The Higgs instability during inflation

Jacopo Fumagalli PALS, 27-09-2019

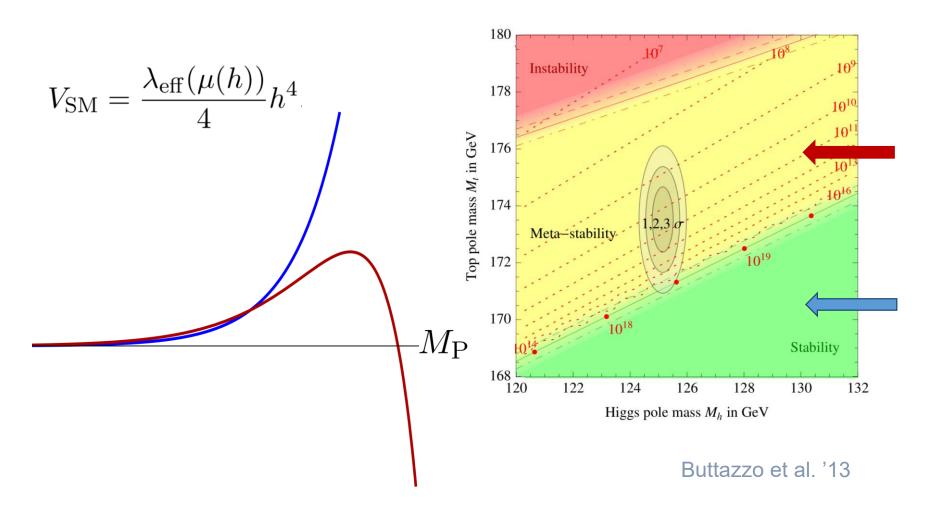
Institute d'Astrophysique de Paris 1910.xxxx with J.W.Ronayne and S. Renaux-Petel

Framework: SM up to the Planck scale

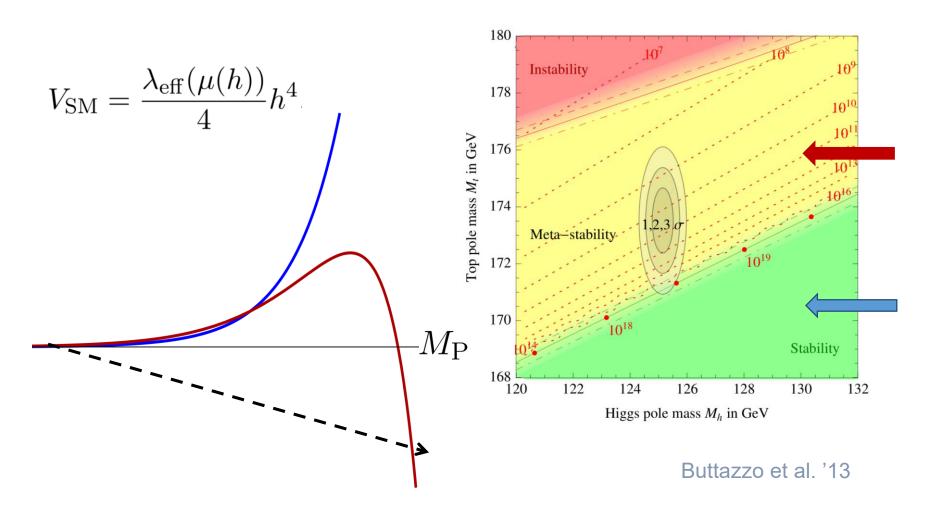
- No physics beyond the SM found so far
- Standard Model up to the Planck scale? (Assumption #1)

Degrassi et al. '12 Buttazzo et al. '13 M. Herranen et al ' 14 etc..

The Higgs instability



The Higgs instability



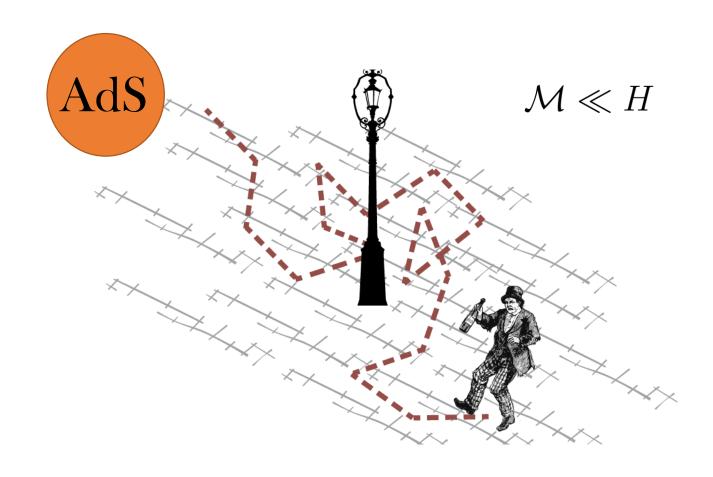
... during inflation

Our vacuum is Metastable

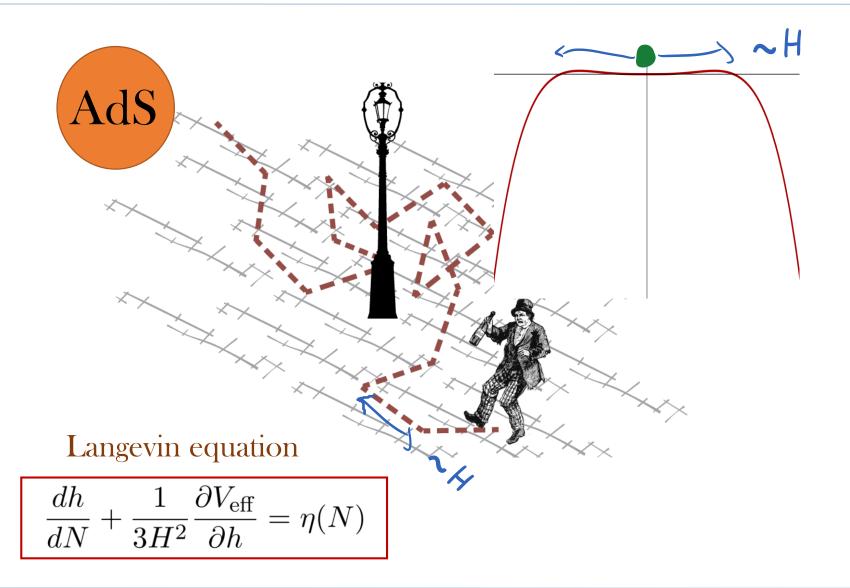
Cosmological history

• Assumption #2: a period of inflation

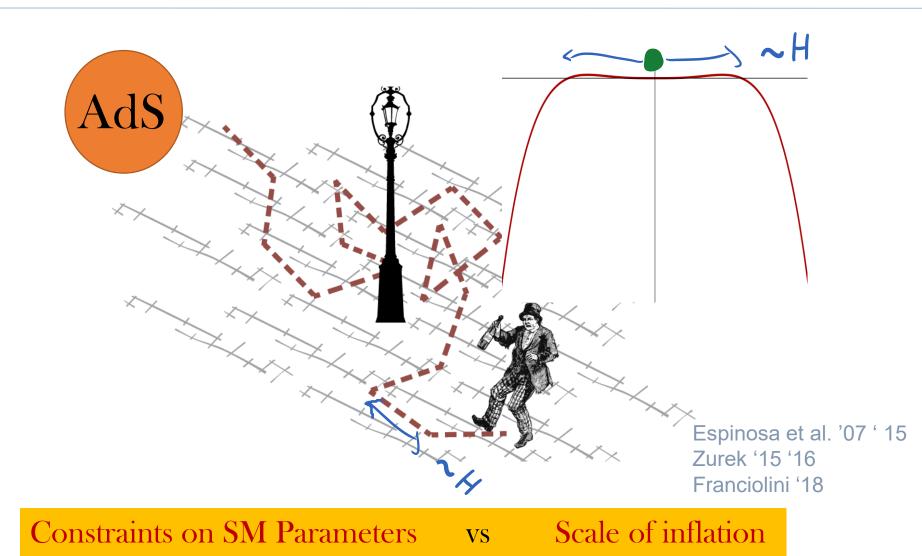
The Higgs during inflation



The Higgs during inflation

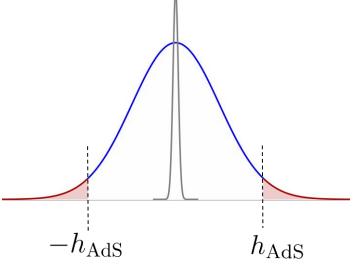


The Higgs during inflation



$$\frac{\partial P}{\partial N} = \frac{\partial^2}{\partial h^2} \left(\frac{H^2}{8\pi^2} P \right) + \frac{\partial}{\partial h} \left(\frac{\partial V_{\text{eff}}/\partial h}{3H^2} P \right)$$

$$P(|h| > h_{AdS}, 60) \times \mathcal{N} < 1$$



o Ass.#1 SM up to Planck

○ Ass. #2: a period of inflation

Novelty introduced

o Ass.#1 SM up to Planck

Effective field theory

• Ass. #2: a period of inflation

Quasi de-Sitter

Full slow roll

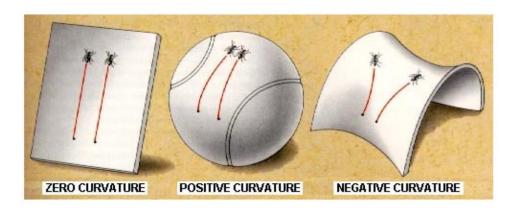
Noise for non massless

Planck suppressed operators

$$\mathcal{O}_{n+4} = C \frac{(\mathcal{H}^{\dagger} \mathcal{H})^n}{M_P^n} (\partial \phi)^2$$

Planck suppressed operators

$$\mathcal{O}_{n+4} = C \frac{(\mathcal{H}^{\dagger} \mathcal{H})^n}{M_P^n} (\partial \phi)^2 \implies -\frac{1}{2} G_{IJ} \partial \varphi^J \partial \varphi^I$$



S. Renaux-Petel, K. Turzinsky '15

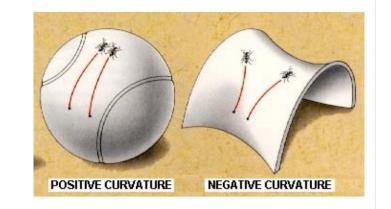
Geometry of the field space manifold can easily destabilize inflationary trajectories

Geometrical (de)stabilization of the Higgs

$$\mathcal{L} = -\frac{1}{2}G_{IJ}\partial\varphi^{J}\partial\varphi^{I} - V(h) - V(\phi), \qquad \varphi^{I} = \{\phi, h\},\$$

$$\frac{\mathcal{O}^{n}(h, \phi)}{M_{P}^{n}} V_{SM} - \frac{\xi h^{2}}{2}R$$

$$\longrightarrow \mathcal{M}^2 = V_{;hh} + \epsilon R_{\rm sf} H^2 M_{\rm P}^2,$$



Geometrical (de)stabilization of the Higgs

$$\mathcal{L} = -\frac{1}{2}G_{IJ}\partial\varphi^{J}\partial\varphi^{I} - V(h) - V(\phi), \qquad \varphi^{I} = \{\phi, h\},\$$

$$\frac{\mathcal{O}^{n}(h, \phi)}{M_{P}^{n}} V_{SM} - \frac{\xi h^{2}}{2}R$$

$$G_{IJ} = \operatorname{diag}(1 - 2Ch^2/M_{\rm P}^2, 1)$$

 $R_{\rm sf} \simeq 4C/M_{\rm P}^2$

$$\mathcal{M}^2 = V_{;hh} + \epsilon R_{\rm sf} H^2 M_{\rm P}^2,$$

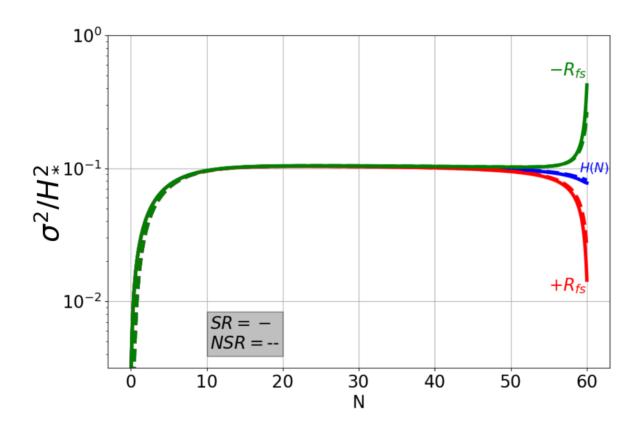


$$= \frac{\partial^2 V_{\rm SM}}{\partial h^2} - \left(1 - \frac{\epsilon}{2}\right) 12\xi H^2 + 4C\epsilon H^2$$

Effect of Planck suppressed operators

$$\mathcal{M}^2 \simeq -\left(1 - \frac{\epsilon}{2}\right) 12\xi H^2 + 4C\epsilon H^2$$

$$\mathcal{O}_6 = C \frac{2\mathcal{H}^{\dagger}\mathcal{H}}{M^2} (\partial \phi)^2$$

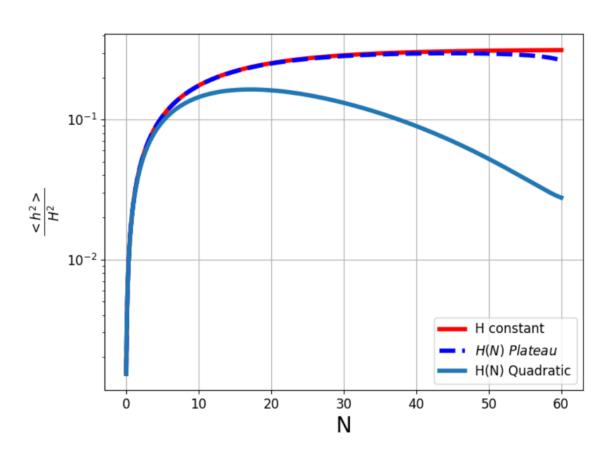


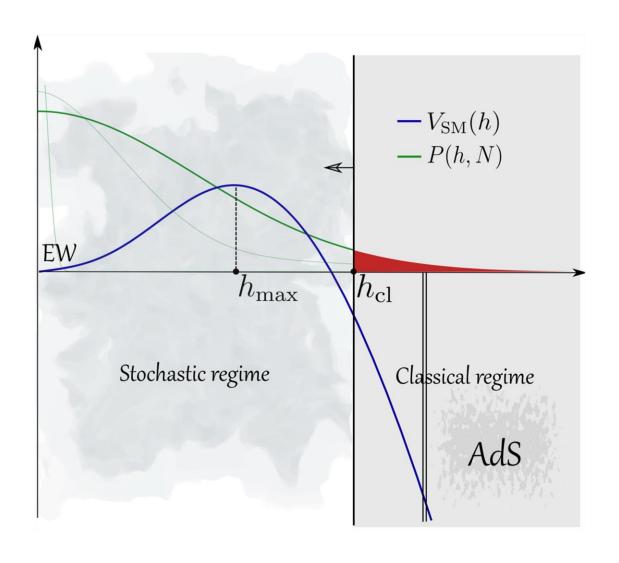
H not constant

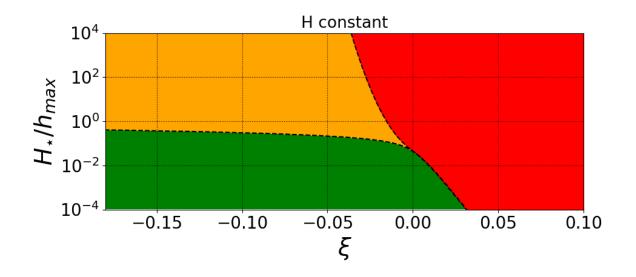
$$N_{
m rel} \simeq rac{H^2}{\mathcal{M}^2} < rac{1}{\epsilon} = N_H$$
 Hardwick, Vennin et al. '17

H not constant

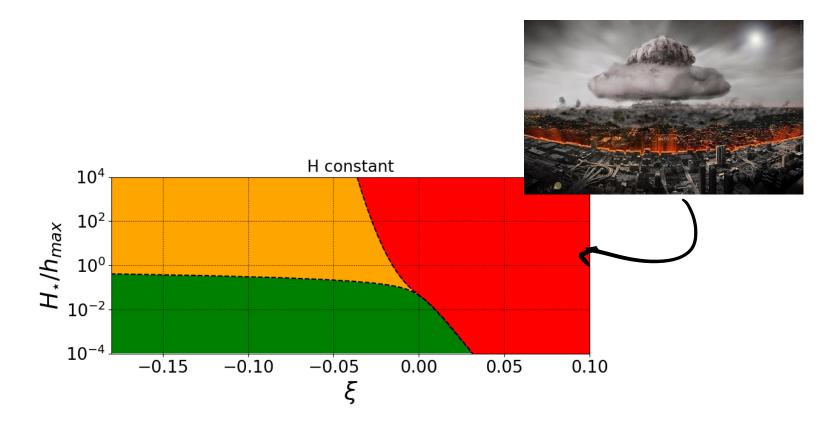
$$N_{
m rel} \simeq rac{H^2}{\mathcal{M}^2} < rac{1}{\epsilon} = N_H$$
 Hardwick, Vennin et al. '17



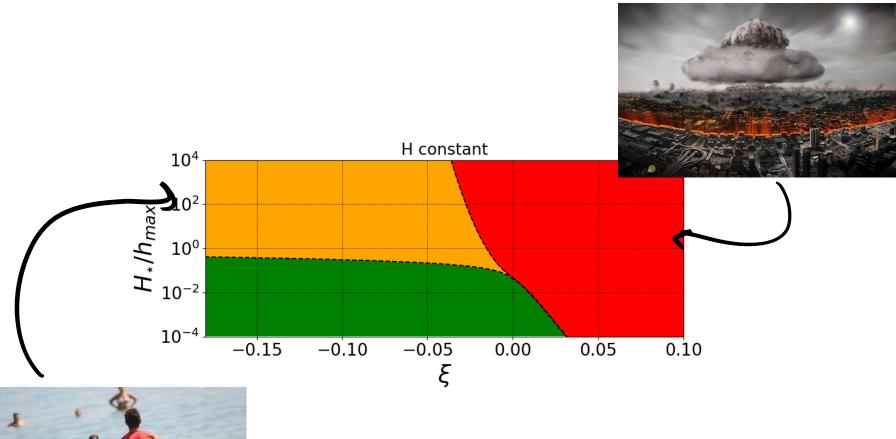




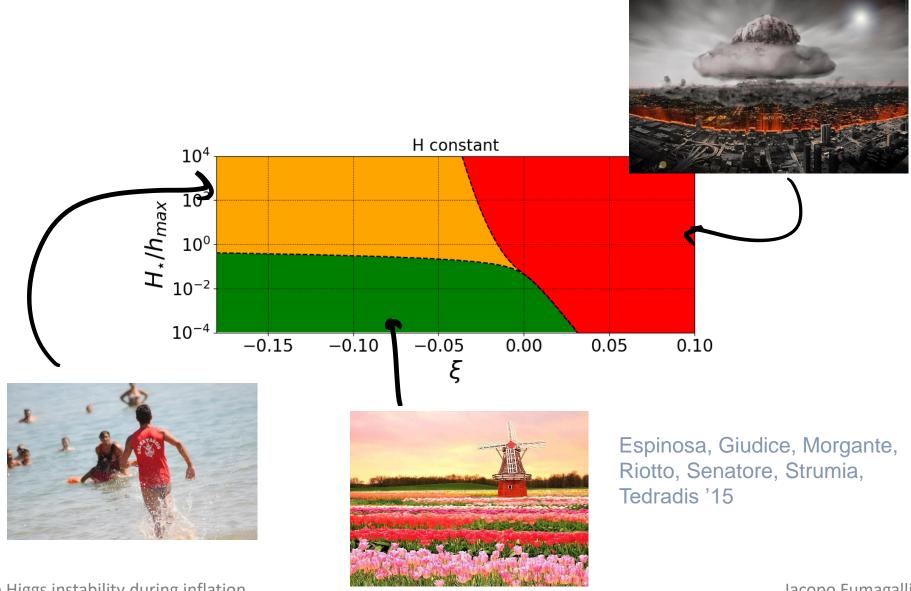
Espinosa, Giudice, Morgante, Riotto, Senatore, Strumia, Tedradis '15



Espinosa, Giudice, Morgante, Riotto, Senatore, Strumia, Tedradis '15



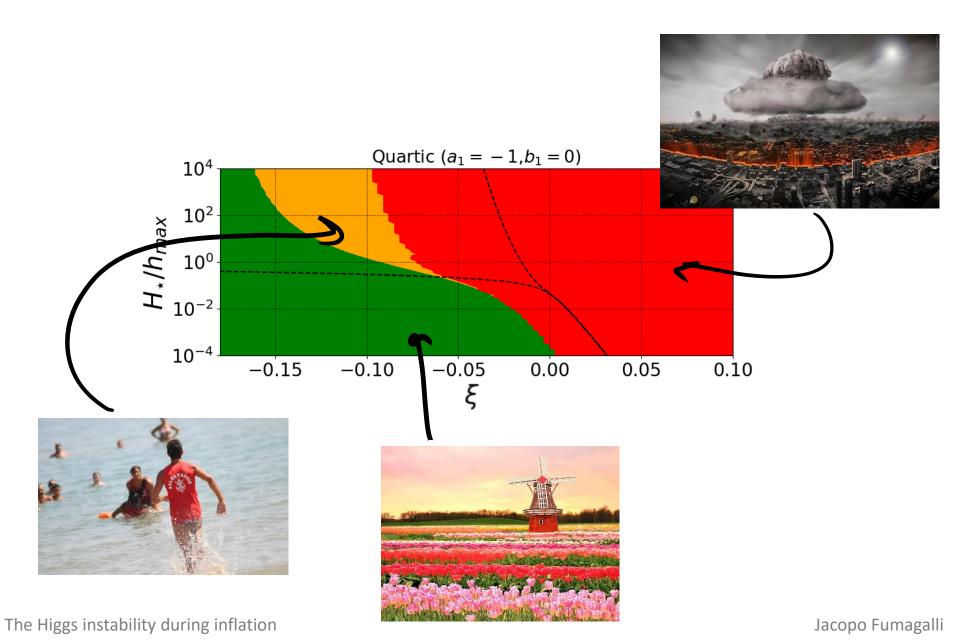
Espinosa, Giudice, Morgante, Riotto, Senatore, Strumia, Tedradis '15



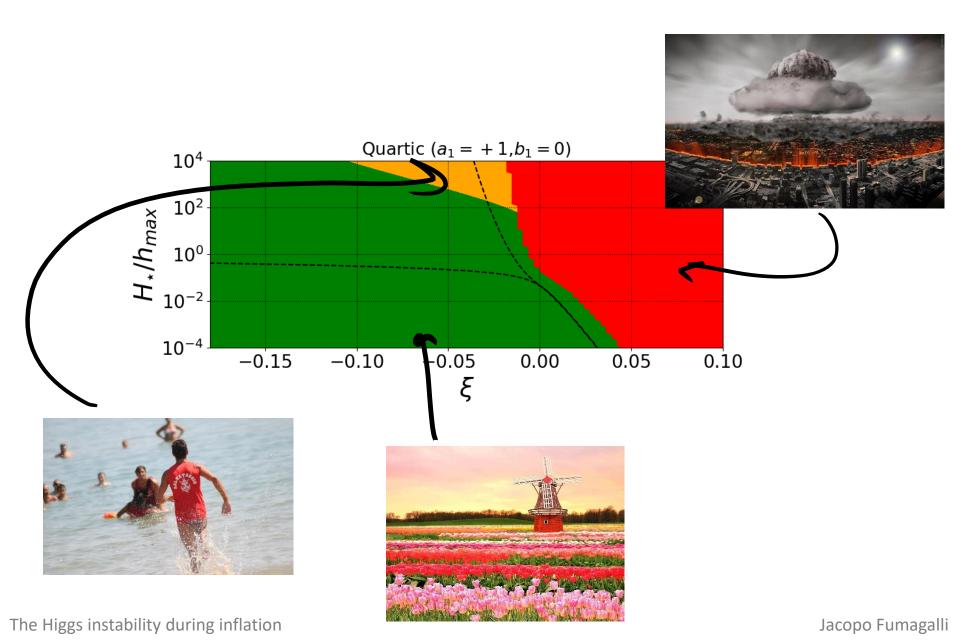
The Higgs instability during inflation

Jacopo Fumagalli

Example: Negative curvature

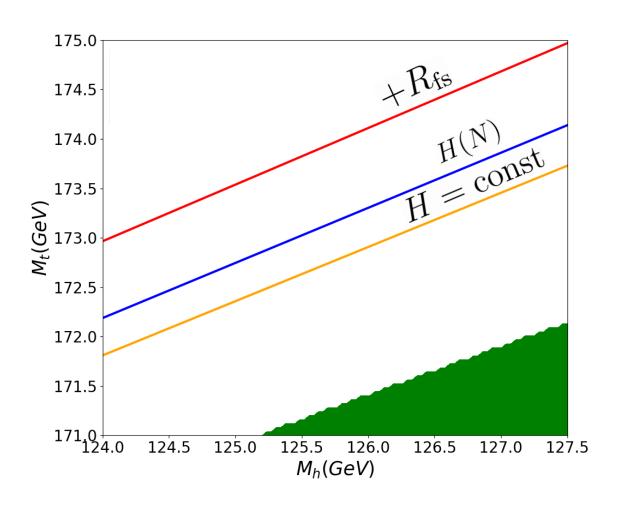


Example: Negative curvature



Bounds on SM parameters (Example)

$$H_* = 10^{12} \,\mathrm{GeV}$$



$$\alpha_s = 0.1184$$

$$\xi = -0.05$$

$$T_{RH} \lesssim 10^4 \, \text{GeV}$$

Conclusions and outlook

- Vacuum metastable needs study in the context of the Cosmological story
- Departure from de Sitter and Planck suppressed operators can affect the fate of the vacuum stability
 - Full stochastic approach, beyond Slow roll
 - Induce effective mass on the Higgs, quantum kicks
- Implications for the bounds on the SM parameters

Stochastic motion of a light scalar field during inflation

Flows of sub-Hubble modes joining the super-Hubble (IR)

→ Langevin equation

$$\frac{dh}{dN} + \frac{1}{3H^2} \frac{\partial V_{\text{eff}}}{\partial h} = \eta(N)$$

$$\langle \eta(N)\eta(N')\rangle = \mathcal{P}_h \delta(N-N')$$
Gaussian white noise

Not suppressed if

$$\mathcal{M}^2 = \frac{\partial^2 V_{\text{eff}}}{\partial h^2} \ll \frac{9H^2}{4}, \qquad \mathcal{P}_h \simeq \left(\frac{H}{2\pi}\right)^2,$$

Crucial when SM alone + corrections

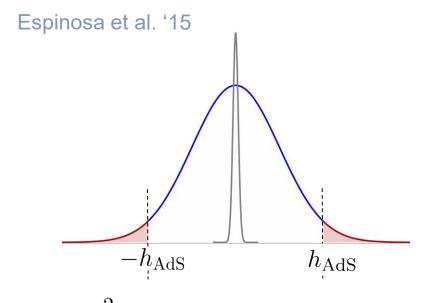
Model independent bound

$$P(|h| > h_{\text{AdS}}, 60) \times \mathcal{N} < 1$$

$$1 - P_{\text{Gauss}}(|h| < h_{\text{AdS}})$$

$$\left| \frac{\partial_h V_{\text{SM}}}{3H_*^2} \right| > \frac{H_*}{2\pi}$$

$$\frac{H_*}{h_{\text{max}}} < \frac{1}{\sqrt{6N\hat{\sigma}}} e^{\beta \hat{\sigma}^{-3/2}}$$



$$\hat{\sigma} \equiv \frac{\sigma_{\rm end}^2}{H_*^2}$$

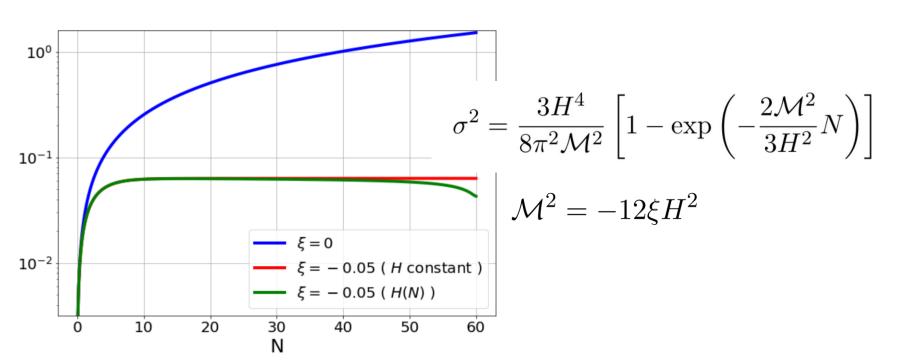
E.G.
$$H_*/h_{\rm max} < 10^4 \text{ for } \hat{\sigma} \simeq 0.02$$

 $H_*/h_{\rm max} < 1 \text{ for } \hat{\sigma} \simeq 0.075$

Evolution of the variance

$$V_{\rm SM} \simeq 0 \text{ for } |h| < h_{\rm AdS}$$

$$\frac{\partial \sigma^2}{\partial N} = -\frac{2\mathcal{M}^2}{3H^2}\sigma^2 + \frac{H^2}{4\pi^2}$$



$$\mathcal{P}_h(k = \bar{k} \ll aH) = \left(\frac{H}{2\pi}\right)^2 \frac{\pi}{2} \left(\frac{\bar{k}}{aH}\right)^3 \left| H_{\nu}^{(1)} \left(\frac{\bar{k}}{aH}\right) \right|^2 \equiv \left(\frac{H}{2\pi}\right)^2 \cdot f,$$

$$\nu = \sqrt{\frac{9}{4} - \frac{\partial^2 V_{\text{eff}}/\partial h^2}{H^2}},$$