nToF Target #3
Structural calculations on the vessel and moderators

Production Readiness Review

Laurène Giordanino (EN/MME/EDS) – Assystem Engineering on behalf of CERN
Table of contents

1. Scope of analysis
 1. Models under study
 2. Load cases and assumptions
 3. Materials
 4. Assessment methodology

2. Results of simulations
 1. Horizontal moderator
 2. Vertical moderator
 3. Vessel assembly

3. Summary of calculations
1. Scope of analysis
1.1. Models

| | 1. Horizontal moderator
<table>
<thead>
<tr>
<th></th>
<th>(EN AW-5083 H111)</th>
</tr>
</thead>
</table>
| | 2. Vertical moderator
<table>
<thead>
<tr>
<th></th>
<th>(EN AW-5083 H111)</th>
</tr>
</thead>
</table>
| | 3. Vessel assembly + horizontal moderator
| | (304L, 316L, 316LN and EN AW-5083 H111) |
1.2. Load cases and assumptions

Assumptions:
- room temperature in operating and testing cases
- no fatigue
- linear elastic materials
- small displacements and strains
- pressure test factor = 1.43
1.3. Materials and maximum allowable stresses

<table>
<thead>
<tr>
<th>Material</th>
<th>Yield strength $R_{p0.2}$</th>
<th>Yield strength $R_{p1.0}$</th>
<th>Tensile strength R_m</th>
<th>Max. allowable stress f in operating f_d</th>
<th>Max. allowable stress f in testing f_{test}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in all body except weld</td>
<td>in full penetration butt welds</td>
</tr>
<tr>
<td>EN AW 5083 (1)</td>
<td>125 MPa</td>
<td>-</td>
<td>270 MPa</td>
<td>83 MPa</td>
<td>58 MPa</td>
</tr>
<tr>
<td>(H111)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>304L (2)</td>
<td>200 MPa</td>
<td>240 MPa</td>
<td>500 MPa</td>
<td>167 MPa</td>
<td>117 MPa</td>
</tr>
<tr>
<td>(1.4306/1.4307)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316L (2)</td>
<td>220 MPa</td>
<td>260 MPa</td>
<td>520 MPa</td>
<td>173 MPa</td>
<td>121 MPa</td>
</tr>
<tr>
<td>(1.4404)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316LN (2)</td>
<td>280 MPa</td>
<td>320 MPa</td>
<td>580 MPa</td>
<td>213 MPa</td>
<td>149 MPa</td>
</tr>
<tr>
<td>(1.4429)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Aluminium properties according to EN 12392

(2) Stainless steels properties according to EN 10028-7 and EN 10088-1

(3) Maximum allowable stresses according to EN 13445-3 and EN 13445-8
1.4. Assessment methodology

• Stress assessment
 • Stress linearization in the thickness direction according to the method based on stress categories in EN 13445-3
 • Requirements to satisfy:
 • Max. equiv. principal membrane stress: \((\sigma_{eq})_{pm} \leq f\)
 • Max. equiv. local membrane stress: \((\sigma_{eq})_{PL} \leq 1.5 \times f\)
 • Max. equiv. total stress (membrane+bending): \((\sigma_{eq})_p \leq 1.5 \times f\)
 • Full-penetration butt welds: \(f_{weld} = z \times f\), with \(z=0.7\) in operating condition and \(z=1\) in testing conditions
 • Equivalent stress according to the maximum shear stress theory (Tresca)

• Stress assessment on welded joints (not full penetration)
 • According to the directional method given in EN 1993-1-8 (Eurocode 3)
 • Decomposition in normal/shear stresses parallel/perpendicular to the axis of the weld
 • Requirements to satisfy:
 \[
 \sqrt{\sigma_\perp^2 + 3(\tau_\parallel^2 + \tau_\perp^2)} \leq \frac{f_u}{\beta_{WM2}} \quad \text{and} \quad \sigma_\perp \leq 0.9 \frac{f_u}{\gamma_{M2}}
 \]
 with: \(f_u\) the nominal ultimate tensile strength of the weaker part joined (\(R_m\))
 \(\beta_w\) the appropriate correlation factor (1 in this study)
 \(\gamma_{M2}\) the partial safety factor for joints (1.5 in this study)
 • Assessment expressed through the Weld Utilization Factor (percentage representing how much of the weld capacity is used):
 \[
 W_{uf} = \max \left[\frac{\sigma_{eq}}{f_{uEqv}}, \frac{\sigma_\perp}{f_{u\perp}} \right]
 \]
2. Results of simulations
2.1. Horizontal moderator

Numerical model details:

- Symmetries xy and xz considered
- Mesh ~ 325 000 hexagonal elements (size 2 mm in the insert, 1 mm in the welding areas)
- Bonded contacts used in welded areas

Failure criteria:

- Operating case:
 - Deformation max = 1 mm
 - \((\sigma_{eq})_{pm} \leq f_d \) (= 83 MPa)
 - \((\sigma_{eq})_p \leq 1.5 \times f_d \) (= 125 MPa)

- Testing cases:
 - \((\sigma_{eq})_{pm} \leq f_{test} \) (= 119 MPa)
 - \((\sigma_{eq})_p \leq 1.5 \times f_{test} \) (= 178 MPa)
2.1. Horizontal moderator

A. Operating condition

Def. max. = 0.62 mm

\[
(\sigma_{eq, P_{max}}) = 24 \text{ MPa} < 83 \text{ MPa}
\]

\[
(\sigma_{eq, P_{max}}) = 94 \text{ MPa} < 125 \text{ MPa}
\]

\[W_{uf, ext} = 3\% \quad W_{uf, int} = 6\%\]

B. Moderator pressure test condition

Def. max. = 0.28 mm

\[
(\sigma_{eq, P_{max}}) = 24 \text{ MPa} < 119 \text{ MPa}
\]

\[
(\sigma_{eq, P_{max}}) = 90 \text{ MPa} < 178 \text{ MPa}
\]

\[W_{uf, ext} = 4\% \quad W_{uf, int} = 4\%\]
2.1. Horizontal moderator

C. Moderator vacuum test condition

- Def. max. = 0.07 mm

\[(\sigma_{eq})_{Pm}^{\text{max}} = 4 \text{ MPa} < 119 \text{ MPa} \]
\[(\sigma_{eq})_{P}^{\text{max}} = 23 \text{ MPa} < 178 \text{ MPa} \]

Wuf_{ext} = 2 \%
Wuf_{int} = 2 \%

D. Vessel vacuum test condition

- Def. max. = 1.13 mm

\[(\sigma_{eq})_{Pm}^{\text{max}} = 36 \text{ MPa} < 119 \text{ MPa} \]
\[(\sigma_{eq})_{P}^{\text{max}} = 150 \text{ MPa} < 178 \text{ MPa} \]

Wuf_{ext} = 7 \%
Wuf_{int} = 8 \%
2.2. Vertical moderator

Numerical model details:

- Symmetries xz considered
- Mesh ~ 500 000 hexagonal elements (size 1 mm in the insert)
- Bonded contacts used in welded areas

Failure criteria:

- Operating case:
 - Deformation max = 1 mm
 - \((\sigma_{eq})_{pm} \leq f_d \) (= 83 MPa)
 - \((\sigma_{eq})_p \leq 1.5 \times f_d \) (= 125 MPa)

- Testing cases:
 - \((\sigma_{eq})_{pm} \leq f_{test} \) (= 119 MPa)
 - \((\sigma_{eq})_p \leq 1.5 \times f_{test} \) (= 178 MPa)
2.2. Vertical moderator

A. Operating condition

- Def. max. = 0.25 mm

- $W_{uf_{ext}} = 3\%$
- $W_{uf_{int}} = 4\%$

C. Moderator vacuum test condition

- Def. max. = 0.08 mm

- $W_{uf_{ext}} = 2\%$
- $W_{uf_{int}} = 2\%$

$\left(\sigma_{eq}\right)_{P_{max}} = 16\text{ MPa} < 83\text{ MPa}$

$\left(\sigma_{eq}\right)_{P_{max}} = 88\text{ MPa} < 125\text{ MPa}$

$\left(\sigma_{eq}\right)_{P_{max}} = 6\text{ MPa} < 119\text{ MPa}$

$\left(\sigma_{eq}\right)_{P_{max}} = 32\text{ MPa} < 178\text{ MPa}$
2.2. Vertical moderator

B. Moderator pressure test conditions
 • $P_{\text{test}} = 1.43 \times P_{\text{service}} = 3.575 \text{ barg}$
 • Under the assumption of linear elastic behaviour, design verification in test conditions is equivalent to design verification in nominal conditions:
 \[
 \frac{P_{\text{test}}}{P_{\text{service}}} = 1.43 \quad \frac{f_{\text{test}}}{f_{\text{service}}} = \frac{R_{p0.2/1.05}}{R_{p0.2/1.5}} = 1.43
 \]

D. Vessel vacuum test conditions
 • Not impacted

E. Vessel pressure test conditions
 • Not impacted
2.3. Vessel assembly

Numerical model details:

- Entire model considered
- Mesh ~ 900 000 hexagonal elements (global size: 5 mm, refined areas: 2 mm)
- Cradle assembly and lead blocks represented by point masses
- Standard earth gravity considered
- Bonded contacts used in welded areas

Failure criteria:

- Deformation max = 1 mm (in operating case)
- Max. allowed stress values in st. steel bodies:
 - \(f_d = 167 \) MPa (operating case)
 - \(f_{\text{test}} = 250 \) MPa (testing cases)
 (considering the weaker stainless steel: 304L)
2.3. Vessel assembly

A. Operating condition

• Stress analysis
 • Stress levels < f_d everywhere except in front plate weld
 • Stress linearization:
 • $(\sigma_{eq})_{P\text{max}}^{\text{max}} = 47$ MPa < f_d (= 167 MPa)
 • $(\sigma_{eq})_{P}^{\text{max}} = 123$ MPa < 1.5 x f_d (= 250 MPa)
2.3. Vessel assembly

- Stress assessment on welded joints in **operating condition**

<table>
<thead>
<tr>
<th>Description</th>
<th>Weld type</th>
<th>Analysis method (1)</th>
<th>Limit value</th>
<th>Ratio to limit (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wedge support to vessel</td>
<td>Full penetration butt weld 5 mm</td>
<td>A</td>
<td>f_{d_{304L}} = 117 MPa</td>
<td>77 %</td>
</tr>
<tr>
<td>Vessel longitudinal weld</td>
<td>Full penetration butt weld 10 mm</td>
<td>A</td>
<td>f_{d_{316L}} = 121 MPa</td>
<td>25 %</td>
</tr>
<tr>
<td>Bi-metallic transition to vessel</td>
<td>Full penetration butt weld 5 mm</td>
<td>A</td>
<td>f_{d_{316L}} = 121 MPa</td>
<td>54 %</td>
</tr>
<tr>
<td>Bi-metallic transition</td>
<td>Explosion bonding</td>
<td>A</td>
<td>f_{d_{alu}} = 58 MPa</td>
<td>74 %</td>
</tr>
<tr>
<td>H moderator to bi-metallic transition</td>
<td>Partial penetration butt weld 5 mm</td>
<td>B</td>
<td>f_{uEqv_{alu}} = 180 MPa</td>
<td>8 %</td>
</tr>
<tr>
<td>Front plate to vessel body</td>
<td>Partial penetration butt weld 2 mm</td>
<td>B</td>
<td>f_{u_{316L}} = 347 MPa</td>
<td>7 %</td>
</tr>
<tr>
<td>H moderator insert to body (ext)</td>
<td>Partial penetration butt weld 3.5 mm</td>
<td>B</td>
<td>f_{u_{alu}} = 180 MPa</td>
<td>8 %</td>
</tr>
<tr>
<td>H moderator insert to body (int)</td>
<td>Partial penetration butt weld 3.5 mm</td>
<td>B</td>
<td>f_{u_{alu}} = 180 MPa</td>
<td>5 %</td>
</tr>
<tr>
<td>N2 outlet tubes to vessel</td>
<td>2x fillet weld (int/ext) with a=1.4 mm</td>
<td>A</td>
<td>f_{d_{316L}} = 121 MPa</td>
<td>55 %</td>
</tr>
<tr>
<td>N2 inlet tubes to front plate</td>
<td>2x fillet weld (int/ext) with a=1.4 mm</td>
<td>A</td>
<td>f_{d_{316L}} = 121 MPa</td>
<td>33 %</td>
</tr>
<tr>
<td>Feedthrough tube to front plate</td>
<td>2x fillet weld (int/ext) with a=1.4 mm</td>
<td>A</td>
<td>f_{d_{316L}} = 121 MPa</td>
<td>27 %</td>
</tr>
</tbody>
</table>

(1) Analysis method:
- A = stress intensity with joint coefficient z
- B = directional method according to Eurocode 3

(2) Ratio to limit:
in method A, ratio = \(\frac{\sigma_{\text{max}}}{f_d} \)
in method B, ratio = \(\max \left[\frac{\sigma_{\text{Eqv}}}{f_{u\text{Eqv}}}, \frac{\alpha_1}{f_{u1}} \right] \)
2.3. Vessel assembly

D. Vessel vacuum test condition

• Stress analysis
 • Stress levels < f_{test} everywhere except in the groove of the vessel body (~300 MPa)
 • Stress linearization:
 • $(\sigma_{eq})_{P_{max}}^{max} = 83$ MPa < f_{test} (= 250 MPa)
 • $(\sigma_{eq})_{P_{max}}^{max} = 209$ MPa < 1.5 x f_{test} (= 375 MPa)

Deformation max = 1.4 mm ⇒ acceptable for testing case
2.3. Vessel assembly

- Stress assessment on welded joints in **vacuum test condition**

<table>
<thead>
<tr>
<th>Description</th>
<th>Weld type</th>
<th>Analysis method (1)</th>
<th>Limit value</th>
<th>Ratio to limit (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wedge support to vessel</td>
<td>Full penetration butt weld 5 mm</td>
<td>A</td>
<td>$f_{\text{test}_{304L}} = 250$ MPa</td>
<td>84 %</td>
</tr>
<tr>
<td>Vessel longitudinal weld</td>
<td>Full penetration butt weld 10 mm</td>
<td>A</td>
<td>$f_{\text{test}_{316L}} = 260$ MPa</td>
<td>20 %</td>
</tr>
<tr>
<td>Bi-metallic transition to vessel</td>
<td>Full penetration butt weld 5 mm</td>
<td>A</td>
<td>$f_{\text{test}_{316L}} = 260$ MPa</td>
<td>31 %</td>
</tr>
<tr>
<td>Bi-metallic transition</td>
<td>Explosion bonding</td>
<td>A</td>
<td>$f_{\text{test}_{alu}} = 119$ MPa</td>
<td>58 %</td>
</tr>
<tr>
<td>H moderator to bi-metallic transition</td>
<td>Partial penetration butt weld 5 mm</td>
<td>B</td>
<td>$f_{\text{uEqv}_{alu}} = 180$ MPa</td>
<td>11 %</td>
</tr>
<tr>
<td>Front plate to vessel body</td>
<td>Partial penetration butt weld 2 mm</td>
<td>B</td>
<td>$f_{\text{uEqv}_{316L}} = 347$ MPa</td>
<td>15 %</td>
</tr>
<tr>
<td>H moderator insert to body (ext)</td>
<td>Partial penetration butt weld 3.5 mm</td>
<td>B</td>
<td>$f_{\text{uEqv}_{alu}} = 180$ MPa</td>
<td>7 %</td>
</tr>
<tr>
<td>H moderator insert to body (int)</td>
<td>Partial penetration butt weld 3.5 mm</td>
<td>B</td>
<td>$f_{\text{uEqv}_{alu}} = 180$ MPa</td>
<td>7 %</td>
</tr>
<tr>
<td>N2 outlet tubes to vessel</td>
<td>2x fillet weld (int/ext) with a=1.4 mm</td>
<td>A</td>
<td>$f_{\text{test}_{316L}} = 260$ MPa</td>
<td>48 %</td>
</tr>
<tr>
<td>N2 inlet tubes to front plate</td>
<td>2x fillet weld (int/ext) with a=1.4 mm</td>
<td>A</td>
<td>$f_{\text{test}_{316L}} = 260$ MPa</td>
<td>33 %</td>
</tr>
<tr>
<td>Feedthrough tube to front plate</td>
<td>2x fillet weld (int/ext) with a=1.4 mm</td>
<td>A</td>
<td>$f_{\text{test}_{316L}} = 260$ MPa</td>
<td>27 %</td>
</tr>
</tbody>
</table>

(1) **Analysis method:**
- A = stress intensity with joint coefficient z
- B = directional method according to Eurocode 3

(2) **Ratio to limit:**
- in method A, ratio = $\sigma_{\text{max}} / f_d$
- in method B, ratio = $\max \left[\frac{\sigma_{\text{Eqv}}}{f_{\text{uEqv}}}, \frac{\sigma_{\text{a}}}{f_{\text{u}}} \right]$
3. Summary of calculations

<table>
<thead>
<tr>
<th></th>
<th>Vertical moderator</th>
<th>Horizontal moderator</th>
<th>Vessel assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Operating condition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B. Moderators pressure test</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>C. Moderators vacuum test</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>D. Vessel vacuum test</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E. Vessel pressure test</td>
<td></td>
<td>under investigation</td>
<td>under investigation</td>
</tr>
</tbody>
</table>

⇒ Static structural analysis validated for cases A, B, C, D
⇒ Study of Case E in progress
⇒ Buckling analysis in progress
Thank you for your attention