
BE-ABP: Beam Dynamics on the GPU
SixTrackLib + PyHEADTAIL:

Summary of Day 2

Riccardo de Maria, Lotta Mether, Adrian Oeftiger, Martin Schwinzerl

CERN – Openlab E4 Hackathon
15-17 April 2019



Goal

Starting point:
two existing codes:
SixTrackLib (templated C) and PyHEADTAIL (Python + PyCUDA)

−→ merge functionality: single-particle tracking + multi-particle
dynamics
abstracted PyHEADTAIL in CuPy: jupyter notebook ↗ on github ↗

Goals:
extend this python script based on PyHEADTAIL to

done+tested ;): prepare the accelerator optics in SixTrackLib in chunks (not
SixTrackLib’s usual one-turn behaviour)

done: share the macro-particle coordinates / memory from PyHEADTAIL
with SixTrackLib: both PyCUDA and CuPy

o.t.w.: transferring jupyter notebook into PyCUDA (convolution kernel
missing)

todo: call to SixTrackLib to track through chunks of the optics lattice
before returning to a PyHEADTAIL multi-particle interaction module

optimisation of performance and architecture support
(single implementation for both multi-core CPU + GPU)

1 of 2 Riccardo, Lotta, Adrian and Martin Beam Dynamics on the GPU – 15-17 April 2019

https://nbviewer.jupyter.org/github/aoeftiger/PyHEADTAIL_concept_testing/blob/master/PyHEADTAIL_concept_testing.ipynb
https://github.com/aoeftiger/PyHEADTAIL_concept_testing


What Did we Do?

Steps to unite codes:
1 take memory pointer (and array length) and construct python array

object to communicate between PyHEADTAIL and SixTrackLib
based on the SixTrackLib memory structure
−→ now also works in CuPy
−→ on the way to implement PyHEADTAIL notebook in PyCUDA (so far

exists only in CuPy)
2 fixed SixTrackLib trackjobs with only parts of optics lattice, also

provided python functions for this, tested from SixTrackLib!

Open questions for optimisation focus on the way:
improvement of embedding strategy in high-level language (Python):
PyCUDA vs. CuPy vs. arrayfire vs. numba vs. RAPIDS dataframes
code redundancy vs. multi-hardware support (multi-core CPU, GPU)
code structuring (kernel size)
low-level optimisation: register pressure etc.

2 of 2 Riccardo, Lotta, Adrian and Martin Beam Dynamics on the GPU – 15-17 April 2019



PyHEADTAIL’s Context Management

usual script code:

bunch = (...)
one_turn_map = (...)

for turn in range(n_turns):
for m in one_turn_map:

m.track(bunch)

3 of 2 Riccardo, Lotta, Adrian and Martin Beam Dynamics on the GPU – 15-17 April 2019



PyHEADTAIL’s Context Management

extended script code:

import pycuda.autoinit
from PyHEADTAIL.general.contextmanager import GPU

bunch = (...)
one_turn_map = (...)

with GPU(bunch):
for turn in range(n_turns):

for m in one_turn_map:
m.track(bunch)

−→ wrap “with GPU(bunch) as cmg:” around simulation code
=⇒ PyHEADTAIL takes care of managing CPU RAM and GPU RAM

3 of 2 Riccardo, Lotta, Adrian and Martin Beam Dynamics on the GPU – 15-17 April 2019


	Appendix

