanism requires $g_N > 10^{-11}$
 - Excluded by a few orders of magnitude (stellar cooling bounds give $g_N < 10^{-12}$, or even stronger with longitudinal mode enhancement) similar scenario for coupling to the electron
 - Maybe some limits can be relaxed (helium Compton process suppression, more complete dark sector)
- Perhaps the same mechanism can cool the spin gas in an alternative model, subject to a different set of constraints

