Detecting Dark Matter in the LISA era:

Gravitational Waves from Intermediate Mass Ratio Inspirals

Bradley J Kavanagh GRAPPA, University of Amsterdam

SLAP2019, 27th September 2019

Preliminary work in collaboration with:

David Nichols
[University of Virginia, formerly GRAPPA]

Gianfranco Bertone [GRAPPA]

Daniele Gaggero [IFT Madrid, formerly GRAPPA]

but working closely with everyone at GRAPPA.

GW probes of DM

[1907.10610]

Current Interferometers

[1907.10610]

Intermediate Mass Ratio Inspiral (IMRI)

Stellar mass compact object (NS/BH) inspirals towards intermediate mass black hole (IMBH)

$$M_{\rm IMBH} \sim 10^3 - 10^5 \, M_{\odot}$$

$$\dot{E}_{\rm GW} \approx \frac{32G^4}{5c^5} \frac{M_{\rm IMBH}^3 M_{\rm NS}^2}{r^5} \propto (f_{\rm GW})^{10/3}$$

LISA should detect ~ 3 - 10 IMRIs per year

[1711.00483]

Dark Matter 'Mini-spikes'

Depending on the formation mechanism of the IMBH, expect an over-density of DM:

$$\rho_{\rm DM}(r) = \rho_{\rm sp} \left(\frac{r_{\rm sp}}{r}\right)^{\gamma_{\rm sp}}$$

For BH forming in an NFW halo, from adiabatic growth expect:

$$\gamma_{\rm sp} = 7/3$$

Density can reach $\,
ho \sim 10^{24}\,M_{\odot}\,{\rm pc}^{-3}$ (~10²⁴ times larger than local density)

[astro-ph/9906391, astro-ph/0501555, astro-ph/0501625, astro-ph/0509565, 0902.3665, 1305.2619]

IMRI + Dark Matter

DM makes the compact object spiral in faster, primarily due to *dynamical friction*

This can be seen in the rate at which the GW signal accumulates phase

'De-phasing'

'De-phasing' signal

How does DM affect the number of cycles?

$$M_{\mathrm{IMBH}} = 10^{3} \, M_{\odot}$$
 $M_{\mathrm{NS}} = 1 \, M_{\odot}$
 $r_{\mathrm{ini}} \sim 10^{-8} \, \mathrm{pc}$

 $t_{\rm merge} \sim 5 \, {\rm yr}$

 $N_{\rm cycles}^{\rm vacuum} \sim 2 \times 10^7$

Need to know the signal to better than ~1 part in 10⁶!

[Eda et al. 1301.5971, 1408.3534] [See also 1302.2646, 1404.7140, 1404.7149]

Energy Budget

Q: How much energy is *available* for dynamical friction?

A: Binding energy of DM ΔU_{DM} over radius Δr

Energy Budget

Q: How much energy is *available* for dynamical friction?

Evolve the system by fixing the dynamical friction force to extract *all* binding energy from a shell at a given radius:

$$\dot{E}_{\rm DF} = \dot{r} \, \frac{\mathrm{d}U_{\rm DM}}{\mathrm{d}r}$$

A: Binding energy of DM ΔU_{DM} over radius Δr

N-body simulations

High precision N-body sims

Gadget-II code:

```
/* Some physical constants in cgs units */
59
60
     #defire
              GRAVITY
                                 6.672e-8
                                             *!< Gravitational constant (in cgs units) */</pre>
61
     #define
62
              SULAK MASS
                                  1.989e33
     #define
              SOLAR_LUM
                                 3.826e33
63
              RAD_CONST
     #define
                                 7.565e-15
64
    #define
              AVOGADRO
                                 6.0222e23
65
    #define
              BOLTZMANN
                                 1.3806e-16
66
    #define
              GAS_CONST
                                 8.31425e7
67
    #define
                                 2.9979e10
68
    #define PLANCK
                                 6.6262e-27
69
    #define CM_PER_MPC
                                 3.085678e24
70
    #define
              PROTONMASS
                                 1.6726e-24
71
    #define
              ELECTRONMASS
                                 9.10953e-28
72
     #define
              THOMPSON
                                 6.65245e-25
73
     #define
              ELECTRONCHARGE
                                 4.8032e-10
74
                                                   /* in h/sec */
     #define
                                 3.2407789e-18
75
              HUBBLE
```

The Universe:

$$G_N = 6.674 \times 10^{-8} \,\mathrm{m}^3 \,\mathrm{g}^{-1} \mathrm{s}^{-2}$$

N-body simulations

Allows us to check assumptions and fix normalisation of DF force (In/A), but can't simulate the whole 5 year inspiral!

Self-consistent evolution

Phase space of DM described by distribution function $f(\mathcal{E})$ where

$$\mathcal{E} = \Psi(r) - \frac{1}{2}v^2$$

Compact object scatters with all DM particles within 'torus' of influence over one orbit

Each particle receives a 'kick' of typical size $\Delta \mathcal{E}$ through gravitational scattering:

$$\mathcal{E} \to \mathcal{E} + \Delta \mathcal{E}$$

Self-consistent evolution

Assuming orbit evolves slowly compared to the orbital period:

$$T_{\text{orb}} \frac{\mathrm{d}f(\mathcal{E})}{\mathrm{d}t} = -f(\mathcal{E})P_{\text{scatter}}(r_0, \mathcal{E})$$
$$+ \left(\frac{\mathcal{E}}{\mathcal{E} + \Delta \mathcal{E}}\right)^{5/2} f(\mathcal{E} - \Delta \mathcal{E})P_{\text{scatter}}(r_0, \mathcal{E} - \Delta \mathcal{E})$$

 $P_{
m scatter}\left(r_0,\mathcal{E}
ight)$ – roughly the fraction of DM particles with energy \mathcal{E} which lie within a distance $b_{
m max}$ from the NS orbit

Density profile (and therefore dynamical friction force) can then be determined self-consistently from the distribution function

Self-consistent evolution

Assuming orbit evolves slowly compared to the orbital period:

$$T_{\text{orb}} \frac{\mathrm{d}f(\mathcal{E})}{\mathrm{d}t} = -f(\mathcal{E})P_{\text{scatter}}(r_0, \mathcal{E})$$

Particles scattering from

$$\mathcal{E} \to \mathcal{E} + \Delta \mathcal{E}$$

$$+ \left(\frac{\mathcal{E}}{\mathcal{E} + \Delta \mathcal{E}}\right)^{5/2} f(\mathcal{E} - \Delta \mathcal{E}) P_{\text{scatter}}(r_0, \mathcal{E} - \Delta \mathcal{E})$$

Particles scattering from

$$\mathcal{E} - \Delta \mathcal{E} \to \mathcal{E}$$

 $P_{
m scatter}\left(r_0,\mathcal{E}
ight)$ – roughly the fraction of DM particles with energy \mathcal{E} which lie within a distance $b_{
m max}$ from the NS orbit

Density profile (and therefore dynamical friction force) can then be determined self-consistently from the distribution function

Evolution of density profile

As a 'test', keep the NS fixed at a given radius and see how the DM halo reacts to its orbit:

Evolution of density profile

As a 'test', keep the NS fixed at a given radius and see how the DM halo reacts to its orbit:

How much shorter is the inspiral compared to the 'vacuum' case (with no DM?)

De-phasing drastically reduced - but still detectable!

Survival of density profile

How does the density profile evolve during and after the inspiral?

Prospects for the future

So far we're in the early stages of exploring these effects:

- For which binary parameters does this effect matter?
- What if we go beyond circular orbits in the Newtonian regime?
- How common are these DM halos around astrophysical BHs?

These signals are only detectable with dedicated templates, so careful signal modelling is needed.

Ultimately, aim to develop IMRI+DM template banks and study parameter reconstruction.

Conclusions

Gravitational Wave signatures of Dark Matter in intermediate mass ratio inspirals are more subtle and less pronounced than previously believed - but should still be detectable with LISA.

Important consequences for:

- the survival of DM spikes
 [See talk by Adam Coogan, 1905.01238]
- joint EM + GW signals[See talk by Marco Chianese, 1905.04686]
- fermionic DM[See talk by Kenny Ng, 1906.11845]
- detection of a broad range of DM candidates in the LISA era

Conclusions

Gravitational Wave signatures of Dark Matter in intermediate mass ratio inspirals are more subtle and less pronounced than previously believed - but should still be detectable with LISA.

Important consequences for:

- the survival of DM spikes
 [See talk by Adam Coogan, 1905.01238]
- joint EM + GW signals[See talk by Marco Chianese, 1905.04686]
- fermionic DM[See talk by Kenny Ng, 1906.11845]
- detection of a broad range of DM candidates in the LISA era

Thank you!

Backup Slides

Assumptions

- Spherical symmetry and isotropy of the DM halo
- DM particles only scatter within an impact parameter

$$b < b_{\text{max}} = \Lambda \times G_N M_{\text{NS}} / v_{\text{NS}}^2$$

DM distribution is 'locally' uniform

$$b_{\rm max} \ll r_0$$

- ▶ Halo 'relaxation' is instantaneous
- Orbital properties evolve slowly compared to the orbital period

Total number of cycles

Astrophysical BH binaries

Astrophysical BH binaries could be formed dynamically, or through e.g. common envelope evolution:

[Banerjee, 1611.09357, LIGO-Virgo, 1602.03846, Elbert et al., 1703.02551, Stevenson et al., 1704.01352, and many others...]

N-body results

NS only scatters with particles where its gravity dominates over the IMBH's

Fix 'Coulomb factor':
$$\Lambda = \sqrt{M_{\rm IMBH}/M_{\rm NS}} \sim 20-60$$

N-body results

Dependence of dynamical friction force on mass and separation matches expectations

Dynamical friction traces local DM density (to better than 1%)

Drop off in DF force at small separations due to softening of simulations

Distribution function

Self-consistently reconstruct density from distribution function:

$$\rho(r) = 4\pi \int_0^{v_{\text{max}}(r)} v^2 f(\mathcal{E}) \, dv$$

Relaxation of the Halo

