

HL-LHC layout and optics with implication for forward physics

R. De Maria Thanks to M. Deile, P. Fessia

Forward physics 11/6/2019

High Luminosity LHC Project

LHC / HL-LHC Plan

HL-LHC: Hardware Highlights

Updated table of parameters

Parameters	Nominal LHC	LHC 2018	HL-LHC	HL-LHC	HL-LHC
	(Design report)	max valueț	(standard) 🖕	8b+4e ¹² 🗸	(Ultimate)
Beam energy in collision [TeV]	7	6.5	7	7	7
N _b	1.15E+11	1.15E+11	2.2E+11	2.2E+11	2.2E+11
n _b	2808	2556	2760	1972	2760
Number of collisions in IP1 and IP5 ¹	2808	<u>2544</u>	<u>2748</u>	1967	<u>2748</u>
N _{tot}	3.2E+14	2.9E+14	6.1E+14	4.3E+14	6.1E+14
beam current [A]	0.58	0.52	1.1	0.79	1.1
x-ing angle [µrad]	285	320 ==> 260	500	470 ¹⁰	500
beam separation $[\sigma]^{11}$	9.4	10.3 ==> 6.8	10.5	10.5 ¹⁰	10.5
β [*] [m]	0.55	0.30 ==> 0.25	0.15	0.15	0.15
ε _n [μm]	3.75	2 ==> 2.5	2.50	2.20	2.50
r.m.s. bunch length [m]	7.55E-02	8.25E-02	7.61E-02	7.61E-02	7.61E-02
Total loss factor R0 without crab-cavity			0.342	0.342	0.342
Total loss factor R1 with crab-cavity ¹³			0.716	0.749	0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹] ¹³			1.70E+35	1.44E+35	1.70E+35
Luminosity [cm ⁻² s ⁻¹] or Leveling luminosity for HL-LHC	1.00E+34	2.00E+34	5.0E+34 ⁵	3.82E+34	7.5E+34 ⁵
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁸	27	55	131	140	197
Peak line density of events [event/mm] (max over stable beams)	0.21	0.38	1.3	1.3	1.9
Leveling time [h] (assuming no emittance growth) ^{8, 13}	-		7.2	7.2	3.5

Luminosity profile: ULTIMATE

Operational scenario

Baseline levelling	Begin	End
Bunch population	2.2 10 ¹¹	1.1 10 ¹¹
β*	64 cm	15 cm
Crossing angle	500 μrad (21.8 σ)	500 μrad (10.5 σ)

Main scenario: β^* levelling, 250 fb⁻¹/year, 7h levelling time, round β^* .

Scenarios Option:

- Ultimate luminosity -> shorter levelling time
- Flat optics -> smaller crossing angle

Update of the HL-LHC operational scenarios for proton operation, CERN-ACC-NOTE-2018-0002

High Luminosity optics scenario

Two possible scenarios for β^* levelling

Main changes in Point 1 and 5

Main changes:

New triplets, cold D1, D2-Q4 separated, orbit correctors and crab cavities inserted, Q4-Q5 displaced, mask inserted.

Beam stay clear

Horizontal crossing

Crossing plane choices

- <u>Crab cavities act on either H or V plane and</u> cannot easily exchanged. <u>Decision 2019</u>.
- <u>MKD failure</u> scenario and <u>TCT damage</u> threshold reduce the horizontal aperture margins in Point 5.
- <u>Round optics</u> have larger aperture margins in the parallel separation plane. <u>Vertical crossing is best</u> in Point 5.
- <u>Flat optics</u> have larger aperture margins in the crossing angle plane. <u>Horizontal crossing is best</u> in Point 5 (also because this improves TCDQ gaps).
- <u>Wire compensator</u> (not baseline) needs to be close to beam in the crossing plane. <u>Vertical</u> <u>crossing is overall best in Point 5 [S. Fartoukh]</u>.

Baseline assumes vertical crossing in Point 5 based on the round optics scenario.

Off-momentum orbits

Crossing plane off momentum trajectories

Crossing plane change off momentum trajectories.

Crossing plane choice is under study:

- Baseline: H (Point 1) and V (Point 5) better for round optics.
- Option: V (Point 1) and H (Point 5) better for flat optics.

Choice cannot be (easily) changed after crab cavities installation.

Possible layout location

Crab cavities

Forward Physics in HL-LHC

Proposed pot location:

- in between Crab-Q4,
- in between Q4-Q5,
- in between Q6-Q7,
- Q11 empty-cryostat.

P. Fessia, coordination meeting, 5/6/2018

Comments:

- Matching section optics and layout under review.
- Beam size and dispersion in Q6 are subject to changes and cannot be easily optimized.
- TCL settings: can reduce acceptance, TCL4 (TCLX) critical for D2 protection (assumed 13.5 σ <u>F. Cerutti annual meeting 14/7/2017</u>, 14.2 σ for collimation studies (<u>D. Mirarchi, colUSM, 24/2/2017</u>)
- No request of high-beta optics (VDM optics $\beta^*=30$ m).

Conclusion

Parasitic forward physics will be more difficult in the HL-LHC due to many constraints:

- Layout is has less available space.
- Optics is more constrained.
- Crossing plane constrained by crab cavities.
- TCL settings (in particular TCLX) cannot be easily relaxed.

Location around Q6 seems the most promising.

Specific optics optimization can be further attempted but probably at the expenses of crab cavity efficiency.

New effort to reduce radiation in Cell 9 to protect MCBC may lead result in layout changes around Q6.

Optics scenario

Two possible scenarios for β^* levelling

