A CERMN physicist’'s perspective
oNn some of your questions anao
where Deep Learning could help
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Hour Questlions

® How to build confidence 1n raw data and any calculations carried on that raw
data?

® How to detect sensor failures/anomalies?

® How to robustly delete data and have confidence that good data hasn’t been
deleted?

® How to 11mit access to different datasets generated by different groups?
® Techniques for i1ntuitively linking different datasets together?

® Application of A.I. / Machine Learning for real time analysis of live data
streams?

® Real time X-ray / C.T. / other scanning to allow us to view combustion
processes.

@A.R. / V.R. techniques for data visualisation and manipulation
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Sl LWWhat | will try to address

® How to build confidence 1n raw data and any calculations carried on that raw
data?

® How to detect sensor failures/anomalies?

® How to robustly delete data and have confidence that good data hasn’t been
deleted?

® How to 11mit access to different datasets generated by different groups?
® Techniques for i1ntuitively linking different datasets together?

® Application of A.I. / Machine Learning for real time analysis of live data
streams?
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..lN this order

® Techniques for intuitively linking different datasets together?

® How to 11mit access to different datasets generated by different groups?

® How to robustly delete data and have confidence that good data hasn’t been

deleted?

@ Application of A.I. / Machine Learning for real time analysis of live data

streams?

® How to detect sensor failures/anomalies?

® How to build confidence 1n raw data and any calculations carried on that raw

data?
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How | will address the questions

® The slides are written trying to explain you how we
deal with the same problems without entering 1n the
details of the physics problems behind

@ To do so, I will use a race-related language (race,
lap, sensor) than a particle physicist language (run,
event, detector hit)

® The content will look very trivial & naive (at least 1t
does to me) but I hope 1t will help to establish a
discussion

@ I am not 7mp7y7ng that your problems are as trivial as
my language 1s
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o) Structured Dataset

You have many
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You do it every second I! II!
across one lap

You have n laps in a
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Structured Daotaset

® You can represent your dataset as a (numpy, ROOT, etc.) array
® You can store arrays 1n files (HDF5, ROOT) file

® You can store and distribute data through a distributed
filesystem (e.g., CERN EOS) for Big Data Applications

This is the entry point to build your python- Statistical
system data science software ecosystem
and help you solve your problems /
Machine / \ Data

Learning Visualisation
Applications

analysis

From here, any data scientist could take it over

@ python
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How to get there

® As far as I understand, you have datasets spread across
different platforms (data bases, excel spreadsheets, etc.)

® Each of these sources can be turned 1nto numpy arrays or
similar kinds of data frames

® In case you have to combine datasets from different
sources, you need to use some universal data ID

lap some data lap other data
D1(I! )5 k! Sd) D2(| ], k Od)
Session readout Session readout
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How to get there

® As far as I understand, you have datasets spread across
different platforms (data bases, excel spreadsheets, etc.)

® Each of these sources can be turned 1nto numpy arrays or
similar kinds of data frames

® In case you have to combine datasets from different
sources, you need to use some universal data ID

lap all data
D1+2(i, j, k, SdOd)
Session readout
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Some complication

® Structured datasets are not necessarily fixed size !

Eltio o
EIE1E o

EIEIES o

@ Different sessions at different circuits will
have different number of Ilaps

® Number of readouts/lap 1s not a fixed number

® ..

® One can certainly fi1ll the dataset with zeros
until a fixed si1ze 1s reached

® waste disk space, need post-processing, ..

@® Or, one could deal with a variable-size data
frame, using adequate software (e.g., CERN’s ROOT)
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How we do it st CERNMN

Long-term storage
(Tape)

ROOT

' Data Analysis Framework

Experiment
-specific
software

+ Jupyter
H lﬂlm J py

pgthon

Short-term TensorFIoW

storage
(Disk)

@ CERNBoOX
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How we do it st CERNMN

Long-term storage

(Tape)
Once we take data, we don’t delete them ever.

We store them on tape to have a cheap long-term storage

A dedicated software decides which datasets to keep on disk
and which datasets to be moved to tape, based on popularity
statistics (humber of accesses, latest access, etc)

Algorithm can be rule-based or tuned with Deep Learning

- (e.g. Reinforcement Learning)

Datasets can be stored in multiple copies and different
data tiers:

storage - RAW data (1 copy at most)

Short-term

(Disk) - High-Level data (functions of raw data, smaller size,

multiple copied)
Data are stored in compressed (gzip, etc) data formats
(HDF5, ROOT)




9l How we do it at CERNM

Datasets access Is

granted thanks to user-
and group-
specific rights

Access rights are managed
through a web interface (e-
groups)

=T @

Short-term

Maurizio PIERINI | Group Memberships: 382 | Logou

@ Q Report an error | Suggest new functionality e — g r 0 u p S

Q Quick Search

................................ e-group name contains dshep Search
:ﬁ:: groups | own or m?nage : ©AIl e-groups _ ALICE | ATLAS - CMS ' LCG LHCB ' LHCF  MoEDAL = TOTEM
: roups my accounts are on | - _
Sto ra g e LAl g-grc?up a¥chives ! Only groups | own or manage | (| Only groups | am on | Page Size: 30

(Disk)

+ Create new static group | + Create new dynamic group | Show groups for one member | Manage groups for one member | Manage owner/admin

E-groups
Goto 1-4 |4
Name Type Topic Description Status Owner Actions Archive
C E R N B O X B cernbox-project-dshep-admins Static CERNBOX PROJECT DSHEP ADMINS Active luca.mascetti@cern.ch Subscribe
B cernbox-project-dshep-readers Static CERNBOX PROJECT DSHEP READERS Active luca.mascetti@cern.ch Unsubscribe
>4 cernbox-project-dshep-writers Static CERNBOX PROJECT DSHEP WRITERS Active luca.mascetti@cern.ch Unsubscribe
(]  dshepled Staic  Data Science at High Energy Physics DSHEP LCD dataset working group Active  Maurizio.Pierini@cern.ch




RANnswered (2] Questions

® Techniques for i1ntuitively linking different datasets together?

® How to 1imit access to different datasets generated by different groups?

® How to robustly delete data and have confidence that good data hasn’t been
deleted?

@ Application of A.I. / Machine Learning for real time analysis of live data
streams?

® How to detect sensor failures/anomalies?

® How to build confidence 1n raw data and any calculations carried on that raw
data?
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Real-time data analysis with
Deep Learning e




LLHC events & lanqquage processing

® PF reco 1s not the best match for computing vision
techniques (e.g., convolutional neural networks) don’t //~\//ﬁ>x
work | .
Fermilab has a herd of bisons

® one would have to convert the particles to a pixelated N

1mages, loosing resolution P
Instead, 1ist of particles can be processed by Deep
Learning architectures designed for natural language AR AN
processing (RNN, LSTMs, GRUs, ..) Fermilab has a herd of bisons

® particles as words 1n a sentence

t ————
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® QCD 1s the grammar * .
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@Ol Recurrent Neural Networks

® A network architecture
suitable to process an
ordered sequence of 1nputs

® words 1n text processing

@ a time series

® particles 1n a list

® Could be used for a single
jet or the full event

Particle

Particle
Particle
Particle

()
—
O
ol
1
-
)
al

® Next step: graph networks
(active research o
direction) e
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LSTIMM networks for LHC magnets

® Study time series of magnet voltages e - [a][a][a][e][B][c][b][a
look_ahead = 4
® target: predict voltage changes Predicted - mmmyi@mm

window_size = 3

Output l

A anomaly

Dense (feed-forward)
A

Dropout - 0.2
A

LSTM 32: 512 cells
A

Dropout - 0.2

A

LSTM - 32 cells
A

0 6
time [steps], single step: 0.4 s
Input - 1:32 steps

Macie] WJIELGOSZ's work on LHC magnets



http://prezi.com/qkcz8e7lr7vv/?utm_campaign=share&utm_medium=copy

Real-time BULHC

https:/www.voutube.com/watch?v=jDC3-QSiLB4


https://www.youtube.com/watch?v=jDC3-QSiLB4

Data Flow

®40 MHz in / 100 KHz out

e~ 500 KB / event

® Processing time: ~|0 s

® Based on coarse local reconstructions
®* FPGAs / Hardware implemented




Data Flow

e |00 KHzin/ | KHz out
e~ 500 KB / event

® Processing time: ~|100 ms

® Based on simplified global reconstructions

® Software implemented on CPUs



o | KHzin/ |.2 kHz out

o~ | MB/ 200 kB / 30 kB per event

® Processing time: ~20 s

® Based on accurate global reconstructions

¢ Software implemented on CPUs



Data Flow

e Up to ~ 500 Hz In / 100-1000 events
out

¢ <30 KB per event
® Processing time irrelevant

® User-written code + centrally
produced selection algorithms




@) Heterogeneous HULT

® With heterogenous

hardware in place (for __CMS Preliminary 2018 data 13 TeV
other reasons) Deep 000
Learning 1nference @HLT ¢ o

quite easy

Throughput (ev/s)

| without Riemann fit
17 with Riemann fit

® This will happen no
matter what, to speed up
traditional algorithms

European

® Deep Learning @HLT will

benefit of 1t Patatrack project for CMS HLT on GPUs e]' C| coun
25



https://github.com/cms-patatrack

ot L1

1 KHZz
1 MB/evt

—

ee

AlA

® Situation at L1 1s different, mainly due to the typical latency
(<10 psec)

[

210 MNz WA

® Custom cards connected to detector electronics by optic 1inks
@ Data flow 1n the cards one by one
® Networks need to be 1mplemented 1n FPGA firmare

® advanced design by expert engineers (not common resource 1n HEP)

European

® automatic translation tools doing the job erc Research
26 :




HULS4ATIL

® HLS4ML aims to be this automatic tool

® reads as 1nput models trained on standard Deeplearning libraries
® comes with 1mplementation of common i1ngredients (layers, activation functions, etc)
® Uses HLS softwares to provide a firmware implementation of a given network

® Could also be used to create co-processing kernels for HLT environments

Keras
TensorFlow
PyTorch

/ \3 h I 4 I Co-processing kernel

model
compressed
model —_— HLS _
conversion
Verst Custom firmware
design
Usual ML \l
software workflow 7‘

Council

tune configuration o
precision Lisisaanes! European
reuse/pipeline Y AN Research
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Ol (Ns) Fast Machine Learning

hisdml preliminary 3-layer pruned, Kintex Ultrascale 13 hlsdml preliminary 3-layer pruned, Kintex Ultrascale

60

—@— Reuse Factor =1 —#— Reuse Factor =1
—— Reuse Factor = 2 —m— Reuse Factor = 2 _ _Mf)i ES_P ______ ]
—#— Reuse Factor = 3 —#— Reuse Factor = 3
—#— Reuse Factor = 4 —#— Reuse Factor = 4
—#— Reuse Factor =5 —#— Reuse Factor =5
40 4 —™— Reuse Factor = 6 —a— Reuse Factor = 6
4 -
%)
- (al
3 30- A 3-
O
-l
20 A >

y
/
10 - 1 -

15-40 clock cycles (75-200 ns)

<8,6> <16,6> <24,6> <32,6> <40,6> <8,6> <10,6> <24,6> <32,6> <40,6>
Fixed-point precision Fixed-point precision

Foreseen architecture (FPGAs) will handle these networks
Inference-optimized GPUs could break the current paradigm

Looking forward to R&D projects with nVidia & E4 on this 3%%§cggﬁr
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@) Heterogeneous HULT

® With heterogenous

hardware in place (for __CMS Preliminary 2018 data 13 TeV
other reasons) Deep 000
Learning 1nference @HLT ¢ o

quite easy

Throughput (ev/s)

| without Riemann fit
17 with Riemann fit

® This will happen no
matter what, to speed up
traditional algorithms

European

® Deep Learning @HLT will

benefit of 1t Patatrack project for CMS HLT on GPUs e]' C| coun
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https://github.com/cms-patatrack

ot L1

1 KHZz
1 MB/evt

—
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® Situation at L1 1s different, mainly due to the typical latency
(<10 psec)

[

210 MNz WA

® Custom cards connected to detector electronics by optic 1inks
@ Data flow 1n the cards one by one
® Networks need to be 1mplemented 1n FPGA firmare

® advanced design by expert engineers (not common resource 1n HEP)

European

® automatic translation tools doing the job erc Research
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HULS4ATIL

® HLS4ML aims to be this automatic tool

® reads as 1nput models trained on standard Deeplearning libraries
® comes with 1mplementation of common i1ngredients (layers, activation functions, etc)
® Uses HLS softwares to provide a firmware implementation of a given network

® Could also be used to create co-processing kernels for HLT environments

Keras
TensorFlow
PyTorch

/ \3 h I 4 I Co-processing kernel

model
compressed
model —_— HLS _
conversion
Verst Custom firmware
design
Usual ML \l
software workflow 7‘

Council

tune configuration o
precision Lisisaanes! European
reuse/pipeline Y AN Research
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—ast INnference

hisdml preliminary 3-layer pruned, Kintex Ultrascale 13 hlsdml preliminary 3-layer pruned, Kintex Ultrascale
60
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<8,6> <16,6> <24,6> <32,6> <40,6> <8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision Fixed-point precision

Foreseen architecture (FPGAs) will handle these networks
Inference-optimized GPUs could break the current paradigm

Looking forward to R&D projects with nVidia & E4 on this *ﬁgﬁt:xxﬁ
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Rutoencoders (N a Nnutshell

® Autoencoders are compression-
decompression algorithms that learn to
describe a given dataset 1n terms of
points 1n a lower-dimension latent
space

® UNSUPERVISED algorithm, used for data
compression, generation, clustering
(replacing PCA), etc.

® Used 1n particular for anomaly
detection: when applied on events of
different kind, compression-
decompression tuned on refer sample
might fail

® One can define anomalous any event
whose decompressed output i1s “far” from
the 1nput, 1n some metric (e.g., the
metric of the auto-encoder 1oss)

34
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@ Example: Data Quality Monitoring

® When taking data, >1 person watches A
for anomalies 1n the detector 24/7

104

® At this stage no global processing of
the event 0 10 20 30 40 50 °

Channel

B
Raw Occupancy (Run: 273158, W: 0.0, St: 2.0, Sec: 12.0) -

® Instead, local 1information from
detector components available (e.g.,
detector occupancy 1n a certain time
window)

13 MB4 4 0 10 20 30 40 50
Efﬁgj Channel
T
o :§§5 C
N2 _ .
\::/ 0 10 20 30 40 50
' Channel . .;.:;-..; European
Pol, G. Cerminara, C. Germain, MP and  @¥C| comr’
35 A. Seth arXiv:1808.00911



https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

@ Example: Data Quality Monttorin

Fully connected

3x1 convolutions
— -

® Given the nature of these [, s
data, ConvNN are a natural Nt | -

™~ —_—

analysis tool. Two }
approaches pursued

10 9x1 feature maps

® Classify good vs bad e 1L

10 45x1 feature maps

data. Works if failure oF
mode 1s known o y

—_
Fully connected
. N—> ‘ ‘ 4x4 upsampling

® Use autoencoders to T - T
assess data “typicality”. || g, © ol
Generalises to unknown R S| ot
failure modes

A. Pol et al., to appear soon essarch
’ PP Pol, G. Cerminara, C. Germain, MP and ::@FC)| comen

36 A. Seth arXiv:1808.00911



https://arxiv.org/abs/arXiv:1808.00911
https://arxiv.org/abs/arXiv:1808.00911

@ Example: Data Quality Monttoring

. Good
70 1 B Layer 9 at 3200V
&0 BN Layer 9 at 3450V
® Given the nature of these data, 5™
ConvNN are a natural analysis i
tool. Two approaches pursued o}
® Classify good vs bad data. Works I S T
'if fa'i 7ur'e mOde 'iS known o) Receiver Operating Characteristic (ROC)
® Use autoencoders to assess data e |
“typicality”. Generalises to g sobel AU 0021
unknown failure modes 3 2 . s
e CAN working point

0.00  0.02 004 006 008 010 012 014
Fall-out (TNR) o'n%"

A. Pol et al., to appear soon SETRE | Reseurch
’ PP Pol, G. Cerminara, C. Germain, MP and :::@¥C Counc
37 A. Seth arXiv:1808.00911 TR



https://arxiv.org/abs/arXiv:1808.00911
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VARE with PF particles

® Issues:
® variable number of particles/event as i1nput

® need to return particles as output

®
® Networks used for : 5 E
translation lgl o o
. .. €n ‘ (] . €2 softmax m
® O O
- @ start from a ) & © ©
sentence in language o £
> . 5 LSTM LSTM LSTM LSTM
O
® code 1ts meaning 1n e . . E .
some latent space z o S \1 S ; S
. W Wwo
O <sos> comment]
@ translate to some Chow”
other language, .
generating words irare) e
from z =l=



https://arxiv.org/abs/1409.3215

VAE with PF particles

@® Issues:

® variable number of particles/event as Tnput

® need to return particles as output



https://arxiv.org/abs/1409.3215

Teacher forcing

® At early stage of training, the decoder can’t reconstruct a reasonable
first PF candidate; autoregressive mechanism propagates 1t 1nto a
wrong chain of particles.

® Teacher-forcing: under some probability k, feed the target as the next
Tnput 1nstead of using the previous prediction. k decreases as the

epoch number i1ncreases.
—> —> —>
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Hdding Attention

® Attention allows the decoder to focus on which part of
the 1nputs 1s relevant to the next prediction.

me Encoder generates h1,h2,h....hT from the inputs X1,X2,X3...XT

a is the Alignment model which is a feedforward neural network that is trained with all the other
components of the proposed system

Cij = a(Si—1, hj)

The Alignment model scores (e) how well each encoded input (h) matches the current output of the
decoder (s).

- ) - _) - _) _) - The alignment scores are normalized using a softmax function. aij _ Texp (eij) ‘
{1 s S exp (eir)
<h_1 < <h_2 ‘_ <h_3 “_ = F1_T The context vector is a weighted sum of the annotations (hj) and normalized alignment scores.
""" X, X Xz X T,
C; — Z az-j hJ
j=1

._'.‘.':',-.o‘ L Research
| -’,:‘.°.'.erc Council
. . -.:.:o::..:: .\.

Bahdanau et al., arXiv:1409.0473 1


https://arxiv.org/pdf/1409.0473.pdf

Hdding Attention

® Attention allows the decoder to focus on which part of
the 1nputs 1s relevant to the next pbrediction.
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Hdding Attention

® Attention allows the decoder to focus on which part of
the 1nputs 1s relevant to the next prediction.

softmax

weight vector

213
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Performances

® (Preliminary) results trained on a small subset of the
1nitial dataset (90K events)

® Due to architecture complexity, training 1s much slower
(6h/epoch)

p-value of KL(qg(z|x)||p(z)) p-value of KL(qg(z|x)||p(z))
m—  m—
71 2 Atodl 10 - i
1 leptoguark ocD
] Zprime w
[ HiggsToTauT
6 - [ ChHiggsToTauNu
] Wprime
8
i \
6 -
4 -
3 4
4
il
2 -
r— 2 N
1 i
. " o.:.o ....
0 |l Ll I | Ll
0.0 02 04 06 08 10
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Confligence on data
| @M Not sure | unNnderstand

® IT you mean “confidence 1n the quality of the data” then
the autoencoder approach would serve you there

® We say that “data are data”. The confidence should be 1n
your expectations of the data

® We have a ~5% precise simulation of the full process
(from collision to electronic signal)

® I assume that you have your own simulation tools (for
aerodynamic etc.)

® Is the question related to data/simulation agreement? iérc o

45







@ Generative Roversarial Training

® Two networks trained
against each other

® Generator: create e

Space

images (from noise, _
other 1mages, etc)

® Discriminator: tries P G
to spot which image o o

comes from the :

generator and which —

1S genuine

Noise

® Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss
® Better generator -> smaller loss

® Trying to full the discriminatore, generatore learns how to create

|
more realistic 1mages =

47



Ol Generative Adversarial Training

® Two networks trained sngies
against each other EFEL
® Generator: create L{_j
1mages (from noise,
other images, etc) T e

—.).

@ Discriminator: tries —

Generated

to spot which 1mage _Fake
amples

comes from the

generator and which

1S genuine

® Loss function to minimise: Loss(Gen)-Loss(Disc)

® Better discriminator -> bigger loss

® Better generator -> smaller loss

more realistic 1mages

48
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® Trying to full the discriminatore, generatore learns how to create
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@ Generative Adversarial Tralining

® Two networks trained i
against each other EFEL
[
® Generator: create Latent
images (from noise, e - % ras
other images, etc) el D Pl A A
3 x [ = & \Discriminato/r
® Discriminator: tries P G = ‘
to spot which 1mage - po | senereer A 5
comes from the d T E
generator and which — i FineTuneTraining

1S genuine

® Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss
® Better generator -> smaller loss
® Trying to full the discriminatore, generatore learns how to cr'eate

AR | Research
more realistic 1mages el’ Cl o
A4S




Generative Agversarial Training
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Particle shower generation

See contribution to NIPS workshop Shower longitudinal section
® Start from random noise - -
é‘m%_ Giilngenera’red i :|::|:+
® Works very well with images o a3 -
® Applied to electron showers in digital calorimetersasa * = -
replacement of GEANT I —
> Z_giONn;enerof 5 _ Shower TrOnDVUI_DU SSCIUIN
L ’ [ 2 ] wk
o
- | ’ . ——
' ¥ : 8iilng;4enero’r d - gioNn;AéneroT d -
’ - 3
see also de Olivera, Paganini, and Nachman | S-S SUUITEUN R ST S-S e}’C Couneh
https://arxiv.org/abs/1712.10321 =1 R



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1712.10321

Generating full jets
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® Start from random noise

® Works very well with images
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® Applied to electron showers in digital calorimeters
as a replacement of GEANT
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Figure 6: The distributions of image mass m([), transverse momentum pr(/), and n-subjettiness i European
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