
Maurizio Pierini

A CERN physicist’s perspective
on some of your questions and

where Deep Learning could help

๏ How to build confidence in raw data and any calculations carried on that raw
data?

๏ How to detect sensor failures/anomalies?

๏ How to robustly delete data and have confidence that good data hasn’t been
deleted?

๏ How to limit access to different datasets generated by different groups?

๏ Techniques for intuitively linking different datasets together?

๏ Application of A.I. / Machine Learning for real time analysis of live data
streams?

๏ Real time X-ray / C.T. / other scanning to allow us to view combustion
processes.

๏ A.R. / V.R. techniques for data visualisation and manipulation

Your Questions

 2

๏ How to build confidence in raw data and any calculations carried on that raw
data?

๏ How to detect sensor failures/anomalies?

๏ How to robustly delete data and have confidence that good data hasn’t been
deleted?

๏ How to limit access to different datasets generated by different groups?

๏ Techniques for intuitively linking different datasets together?

๏ Application of A.I. / Machine Learning for real time analysis of live data
streams?

๏ Real time X-ray / C.T. / other scanning to allow us to view combustion
processes.

๏ A.R. / V.R. techniques for data visualisation and manipulation

What I will try to address

 3

๏ Techniques for intuitively linking different datasets together?

๏ How to limit access to different datasets generated by different groups?

๏ How to robustly delete data and have confidence that good data hasn’t been
deleted?

๏ Application of A.I. / Machine Learning for real time analysis of live data
streams?

๏ How to detect sensor failures/anomalies?

๏ How to build confidence in raw data and any calculations carried on that raw
data?

๏ Real time X-ray / C.T. / other scanning to allow us to view combustion
processes.

๏ A.R. / V.R. techniques for data visualisation and manipulation

…in this order

 4

๏ The slides are written trying to explain you how we
deal with the same problems without entering in the
details of the physics problems behind

๏ To do so, I will use a race-related language (race,
lap, sensor) than a particle physicist language (run,
event, detector hit)

๏ The content will look very trivial & naive (at least it
does to me) but I hope it will help to establish a
discussion

๏ I am not implying that your problems are as trivial as
my language is

How I will address the questions

 5

Data plumbing

Structured Dataset

 7

D(i, j, k, d)

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

At some point you read
out your car sensors.

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

S1 S2 … Sn

You do it every second
across one lap

You have n laps in a
session (race, test, etc)

You have many
sessions

…

The session-
labelling

index

The lap
number

the readout
number

the sensor

This is a unique data
identification

๏ You can represent your dataset as a (numpy, ROOT, etc.) array

๏ You can store arrays in files (HDF5, ROOT) file

๏ You can store and distribute data through a distributed
filesystem (e.g., CERN EOS) for Big Data Applications

Structured Dataset

 8

This is the entry point to build your python-
system data science software ecosystem

From here, any data scientist could take it over
and help you solve your problems

Machine
Learning

Applications

Statistical
analysis

Data
Visualisation

๏ As far as I understand, you have datasets spread across
different platforms (data bases, excel spreadsheets, etc.)

๏ Each of these sources can be turned into numpy arrays or
similar kinds of data frames

๏ In case you have to combine datasets from different
sources, you need to use some universal data ID

How to get there

 9

D1(i, j, k, sd)
Session

lap

readout

some data

D2(i, j, k, od)
Session

lap

readout

other data

S1 S2 … Sn

S1 S2 … Sn

D1 D2 … Dn

D1 D2 … Dn

๏ As far as I understand, you have datasets spread across
different platforms (data bases, excel spreadsheets, etc.)

๏ Each of these sources can be turned into numpy arrays or
similar kinds of data frames

๏ In case you have to combine datasets from different
sources, you need to use some universal data ID

How to get there

 10

D1+2(i, j, k, sdod)
Session

lap

readout

all data

S1 S2 … Sn

S1 S2 … Sn

D1 D2 … Dn

D1 D2 … Dn

๏ Structured datasets are not necessarily fixed size

๏ Different sessions at different circuits will
have different number of laps

๏ Number of readouts/lap is not a fixed number

๏ …

๏ One can certainly fill the dataset with zeros
until a fixed size is reached

๏ waste disk space, need post-processing, …

๏ Or, one could deal with a variable-size data
frame, using adequate software (e.g., CERN’s ROOT)

Some complication

 11

S1 S2 … Sn

S1 S2

S1 S2 …

S1 S2 …

S1 S2 … Sn

S1

S1

S1 S2 … Sn

0 0
0

0 0 0

0

0 0 0

0 0 00

How we do it at CERN

 12

Long-term storage
(Tape)

Short-term
storage
(Disk)

Experiment
-specific
software

+

How we do it at CERN

 13

Long-term storage
(Tape)

Short-term
storage
(Disk)

Experiment
-specific
software

+

Long-term storage
(Tape)

Short-term
storage
(Disk)

 Once we take data, we don’t delete them ever.
 We store them on tape to have a cheap long-term storage

 A dedicated software decides which datasets to keep on disk
 and which datasets to be moved to tape, based on popularity
 statistics (number of accesses, latest access, etc)
 Algorithm can be rule-based or tuned with Deep Learning
 (e.g. Reinforcement Learning)

 Datasets can be stored in multiple copies and different
 data tiers:
 - RAW data (1 copy at most)
 - High-Level data (functions of raw data, smaller size,
 multiple copied)
 Data are stored in compressed (gzip, etc) data formats
 (HDF5, ROOT)

How we do it at CERN

 14

Long-term storage
(Tape)

Short-term
storage
(Disk)

Experiment
-specific
software

+

Short-term
storage
(Disk)

 Datasets access is
granted thanks to user-

and group-
 specific rights

Access rights are managed
through a web interface (e-

groups)

๏ Techniques for intuitively linking different datasets together?

๏ How to limit access to different datasets generated by different groups?

๏ How to robustly delete data and have confidence that good data hasn’t been
deleted?

๏ Application of A.I. / Machine Learning for real time analysis of live data
streams?

๏ How to detect sensor failures/anomalies?

๏ How to build confidence in raw data and any calculations carried on that raw
data?

๏ Real time X-ray / C.T. / other scanning to allow us to view combustion
processes.

๏ A.R. / V.R. techniques for data visualisation and manipulation

Answered (?) questions

 15

✅
✅

✅

Real-time data analysis with
Deep Learning

6

FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D R E C U R S I V E N E U R A L N E T W O R K S

15

kt

anti-kt

• choice of jet
algorithm matters

• GRU “gating”
improves
performance

anti-ktkt

LHC events & language processing

 17

๏ PF reco is not the best match for computing vision
techniques (e.g., convolutional neural networks) don’t
work

๏ one would have to convert the particles to a pixelated
images, loosing resolution

๏ Instead, list of particles can be processed by Deep
Learning architectures designed for natural language
processing (RNN, LSTMs, GRUs, …)

๏ particles as words in a sentence

๏ QCD is the grammar

๏ A network architecture
suitable to process an
ordered sequence of inputs

๏ words in text processing

๏ a time series

๏ particles in a list

๏ Could be used for a single
jet or the full event

๏ Next step: graph networks
(active research
direction)

Recurrent Neural Networks

 18

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

�19

• Study time series of magnet voltages

• target: predict voltage changes

Maciej WIELGOSZ’s work on LHC magnets

LSTM networks for LHC magnets

 19

http://prezi.com/qkcz8e7lr7vv/?utm_campaign=share&utm_medium=copy

https://www.youtube.com/watch?v=jDC3-QSiLB4

Real-time @LHC

https://www.youtube.com/watch?v=jDC3-QSiLB4

•40 MHz in / 100 KHz out

•~ 500 KB / event

•Processing time: ~10 μs

•Based on coarse local reconstructions

•FPGAs / Hardware implemented

Data Flow

L1 t
rig

ger

HLT fa
rm

Offl
in

e

com
putin

g

Data

Analy
sis

The LHC Big Data problem

•100 KHz in / 1 KHz out

•~ 500 KB / event

•Processing time: ~100 ms

•Based on simplified global reconstructions

•Software implemented on CPUs

Data Flow

L1 t
rig

ger

HLT fa
rm

Offl
in

e

com
putin

g

Data

Analy
sis

The LHC Big Data problem

•1 KHz in / 1.2 kHz out

•~ 1 MB / 200 kB / 30 kB per event

•Processing time: ~20 s

•Based on accurate global reconstructions

•Software implemented on CPUs

Data Flow

L1 t
rig

ger

HLT fa
rm

Offl
in

e

com
putin

g

Data

Analy
sis

The LHC Big Data problem

•Up to ~ 500 Hz In / 100-1000 events
out

•<30 KB per event

•Processing time irrelevant

•User-written code + centrally
produced selection algorithms

Data Flow

L1 t
rig

ger

HLT fa
rm

Offl
in

e

com
putin

g

Data

Analy
sis

The LHC Big Data problem

Timing Performance on 2018 data

16

๏ With heterogenous
hardware in place (for
other reasons) Deep
Learning inference @HLT
quite easy

๏ This will happen no
matter what, to speed up
traditional algorithms

๏ Deep Learning @HLT will
benefit of it

Heterogeneous HLT

 25

High-Level

Trigger
L1

trig
ger

1 KHz
1 MB/evt

40 MHz

100 KHz

Patatrack project for CMS HLT on GPUs

https://github.com/cms-patatrack

Deep Learning at L1

 26

High-Level

Trigger
L1

trig
ger

1 KHz
1 MB/evt

40 MHz

100 KHz

๏ Situation at L1 is different, mainly due to the typical latency
(<10 μsec)

๏ Custom cards connected to detector electronics by optic links

๏ Data flow in the cards one by one

๏ Networks need to be implemented in FPGA firmare

๏ advanced design by expert engineers (not common resource in HEP)

๏ automatic translation tools doing the job

Javier Duarte I hls4ml

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

!13

Design Exploration
๏ HLS4ML aims to be this automatic tool

๏ reads as input models trained on standard DeepLearning libraries

๏ comes with implementation of common ingredients (layers, activation functions, etc)

๏ Uses HLS softwares to provide a firmware implementation of a given network

๏ Could also be used to create co-processing kernels for HLT environments

HLS4ML

 27

(ns) Fast Machine Learning

 28

TIMING 23

Behavior of pipeline
interval controlled well

by the reuse factor

Additional latency
introduced by reusing

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor
will reduce the DSP usage

Foreseen architecture (FPGAs) will handle these networks
Inference-optimized GPUs could break the current paradigm
Looking forward to R&D projects with nVidia & E4 on this

Timing Performance on 2018 data

16

๏ With heterogenous
hardware in place (for
other reasons) Deep
Learning inference @HLT
quite easy

๏ This will happen no
matter what, to speed up
traditional algorithms

๏ Deep Learning @HLT will
benefit of it

Heterogeneous HLT

 29

High-Level

Trigger
L1

trig
ger

1 KHz
1 MB/evt

40 MHz

100 KHz

Patatrack project for CMS HLT on GPUs

https://github.com/cms-patatrack

Deep Learning at L1

 30

High-Level

Trigger
L1

trig
ger

1 KHz
1 MB/evt

40 MHz

100 KHz

๏ Situation at L1 is different, mainly due to the typical latency
(<10 μsec)

๏ Custom cards connected to detector electronics by optic links

๏ Data flow in the cards one by one

๏ Networks need to be implemented in FPGA firmare

๏ advanced design by expert engineers (not common resource in HEP)

๏ automatic translation tools doing the job

Javier Duarte I hls4ml

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision

reuse/pipeline

HLS
project

HLS
conversion

Co-processing kernel

Custom firmware
design

model

Usual ML
software workflow

hls 4 ml

hls4ml

HLS 4 ML

!13

Design Exploration
๏ HLS4ML aims to be this automatic tool

๏ reads as input models trained on standard DeepLearning libraries

๏ comes with implementation of common ingredients (layers, activation functions, etc)

๏ Uses HLS softwares to provide a firmware implementation of a given network

๏ Could also be used to create co-processing kernels for HLT environments

HLS4ML

 31

Fast Inference

 32

TIMING 23

Behavior of pipeline
interval controlled well

by the reuse factor

Additional latency
introduced by reusing

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor
will reduce the DSP usage

Foreseen architecture (FPGAs) will handle these networks
Inference-optimized GPUs could break the current paradigm
Looking forward to R&D projects with nVidia & E4 on this

Anomaly Detection

๏ Autoencoders are compression-
decompression algorithms that learn to
describe a given dataset in terms of
points in a lower-dimension latent
space

๏ UNSUPERVISED algorithm, used for data
compression, generation, clustering
(replacing PCA), etc.

๏ Used in particular for anomaly
detection: when applied on events of
different kind, compression-
decompression tuned on refer sample
might fail

๏ One can define anomalous any event
whose decompressed output is “far” from
the input, in some metric (e.g., the
metric of the auto-encoder loss)

Autoencoders in a nutshell

 34

๏ When taking data, >1 person watches
for anomalies in the detector 24/7

๏ At this stage no global processing of
the event

๏ Instead, local information from
detector components available (e.g.,
detector occupancy in a certain time
window)

Example: Data Quality Monitoring

 35

4 Adrian Alan Pol et al.

A

B

C

Fig. 4 Example of visualization of input data for three DT
chambers. The data in (A) manifest the expected behavior
in spite of having a dead channel in layer 1. The chamber
shown in (B) su↵ers of a region of layer 1 with lower e�ciency,
which should be identified as anomalous. The plot in figure
(C) instead shows regions of low occupancy across the 12
layers and should also classified as faulty. According to the
run log, this e↵ect was induced by a transient problem with
the detector electronic.

use of layer by layer one dimensional linear interpo-
lation to match the size of the smallest layer s in
dataset, where ↵ is an interpolation point:

↵ = j
ni

ns

x̃i,j = frac(↵)(xi,b↵c+1 � xi,b↵c) + xi,b↵c

– smoothing: according to CMS DT experts, misbe-
having channels are problematic only when a cluster
of them, spatially contiguous, is observed. Instead,
isolated misbehaving channels are not considered a
problem. To account for this caveat the one dimen-
sional median filter was applied:

x̂i,j = med(xi,j , xi,j+1, xi,j+2).

– normalization: the occupancy of the chambers in the
input dataset depends on the integration time and
on the LHC beam configuration and intensity i.e.
on the number of LS spanned when creating the
image and corresponding luminosity. The normal-
ization strategy depends on the need of comparing
data across chambers or across runs: the precise pro-
cedure used in the two approaches is described in
Sections 4 and 6 respectively.

A

B

Fig. 5 Example of two kinds of input sample preprocesing.
(A) reshaping each layer directly from acquired (raw) values
using linear interpolation. (B) smoothing the raw data with
median filter before reshaping. The isolated low-occupancy
spot in layer 1, corresponding to a dead channel, is discarded.

3 Machine learning for DQM Anomaly

Detection

Machine learning techniques present several advantages
over the currently adopted procedure. The high data
dimensionality precludes simple parametric density es-
timation of the normal behavior; and statistical testing
is not su�cient, as faulty data must be singled out.
This leaves us with an extremely wide range of meth-
ods, that we will briefly discuss here in the light of both
the operational condition and the a priori knowledge of
the data (for a general survey see [5]).

Anomaly detection techniques usually make at least
one of the two following assumptions: rarity of abnor-
mal events, which are considered outliers with respect
to the normal generating process; and/or partial or
complete lack of representative examples of all type
of behaviors. If such representative examples are avail-
able, anomaly detection reduces to binary classification
(supervised learning), with possibly the help of various
resampling methods [6] or reformulation of the objec-
tive function [7] for dealing with class imbalance. In our

Monitoring Compact Muon Solenoid experiment with artificial neural networks at the LHC at CERN 3

Fig. 2 View on wheel positioning in the detector.

Fig. 3 Numbering schema of the Drift Tube sectors and sta-
tions.

CMS data are organized in acquisition runs (or just
runs in CMS jargon), corresponding to homogeneous
conditions both of the CMS detector and of LHC ac-
celerator. Runs are denoted as integers, with increasing
numbering along time. Their duration is varying from
as little as few seconds to as much as several hours.

Each of them is divided into luminosity sections
(LSs), a time interval corresponding to a fixed beam or-
bits in the LHC and amounting to approximately 23 s.
LSs are numbered progressively from 1 at the start of
each run. A single LS can be identified univocally by
specifying the LS number and the run number.

Runs are grouped together when corresponding to
the same fill, i.e. the time interval between two proton
injections into the LHC. A fill can last for as much as
tens of hours. During the fill, the number of protons in
the beam reduces, due to proton collisions happening
at four interaction points along the ring. As a result of
that, the beam intensity (also referred as luminosity)

decreases along the fill as well as the absolute number
of events.

For each chamber k and each run, the current DQM
infrastructure, [4], records an occupancy plot matrix Ck,
which is the total number of electronic hits at each read-
out channel. The occupancy plot matrix can be viewed
as a varying size two-dimensional array organized along
layer (row) and channel (column) indexes:

Ck = {xk
i,j ; 1  i  l, 0  j < ni},

where l = 12 is the number of layers and ni is the
number of channels in layer i. Formally we should index
the chambers and their components e.g. Ck and xk

i,j but
wherever the discussion concerns a single chamber, we
drop the k index for clarity until Section 6. Figure 4
shows examples of occupancy plot matrices.

In this work we look for an algorithm that identi-
fies faulty chambers. Only data collected during LHC
collision runs, and acquired during year 2016 and 2017
have been used in this study. The dataset is composed
of 21000 chamber samples collected during 84 runs. We
consider two complementary approaches to the prob-
lem:

– Local approach: data collected in each layer is treated
independently from the other layers. The domain
experts regard chambers which have occupancy of
the hits with small variance between neighboring
readout channels as expected behavior. Chambers
which have dead, ine�cient or noisy regions, are
considered problematic, (see figure 4 for reference).
We explore this approach in Section 4.

– Extended local approach: data collected in each cham-
ber is treated independently from the other cham-
bers. We extend the local approach to account for
failures spotted only when the information about all
layers within one chamber is present. We exploit this
approach in the algorithm described in Section 6.

– Global approach: we use the information of all the
chambers for a given run. The geographical infor-
mation in the CMS detector (wheel, station or sec-
tor) impacts the occupancy distribution of the chan-
nel hits. We exploit this information in the test de-
scribed in Section 7.

Regardless of the strategy, the data need to be pre-
processed. Three steps are performed (for visual inter-
pretation, see figure 5):

– standardization of the chamber data: the number of
readout channels in a layer (corresponding to one
row of channels in a muon chamber) varies not only
within the chamber but also depends on the cham-
ber position in the detector. This quantity falls be-
tween 47 and 96. In order to have fixed input di-
mensionality, the matrices were composed with the

 Pol, G. Cerminara, C. Germain, MP and
A. Seth arXiv:1808.00911

https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

๏ Given the nature of these
data, ConvNN are a natural
analysis tool. Two
approaches pursued

๏ Classify good vs bad
data. Works if failure
mode is known

๏ Use autoencoders to
assess data “typicality”.
Generalises to unknown
failure modes

Example: Data Quality Monitoring

 36

6 Adrian Alan Pol et al.

This choice scaled the original 21000 chambers to 228480
samples.

Hit counts in a layer are normalized to a [0, 1] range,
dividing them by the maximum of the absolute occu-
pancy value in the layer:

zi,j =
x̃i,j

max(Xi)
,

The need for normalization comes form the intrinsic
variation of the occupancy depending on the spatial
position of the chamber, that will be described in more
details later (Section 6).

The primary goal of this first experiment is to eval-
uate the potential of the various flavors of Machine
Learning methods. We compare:

– supervised learning, with a) a fully connected neu-
ral network (DNN), and b) a convolutional neural
network (CNN), [16];

– semi-supervised learning, with a) Isolation Forest,
and b) µ-SVM.

– unsupervised with a) a simple statistical indicator,
the variance within the layer, and b) an image pro-
cessing technique, the maximum value of the vector
obtained by the application of a variant of an edge
detection Sobel filter [17]: Si = max(

⇥
�1 0 1

⇤
⇤Xi).

The ground truth has been established on a ran-
dom subset of the dataset, by visually inspecting the
input sample before any processing: 5668 layers have
been labeled as good and 612 as bad. The 9,75% fault
rate is representative of the real situation. With this ra-
tio, both anomaly and outlier detection approach can
be considered. Out of this sample 1134 of good and
123 of bad, corresponding to 20% of the labeled layers,
were reserved to compose the test set. The rest of the
samples were used for training and validation for the
semi-supervised and supervised methods.

The Isolation Forest and µ-SVM were cross-validated
using five consecutive, stratified dataset folds to search
for their corresponding optimal hyper-parameters. Sub-
sequently, the Isolation Forest was retrained using those
hyper-parameters on the full unlabeled dataset, while
µ-SVM was retrained using only negative class.

The architecture of the CNN model with one di-
mensional convolution layers used for this problem is
shown in figure 6. The hidden layers use rectified lin-
ear unit as activation while the final output layer uses
softmax function. We have not applied smoothing pre-
processing step, described in Section 2, allowing the
model to learn its filters. CNN [16] was trained us-
ing Adam [18] optimizer and early stopping mechanism
with patience set to 32 epochs. The model was imple-
mented in Keras [19], using TensorFlow [20] backend.

Fig. 6 Convolutional Neural Network model architecture
used to target local strategy.

Additionally we have weighted our samples to account
for class imbalance. The weight � for a sample in class
 2 {0, 1} is equal to:

� =
|S|

2 · |S |

S = S0 [S1

The DNN was primary used to benchmark the con-
volution kernels. Similarly to CNN it has one hidden
fully-connected layer with 8 units using rectified linear
unit as activation and a softmax function on the output
layer.

5 Detecting unusual behavior within a chamber

5.1 Motivation

This section presents an experiment focusing on the
extended local approach based on the assumption that
the occupancy pattern within a chamber depends on
the layer information. This strategy aims, for example,
at detecting voltage related problems when a hit oc-
cupancy decreases uniformly in a specific part of the
subdetector e.g. a layer or a group of layers.

5.2 Dataset and methods

As a preliminary step, the chamber occupancy data
in the input dataset were evaluated by the convolu-
tional model presented in Section 4. All chambers with
any layer labeled as faulty were discarded from train-
ing. For simplicity, due to a lack of the middle group
of four layers, chambers located in station 4 were dis-
carded as well. The above changes e↵ectively narrowed
the training dataset to 8452 matrices. The samples were

Monitoring Compact Muon Solenoid experiment with artificial neural networks at the LHC at CERN 7

A

B

Fig. 7 Example of impact of layer voltage on hit counting.
(A) Operating at 3200 V. (B) Operating at 3450 V. Both
examples should be regarded as anomalies.

composed by concatenating smoothed and standardized
layers within the same chamber C̃ creating matrices of
shape 12⇥46. The hit occupancy within one layer were
normalized using min-max scaler:

Ĉ =
C̃ �min(C̃)

max(C̃)�min(C̃)

This normalized values to [0, 1] range and retained re-
lations between the layers.

In order to evaluate the model, we use a subset of
the data (runs 304737, 304738, 304739, 304740) during
which layer 9 were operating at a di↵erent voltage in
a fraction of the chambers, see figure 7. During runs
304737, 304738, 304739, 304740 at 3450 V, and dur-
ing run 302634 at 3200 V. Due to the physics of gas
ionization by radiation, this results in an absolute dif-
ference in hit counting, which globally a↵ects the de-
tector. As we pointed out in Section 4 a local model
was not trained to detect such behavior as it regards
only 6% of those layers as faulty. The part of the test
set regarded as good chambers is corresponding to a
run 304736 where voltage problem was not present. Fi-
nally, we discard all chambers from good subset having
at least one layer problem according to our local algo-
rithm and finally we visually inspected them to seed
out any type II errors from the test set.

As the cost of labeling samples increases with re-
spect to local approach, we compared only semi-supervised
deep learning methods, including:

– simple bottleneck auto-encoder,
– convolutional auto-encoder,
– denoising auto-encoder,
– auto-encoder with sparsity regularization in hidden

layers.

Similarly to local approach we trained the auto-encoders
using Adam optimizer and early stopping mechanism

A

B

Fig. 8 Simple, denoising, sparse (A) and convolutional (B)
auto-encoder models architecture used to target contextual
strategy.

with the patience set to 32 epochs. Again, the imple-
mentation was prepared using Keras library with Ten-
sorFlow backend. The architecture of the model is shown
in figure 8. A simple, denoising and sparse auto-encoders
share similar architecture with parametric rectified lin-
ear unit as activations, while the convolutional auto-
encoder had a dedicated architecture. All models was
instructed to minimize the mean squared error ✏ be-
tween original, x, and reconstructed, ẍ, samples:

✏ =
1

k

X

k

X

i,j

(xk
i,j � ẍk

i,j)
2

6 Detecting unusual behavior using global

information

6.1 Motivation

This section presents a concept focusing on the global

approach based on the assumption that the occupancy
pattern depends on the chamber position in the detec-
tor, given the cylindrical symmetry of the LHC physics.
For instance the expected hit occupancy of chambers in
wheel 0 (closer to the collision point) will be lower than
chambers in the outer wheels (sitting far from the col-
lision point and protected by more material), whereas
chambers in wheels �2 and +2 are expected to show
similarities, due to the detector and collider symmetry.

A. Pol et al., to appear soon
Pol, G. Cerminara, C. Germain, MP and

A. Seth arXiv:1808.00911

https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

๏ Given the nature of these data,
ConvNN are a natural analysis
tool. Two approaches pursued

๏ Classify good vs bad data. Works
if failure mode is known

๏ Use autoencoders to assess data
“typicality”. Generalises to
unknown failure modes

Example: Data Quality Monitoring

 37

8 Adrian Alan Pol et al.

Additionally, the experts expect chambers to behave
alike in the context of whole subdetector across di↵er-
ent runs.

The problem is clearly contextual, in the sense that
important explanatory attributes are not part of the
basic data features. Conditional anomaly detection [21]
has been proposed to deal with such situations when
the relevance of external attributes is unknown: for in-
stance, if a set of environmental or technical attributes
were monitored that could impact the behavior of the
detector components. In our case, the spatial position
of the chambers are both our only external attribute,
and their impact is assured. Thus, we are back to a
point anomalies problem.

6.2 Methods

In this approach we have used auto-encoder setup equiv-
alent to a simple bottleneck auto-encoder presented in
Section 5 with the change of the size of a latent layer,
which was decreased to 3 units for visualization pur-
poses.

Global faults were not tracked before by DT experts.
Hence, we are left only with unsupervised methods.

7 Results and Discussion

7.1 Local approach

The performance of the trained models on a held out
test dataset can be seen in figure 9. Due to the simplic-
ity of the model, the training converges to a satisfac-
tory result, despite the small size of the training sam-
ple. As shown in the score distribution of figure 10, the
proposed architecture separates anomalous from nor-
mal layers significantly. Model’s working point was cho-
sen at 0.5 not favoring specificity nor sensibility. When
the cost of type 1 and type 2 errors is defined, the
acceptable range of the working point could be any-
where in [0.1, 0.9] range. Compared to statistical, im-
age processing or other machine learning based solu-
tions, supervised deep learning clearly outperforms the
rest. Although the Area Under Curve (AUC) of the
fully-connected deep neural network is comparable to
the one of CNN, requiring maximum specificity and
sensibility makes it a favorable solution. The relatively
good performance of the basic and unsupervised vari-
ance method, compared to the poor results of the filter,
and the near optimal performance of the DNN, show
that the features to learn are not simple contrasts, al-
though the superior performance of the CNN demon-
strate that the initial edge detection layer is useful.

Fig. 9 ROC and AUC of respective algorithms used in local
approach

Fig. 10 Distribution of scores in local approach

The limited performance of Isolation Forest is likely
to come from the violation of its fundamental assump-
tion, that faults are rare (remember that the fault rate
is in the order of 10%) and similar (masking). The infe-
rior performance of the typical semi-supervised method
(SVM) illustrates the well-known smoothness versus lo-
cality argument for deep learning [13,12]: the di�culty
to model the highly varying decision surfaces produced
by complex dependencies involving many factors.

The algorithm currently implemented in DQM sys-
tem targets a specific failure scenario and evaluates
samples per chamber, unlike our per layer approach.
Although it quantifies severity of the fault, it does not
identify specific layers with problems. Based on the la-
beled data we were able to construct a per-chamber
score to benchmark the algorithm i.e. if it indicates
there is at least one faulty layer in a chamber. While the
algorithm’s specificity was 91%, its sensitivity was only
26%. This appalling hit rate is not surprising as the test
was only targeting identification of dead regions.

Another drawback of the DQM algorithm is its per-
formance in low statistics region i.e. beginning of the
run. As seen in figure 11, convolutional model gradu-

Monitoring Compact Muon Solenoid experiment with artificial neural networks at the LHC at CERN 9

Fig. 11 Stability of proposed model and the algorithm cur-
rently implemented in production. The three lines correspond
to results based on data from runs 306777, 306793, 306794.

ally adds alarms until reaching stability. The produc-
tion test is doing the opposite, generating a substantial
fraction of false alarms in the early stages of the run.

7.2 Extended local approach

To judge the performance of the auto-encoders, we have
used model’s mean squared error between original sam-
ple and its reconstruction in layer 9 of each chamber
in the test set (see figure 12) as an anomaly indica-
tion. Additionally this error could be quantified with
the severity of the problem as shown in figure 13. Fig-
ure 12 shows good performance of all models, especially
sparse auto-encoder. Although the AUC is not as high
as in local approach it is exclusively because of cham-
bers with layers operating at 3450 V which are di�-
cult to spot using only the occupancy data even with a
visual inspection. The chambers with layers operating
at lower voltage are having clear error separation from
good chambers as seen in figure 13.

As part of the experimental setup we accounted this
approach could cover the local anomalies as well. How-
ever, all the models were not able to find those kind of
anomalies better than a random guess, indicating that
we can get best results when applying both models in
a pipeline.

7.3 Global approach

Global approach is able to spot unusual behavior of
DT chambers taking into account the geographical con-
strains and paves the way to more flexible assessment
by scoring per detector region.

Figure 14 shows an example of latent representa-
tion of the chamber data clustering depending on the
chamber position in the detector. Additionally, while

Fig. 12 ROC and AUC of respective auto-encoders used in
contextual approach

Fig. 13 Mean squared error distribution for auto-encoder
with sparsity regularization.

Fig. 14 Latent representation of the chamber-level data. The
samples cluster according to position in the detector. Here
depending on the station, which correspondns to a distance
to collision point.

investigating latent representation for only one cham-
ber across di↵erent runs in figure 15, the latent rep-
resentation tends to cluster depending on the number
of problematic layers. We believe that this method will
help experts detecting previously unknown failure sce-
narios and with maintaining the list of transient issues.

A. Pol et al., to appear soon
Pol, G. Cerminara, C. Germain, MP and

A. Seth arXiv:1808.00911

https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

๏ Issues:

๏ variable number of particles/event as input

๏ need to return particles as output

๏ The architecture is loosely inspired by the seq2seq* model used
in neural machine translation https://arxiv.org/abs/1409.3215

๏

VAE with PF particles

 38

๏ Networks used for
translation

๏ start from a
sentence in language

๏ code its meaning in
some latent space z

๏ translate to some
other language,
generating words
from z

https://arxiv.org/abs/1409.3215

๏ Issues:

๏ variable number of particles/event as input

๏ need to return particles as output

๏ The architecture is loosely inspired by the seq2seq* model used
in neural machine translation https://arxiv.org/abs/1409.3215

๏

VAE with PF particles

 39

VAE with PF candidates
• The architecture is loosely inspired by the seq2seq*

model used in neural machine translation

• Starting with a naive implementation:

!2

PF1 PF2 PF1621

z

PF1 PF2 PFn

*https://arxiv.org/abs/1409.3215

https://arxiv.org/abs/1409.3215

Teacher-forcing

• At early stage of training, the decoder can’t reconstruct a reasonable first PF
candidate; autoregressive mechanism propagates it into a wrong chain of particles.

• Teacher-forcing: under some probability k, feed the target as the next input instead
of using the previous prediction. k decreases as the epoch number increases.

!3

PF1 PF2 PF801

z

PF1 PF2 PFn

๏ At early stage of training, the decoder can’t reconstruct a reasonable
first PF candidate; autoregressive mechanism propagates it into a
wrong chain of particles.

๏ Teacher-forcing: under some probability k, feed the target as the next
input instead of using the previous prediction. k decreases as the
epoch number increases.

Teacher forcing

 40

๏ Attention allows the decoder to focus on which part of
the inputs is relevant to the next prediction.

Adding Attention

 41Bahdanau et al., arXiv:1409.0473

the Encoder generates h1,h2,h….hT from the inputs X1,X2,X3…XT

a is the Alignment model which is a feedforward neural network that is trained with all the other
components of the proposed system

The Alignment model scores (e) how well each encoded input (h) matches the current output of the
decoder (s).

The alignment scores are normalized using a softmax function.

The context vector is a weighted sum of the annotations (hj) and normalized alignment scores.

https://arxiv.org/pdf/1409.0473.pdf

๏ Attention allows the decoder to focus on which part of
the inputs is relevant to the next prediction.

Adding Attention

 42Bahdanau et al., arXiv:1409.0473

\

https://arxiv.org/pdf/1409.0473.pdf

Attention-based VAE with
teacher-forcing

• Attention allows the decoder to focus on which part of the
inputs is relevant to the next prediction.

!4

PF1 PF2 PF801

z

PF1 PF2 PFn

attention weight vector
softmax

๏ Attention allows the decoder to focus on which part of
the inputs is relevant to the next prediction.

Adding Attention

 43

Preliminary Results
• Trained on a small set of data: 90k events (mixture of

ttbar, QCD, and WJets)

• 6 hours per epoch.

๏ (Preliminary) results trained on a small subset of the
initial dataset (90K events)

๏ Due to architecture complexity, training is much slower
(6h/epoch)

Performances

 44

PRELiM
iNARY

๏ If you mean “confidence in the quality of the data” then
the autoencoder approach would serve you there

๏ We say that “data are data”. The confidence should be in
your expectations of the data

๏ We have a ~5% precise simulation of the full process
(from collision to electronic signal)

๏ I assume that you have your own simulation tools (for
aerodynamic etc.)

๏ Is the question related to data/simulation agreement?

I am not sure I understand

 45

Confidence on data

Generating large datasets
with small resources

๏ Two networks trained
against each other

๏ Generator: create
images (from noise,
other images, etc)

๏ Discriminator: tries
to spot which image
comes from the
generator and which
is genuine

Generative Adversarial Training

 47

9HGCAL Fast Simulation with Deep Learning | Vitória Barin Pacela | 17.08.18

GANs

๏ Loss function to minimise: Loss(Gen)-Loss(Disc)

๏ Better discriminator -> bigger loss

๏ Better generator -> smaller loss

๏ Trying to full the discriminatore, generatore learns how to create
more realistic images

Generative Adversarial Training

 48

9HGCAL Fast Simulation with Deep Learning | Vitória Barin Pacela | 17.08.18

GANs
๏ Two networks trained
against each other

๏ Generator: create
images (from noise,
other images, etc)

๏ Discriminator: tries
to spot which image
comes from the
generator and which
is genuine

๏ Loss function to minimise: Loss(Gen)-Loss(Disc)

๏ Better discriminator -> bigger loss

๏ Better generator -> smaller loss

๏ Trying to full the discriminatore, generatore learns how to create
more realistic images

Generative Adversarial Training

 49

9HGCAL Fast Simulation with Deep Learning | Vitória Barin Pacela | 17.08.18

GANs
๏ Two networks trained
against each other

๏ Generator: create
images (from noise,
other images, etc)

๏ Discriminator: tries
to spot which image
comes from the
generator and which
is genuine

๏ Loss function to minimise: Loss(Gen)-Loss(Disc)

๏ Better discriminator -> bigger loss

๏ Better generator -> smaller loss

๏ Trying to full the discriminatore, generatore learns how to create
more realistic images

Generative Adversarial Training

Particle shower generation

 51

• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters as a
replacement of GEANT

Some images

13

Preliminary

¤ Slice energy spectrum

¤ Start with photons & electrons

GAN generated electrons

14

Shower longitudinal section
Geant4
GAN generated

a
.u

.

Y

Geant4
GAN generateda

.u
. Shower transverse section

Geant4
GAN generated a

.u
.

X

XY

Y

Z

a
.u

. Geant4
GAN generated

Geant4
GAN generated

Preliminary

GAN generated electrons

14

Shower longitudinal section
Geant4
GAN generated

a
.u

.

Y

Geant4
GAN generateda

.u
. Shower transverse section

Geant4
GAN generated a

.u
.

X

XY

Y

Z

a
.u

. Geant4
GAN generated

Geant4
GAN generated

Preliminary

See contribution to NIPS workshop

see also de Olivera, Paganini, and Nachman
https://arxiv.org/abs/1712.10321

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1712.10321

Generating full jets

 52

• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters
as a replacement of GEANT

where Ii, ⌘i, and �i are the pixel intensity, pseudorapidity, and azimuthal angle, respectively. The
sums run over the entire image. The quantities ⌘a and �a are axis values determined with the one-pass
kt axis selection using the winner-take-all combination scheme [42].

The distributions of m(I), pT(I), and ⌧21(I) are shown in Fig. 6 for both GAN and Pythia images.
These quantities are highly non-linear, low dimensional manifolds of the 625-dimensional space in
which jet images live, so there is no guarantee that these non-trivial mappings will be preserved under
generation. However this property is desirable and easily verifiable. The GAN images reproduce many
of the jet-observable features of the Pythia images. Shapes are nearly matched, and, for example, signal
mass exhibits a peak at ⇠ 80GeV, which corresponds to the mass of the W boson that generates the
hadronic shower. This is an emergent property - nothing in the training or architecture encourages
this. Importantly, the generated GAN images are as diverse as the true Pythia images used for training
- the fake images do not simply occupy a small subspace of credible images.

Figure 6: The distributions of image mass m(I), transverse momentum pT(I), and n-subjettiness
⌧21(I). See the text for definitions.

We claim that the network is not only learning to produce samples with a diverse range of m, pT
and ⌧21, but it’s also internally learning these projections of the true data distribution and making use
of them in the discriminator. To provide evidence for this claim, we explore the relationships between
the D’s primary and auxiliary outputs, namely P (real) and P (signal), and the physical quantities that
the generated images possess, such as mass m and transverse momentum pT .

The auxiliary classifier is trained to achieve optimal performance in discriminating signal from
background images. Fig. 7 confirms its ability to correctly identify the class most generated images
belong to. Here, we can identify the response’s dependence on the kinematic variables. Notice how
D is making use of its internal representation of mass to identify signal-like images: the peak of the
m distribution for signal events is located around 80 GeV, and indeed images with mass around that
point have a higher P (signal) than the ones at very low or very high mass. Similarly, low pT images
are more likely to be classified as background, while high pT ones have a higher probability of being
categorized as signal images. This behavior is well understood from a physical standpoint and can be
easily cross-checked with the m and pT distribution for boosted W and QCD jets displayed in Fig. 6.
Although mass and transverse momentum influence the label assignment, D is only partially relying
on these quantities; there is more knowledge learned by the network that allows it, for example, to
still manage to correctly classify the majority of signal and background images regardless of their m
and pT values.

– 9 –

Figure 2: In the simplest (i.e., all-square) case, a convolutional layer consists of N filters of size F⇥F
sliding across an L ⇥ L image with stride S. For a valid convolution, the dimensions of the output
volume will be W ⇥W ⇥N , where W = (L� F)/S + 1.

Figure 3: A locally connected layer consists of N unique filters applied to each individual patch of
the image. Each group of N filters is specifically learned for one patch, and no filter is slid across
the entire image. The diagram shows the edge case in which the stride S is equal to the filter size F ,
but in general patches would partially overlap. A convolution, as described above, is simply a locally
connected layer with a weight sharing constraint.

distribution. Both batch normalization [37] and label flipping [4, 35] were also essential in obtaining
stability in light of the large dynamic range.

In summary, a Location Aware Generative Adversarial Network (LAGAN) is a set of guidelines
for learning GANs designed specifically for applications in a sparse regime, when location within the

– 5 –

de Olivera, Paganini, and Nachman
https://arxiv.org/pdf/1701.05927.pdf

https://arxiv.org/pdf/1701.05927.pdf

