

Forward Physics and Diffraction at the LHC Dublin, June 11th 2019

Perspectives for high-density QCD with ions beyond HL-LHC: ep/eA and pA/AA

Néstor Armesto
IGFAE, Universidade de Santiago de Compostela
and
Theoretical Physics Department, CERN
nestor.armesto@usc.es

Contents:

I. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Evolution of the medium in pp/pA/AA.

5. Summary.

References:

- Future Circular Collider: Vol. 1 Physics opportunities, CERN-ACC-2018-0056, and 1605.01389;
- 1812.06772 (HL-LHC with ions);
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- EIC Physics White paper, 1212.1701;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC and EIC talks at DIS 2019, https://indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Contents:

I. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Evolution of the medium in pp/pA/AA.

5. Summary.

Warnings:

- Although the focus is on what goes beyond LS4, I will also be talking about the perspectives at Runs 3 and 4.
- This is a personal review, my apologies to those who find their work misrepresented.
- I am not giving a full review of the heavy-ion topics at energies higher that LHC, just focus on those aspects that are more closely related to high-energy QCD, not necessarily to QGP: exploration of the initial stages and small systems.
- Even with these restrictions, it is too much material...

Nuclear structure functions:

• Bound nucleon \neq free nucleon: search for process independent nPDFs that the standar realise this condition, within collinear factorisation. $f_i^{p,A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2)$

$$\sigma_{ ext{DIS}}^{\ell+A o\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{ ext{DIS}}^{\ell+i o\ell+X}(\mu^2)$$

Nuclear PDFs, obeying the standard DGLAP

Usual perturbative coefficient functions

$$R = \frac{f_{i/A}}{Af_{i/p}} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}}$$

Dynamics in pA/AA:

- Nucleus \neq Zp+(A-Z)n.
- Particle production at large scales similar to pp (dilute regime).
- Medium behaves very early like a low viscosity liquid: macroscopic description.
- Medium is very opaque to coloured particles traversing it.

- Lack of information about smallx partons, correlations and transverse structure.
- We do not understand the dense regime.
- → Nuclear WF and mechanism of particle production.

- How isotropised the system becomes?
- Why is hydro effective so fast, which dynamics?
- → Initial conditions; how small can a system become and still show 'collectivity'?

- Dynamical mechanisms for such opacity? Weak or strong coupling?
- How to extract accurately medium parameters?
- → In-medium QCD radiation, cold nuclear effects on hard probes.

Small-x physics:

- HERA found $xg \alpha x^{-0.3}$.
- Present data can be described by:
 - → Linear evolution approaches, either DGLAP or resummation at low x.
 - → Non-linear approaches weak coupling but high density: saturation.
- Theory: at high energies (i.e. small x), non-linear dynamics must be present.
 Where is it? At HERA:
 - → Hints of failure of DGLAP at small x, Q², resummation?
 - → No ridge azimuthal structures yet found.
- Saturation is density-driven: $\downarrow x/\uparrow A \Rightarrow$

ep&eA + large range in I/x & Q² essential for full understanding.

Small-x physics:

- HERA found $xg \alpha x^{-0.3}$.
- Present data can be described by:
 - → Linear evolution approaches, either DGLAP or resummation at low x.
 - → Non-linear approaches weak coupling but high density: saturation.
- Theory: at high energies (i.e. small x), non-linear dynamics must be present.
 Where is it? At HERA:
 - → Hints of failure of DGLAP at small x, Q², resummation?
 - → No ridge azimuthal structures yet found.
- Saturation is density-driven: $\downarrow x/\uparrow A \Rightarrow$
- ep&eA + large range in I/x & Q² essential for full understanding.

Machines: pp/pA/AA

FCC parameters for PbPb and pPb collisions:

	Unit	FCC Injection	FCC Collision	
Operation mode		Pb	Pb–Pb	p–Pb
Beam energy	[TeV]	270	4100	50
$\sqrt{s_{ m NN}}$	[TeV]	-	39.4	62.8
No. of bunches per LHC injection	-	518	518	518
No. of bunches in the FCC	-	2072	2072	2072
No. of particles per bunch	$[10^8]$	2.0	2.0	164
Transv. norm. emittance	$[\mu { m m}]$	1.5	1.5	3.75
Number of IPs in collision	_	_	1	1
Crossing-angle	$[\mu \mathrm{rad}]$	_	0	
Initial luminosity	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	_	24.5	2052
Peak luminosity	$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	_	57.8	9918
Integrated luminosity per fill	$[\mu \mathrm{b}^{-1}]$	_	553	158630
Average luminosity	$[\mu \mathrm{b}^{-1}]$	_	92	20736
Time in collision	[h]	_	3	6
Assumed turnaround time	[h]	-	1.65	1.65
Integrated luminosity/run	[nb ⁻¹]	-	33	8000

• Other ideas:

- → HE-LHC (16 T magnets): 27.5 TeV pp.
- → 6 T magnets in the FCC tunnel: 37.5 TeV pp.

Machines: pp/pA/AA

FCC parameters for PbPb and pPb collisions:

Unit	FCC Injection	FCC C	Collision
	Pb	Pb–Pb	p–Pb
[TeV]	270	4100	50
[TeV]	-	39.4	62.8
-	518	518	518
-	2072	2072	2072
$[10^8]$	2.0	2.0	164
$[\mu m]$	1.5	1.5	3.75
-	-	1	1
$[\mu \mathrm{rad}]$	-		0
$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	-	24.5	2052
$[10^{27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	-	57.8	9918
$[\mu \mathrm{b}^{-1}]$	-	553	158630
$[\mu \mathrm{b}^{-1}]$	-	92	20736
[h]	-	3	6
[h]	-	1.65	1.65
$[\mathrm{nb}^{-1}]$	-	33	8000
	$[TeV]$ $[TeV]$ $-$ $[10^8]$ $[\mu m]$ $-$ $[\mu rad]$ $[10^{27}cm^{-2}s^{-1}]$ $[10^{27}cm^{-2}s^{-1}]$ $[\mu b^{-1}]$ $[\mu b^{-1}]$ $[h]$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

vs LHC: 5.5 (PbPb) and 8.8 (pPb)

vs LHC (total):
PbPb: ~1 (Run2); ~4 (Run3); ~4 (Run4)
pPb: 50-400 (2 weeks)

Other ideas:

- → HE-LHC (16 T magnets): 27.5 TeV pp.
- → 6 T magnets in the FCC tunnel: 37.5 TeV pp.

Machines: ep/eA

• Projects of eA colliders with $E_{cm} \sim \mathcal{O}(0.1)$ TeV/A (EICs at US and China) and $\mathcal{O}(1)$ TeV/A (LHeC and FCC-eh at CERN) addressing different physics.

FCC-eh

Timeline:

LHC heavy-ion runs, past & approved future+ species choices according to ALICE 2012 LoI (could vary if required)

Only indicative...

Timeline:

- Pb-Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$, $L_{int} = 13 \text{ nb}^{-1}$ (ALICE, ATLAS, CMS), 2 nb^{-1} (LHCb)
- **pp at** $\sqrt{s} = 5.5 \text{ TeV}$, $L_{\text{int}} = 600 \text{ pb}^{-1}$ (ATLAS, CMS), 6 pb^{-1} (ALICE), 50 pb^{-1} (LHCb)
- pp at $\sqrt{s} = 14$ TeV, $L_{\text{int}} = 200 \text{ pb}^{-1}$ with low pileup (ALICE, ATLAS, CMS)
- p-Pb at $\sqrt{s_{NN}} = 8.8 \text{ TeV}$, $L_{int} = 1.2 \text{ pb}^{-1}$ (ATLAS, CMS), 0.6 pb^{-1} (ALICE, LHCb)
- pp at $\sqrt{s} = 8.8 \text{ TeV}$, $L_{\text{int}} = 200 \text{ pb}^{-1}$ (ATLAS, CMS, LHCb), 3 pb^{-1} (ALICE)
- O-O at $\sqrt{s_{NN}}=7$ TeV, $L_{int}=500~\mu b^{-1}$ (ALICE, ATLAS, CMS, LHCb)
- p-O at $\sqrt{s_{NN}} = 9.9 \text{ TeV}, L_{int} = 200 \,\mu\text{b}^{-1}$ (ALICE, ATLAS, CMS, LHCb)
- Intermediate AA, e.g. $L_{\rm int}^{\rm Ar-Ar}=3$ –9 pb $^{-1}$ (about 3 months) gives NN luminosity equivalent to Pb–Pb with $L_{\rm int}=75$ –250 nb $^{-1}$

1812.06772

***	d .	TO!	
Year	Systems, $\sqrt{s_{NN}}$	Time	L_{int}
2021	Pb-Pb 5.5 TeV	3 weeks	$2.3~\mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb ⁻¹ (ALICE), 300 pb ⁻¹ (ATLAS, CMS), 25 pb ⁻¹ (LHCb)
2022	Pb-Pb 5.5 TeV	5 weeks	$3.9~\mathrm{nb}^{-1}$
	O–O, p–O	1 week	$500~\mu { m b}^{-1} { m and} ~ 200~\mu { m b}^{-1}$
2023	p-Pb 8.8 TeV	3 weeks	0.6 pb ⁻¹ (ATLAS, CMS), 0.3 pb ⁻¹ (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2027	Pb-Pb 5.5 TeV	5 weeks	$3.8~\mathrm{nb}^{-1}$
	pp 5.5 TeV	1 week	3 pb ⁻¹ (ALICE), 300 pb ⁻¹ (ATLAS, CMS), 25 pb ⁻¹ (LHCb)
2028	p-Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2029	Pb-Pb 5.5 TeV	4 weeks	$3 \mathrm{nb}^{-1}$
Run-5	Intermediate AA	11 weeks	e.g. Ar-Ar 3-9 pb ⁻¹ (optimal species to be defined)
	pp reference	1 week	

Only indicative...

Timeline:

Kinematics:

- ullet Extension of several orders of magnitude in x and Q^2 w.r.t. existing DIS data.
- DIS versus hh:
- → pA/AA covers largest range in kinematics.
- → DIS offers:
 - ➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q² reconstructing the outgoing lepton;
 - A more controlled theoretical setup many first-principles calculations, factorisation tests.

Kinematics:

- Extension of several orders of magnitude in x and Q^2 w.r.t. existing DIS data.
- DIS versus hh:
- → pA/AA covers largest range in kinematics.
- → DIS offers:
 - ➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q² reconstructing the outgoing lepton;
 - A more controlled theoretical setup many first-principles calculations, factorisation tests.

Kinematics:

- Extension of several orders of magnitude in x and Q² w.r.t. existing DIS data.
- DIS versus hh:
- → pA/AA covers largest range in kinematics.
- → DIS offers:
 - ➤ A clean experimental environment low multiplicity, no pileup, fully constrained kinematics x,Q² reconstructing the outgoing lepton;
 - A more controlled theoretical setup many first-principles calculations, factorisation tests.

Contents:

I. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Evolution of the medium in pp/pA/AA.

5. Summary.

References:

- Future Circular Collider: Vol. 1 Physics opportunities, CERN-ACC-2018-0056, and 1605.01389;
- 1812.06772 (HL-LHC with ions);
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- EIC Physics White paper, 1212.1701;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC and EIC talks at DIS 2019, https://indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

nPDFs: status

	SET	EPS09 JHEP 0904 (2009) 065	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016) 085037	KA15 PRD93 (2016) 014036	EPPS 16 EPJC C77 (2017) 163	n NNPDF1.0 1904.00018	
t a	eDIS	✓	✓	~	✓	✓	✓	
	DY	✓	✓	✓	✓	✓	×	
data	π0	✓	✓	~	×	✓	×	
	vDIS	×	✓	×	×	✓	×	
	pPb	×	×	×	×	~	×	
#	data	929	1579	740	1479	1811	451	
C	order	NLO	NLO	NLO	NNLO	NLO	NNLO	
_	roton PDF	CTEQ6.I	MSTW2008	~CTEQ6.I	JR09	CT14NLO	NNPDF3.I	
	mass :heme	ZM-VFNS	GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS	FONLL-B	
con	nments	Δχ ² =50, ratios, <u>huge</u> <u>shadowing-</u> <u>antishadowing</u>	$\Delta \chi^2$ =30, ratios, <u>medium-</u> <u>modified FFs for</u> $\underline{\pi^0}$	Δχ ² =35, PDFs, valence <u>flavour</u> sep., not enough sensitivity	PDFs, <u>deuteron</u> <u>data included</u>	Δχ ² =52, flavour sep., ratios, <u>LHC</u> <u>pPb data</u>	NNPDF methodology, isoscalarity assumed	

- Large uncertainties for x<0.01 and for large x glue (parametrisation biases); small impact of LHC data (large-x glue).
- Few data for any single A e.g. Pb (15 DIS+30 pPb+vA): A-dependence of I.C. mandatory; flavour decomposition weakly constrained (~ isoscalarity).
- Impact parameter dependence modelled.

nPDFs: status

• nCTEQ15 vs. EPPS16: note the parametrisation bias.

Presently available LHC
 (dijets, W/Z in pPb)
 data seem not to
 have a large effect:
 large-x glue
 (baseline=no V, no LHC data).

		a			ъ.
Experiment	Observable	Collisions	Data points	χ^2	Ref.
SLAC E139	DIS	$e^{-}{\rm He}(4), e^{-}{\rm D}$	21	12.2	[69]
CERN NMC 95, re.	DIS	$\mu^{-}\text{He}(4), \mu^{-}\text{D}$	16	18.0	[70]
CERN NMC 95	DIS	$\mu^- \text{Li}(6), \mu^- \text{D}$	15	18.4	[71]
CERN NMC 95, Q^2 dep.	DIS	$\mu^- \text{Li}(6), \mu^- \text{D}$	153	161.2	[71]
SLAC E139	DIS	e^{-} Be(9), e^{-} D	20	12.9	[69]
CERN NMC 96	DIS	$\mu^{-}\text{Be}(9), \mu^{-}\text{C}$	15	4.4	[72]
GLAG E190	DIG	= C(10) = D	-	0.4	[00]
SLAC E139	DIS	$e^{-}C(12), e^{-}D$	7	6.4	[69]
CERN NMC 95	DIS	$\mu^{-}C(12), \mu^{-}D$	15	9.0	[71]
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}C(12), \mu^{-}D$	165	133.6	[71]
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}D$	16	16.7	[70]
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}Li(6)$	20	27.9	[70]
FNAL E772	DY	pC(12), pD	9	11.3	[73]
SLAC E139	DIS	e^{-} Al(27), e^{-} D	20	13.7	[69]
CERN NMC 96	DIS	$\mu^{-}\text{Al}(27), \ \mu^{-}\text{C}(12)$	15	5.6	
CERN NWC 90	DIS	μ Al(21), μ C(12)	15	5.0	[72]
SLAC E139	DIS	e^{-} Ca(40), e^{-} D	7	4.8	[69]
FNAL E772	DY	pCa(40), pD	9	3.33	[73]
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} D	15	27.6	[70]
CERN NMC 95, re.	DIS	μ^{-} Ca(40), μ^{-} Li(6)	20	19.5	[70]
CERN NMC 96	DIS	μ^{-} Ca(40), μ^{-} C(12)	15	6.4	[72]
CERT NWC 90	DIS	$\mu = Ca(40), \mu = C(12)$	10	0.4	[12]
SLAC E139	DIS	e^{-} Fe(56), e^{-} D	26	22.6	[69]
FNAL E772	DY	e^{-} Fe(56), e^{-} D	9	3.0	[73]
CERN NMC 96	DIS	μ^{-} Fe(56), μ^{-} C(12)	15	10.8	[72]
FNAL E866	DY	pFe(56), pBe(9)	28	20.1	[74]
THE Book	2.	pre(65), pre(6)		2011	[, -]
CERN EMC	DIS	μ^{-} Cu(64), μ^{-} D	19	15.4	[75]
		, , , , , , , , , , , , , , , , , , , ,			
SLAC E139	DIS	e^{-} Ag(108), e^{-} D	7	8.0	[69]
		_			
CERN NMC 96	DIS	$\mu^{-}\mathrm{Sn}(117), \mu^{-}\mathrm{C}(12)$	15	12.5	[72]
CERN NMC 96, Q^2 dep.	DIS	$\mu^{-}\mathrm{Sn}(117), \mu^{-}\mathrm{C}(12)$	144	87.6	[76]
FNAL E772	DY	pW(184), pD	9	7.2	[73]
FNAL E866	DY	pW(184), pBe(9)	28	26.1	[74]
CERN NA10★	DY	$\pi^{-}W(184), \pi^{-}D$	10	11.6	[49]
FNAL E615★	DY	$\pi^+W(184), \pi^-W(184)$	11	10.2	[50]
		- (1	_		
CERN NA3★	$\mathbf{D}\mathbf{Y}$	π^{-} Pt(195), π^{-} H	7	4.6	[48]
GLAG E100	DIG	- A (10E) - D	0.1	0.4	[00]
SLAC E139	DIS	e^{-} Au(197), e^{-} D	21	8.4	[69]
RHIC PHENIX	π^0	dAu(197), pp	20	6.9	[28]
CERN NMC 96	DIS	$\mu^{-}\text{Pb}(207), \mu^{-}\text{C}(12)$	15	4.1	[72]
CERN CMS*	W±	μ 1 b(207), μ C(12) pPb(208)	10	8.8	[43]
CERN CMS*	Z	pPb(208)	6	5.8	[45]
CERN ATLAS*	Z	pPb(208)	7	9.6	[46]
CERN CMS*	dijet	pPb(208)	7	5.5	[34]
CERN CHORUS*	DIS	$\nu \text{Pb}(208), \overline{\nu} \text{Pb}(208)$	824	998.6	[47]
		(===), ===(===)			[]
Total			1811	1789	
10001			1011	1100	

EPPS16

nPDFs @ LHC: present

D mesons, 1906.02512

- Theoretical control in PT over forward D or J/ ψ under debate: scales, DPS, non-linear dynamics, ... E.g. quarkonium: superposition of nPDFs + eloss/absorption + comovers for ψ ',...
- Collectivity (flow for D in pPb as for charged hadrons in pPb and PbPb?) would limit the use of low pT data for extraction of nPDFs.
 - UPCs offer possibilities for constraining both nPDFs: they were the first indication of nuclear shadowing.

1712.07024

- Inclusive W for s/u.
- Dijets for glue.
- Z and γ at forward rapidity (glue).
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Top requires higher statistics: lighter ions in the 30's?
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).

- Inclusive W for s/u.
- Dijets for glue.
- Z and γ at forward rapidity (glue).
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Top requires higher statistics: lighter ions in the 30's?
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).

- Inclusive W for s/u.
- Dijets for glue.
- Z and Y at forward rapidity (glue).
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Top requires higher statistics: lighter ions in the 30's?
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).

1812.06772

- Inclusive W for s/u.
- Dijets for glue.
- Z and γ at forward rapidity (glue).
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Top requires higher statistics: lighter ions in the 30's?
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).

1812.06772

- Inclusive W for s/u.
- Dijets for glue.
- Z and γ at forward rapidity (glue).
- W asymmetries for gluon (evolution).
- Low mass forward DY for sea and gluon.
- Top requires higher statistics: lighter ions in the 30's?
- UPCs will also contribute: quarkonium, inclusive dijets

(1902.05126).

1812.06772

nPDFs in pA beyond HL-LHC:

D, B mesons and quarkonia in pXe in FT mode

- Top studies become feasible at the FCC: gluon in pPb.
- UPCs will also contribute: quarkonium, inclusive dijets (1902.05126).
- Fixed target mode to constrain the high-x glue.

0.7

original EPS09 error

 y_t

after reweighting

FCC pseudo data

 $L_{int} = 33 nb^{-1}$

 $\sqrt{s} = 39 \text{TeV}$

nPDFs @ eA colliders:

• LHeC/FCC-eh ePb and EIC eAu pseudodata included in EPPS 16-like global fits and HERAPDF DISonly fits: large

impact.

- HF separation has sizeable impact (on glue).
- Not yet included: beauty,
 c-tagged CC for strange.

sea

glue

Q² (GeV²) NA at DISI8 and DISI9

 $10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 1$

6.0

 $\frac{R_{\rm p}^{\rm Pb}}{8}$ 0.2

LHeC fit no charm

 $10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 1$

nPDFs @ eA colliders:

- LHeC/FCC-eh ePb and EIC eAu pseudodata included in EPPS 16-like global fits and HERAPDF DISonly fits: large
- HF separation has sizeable impact (on glue).

impact.

Not yet included: beauty,
c-tagged CC for strange.

1708.05654

Q² (GeV²) NA at DIS18 and DIS19

• The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, **mostly unknown in nuclei**.

• It can be done at the EIC/LHeC/FCC-eh in a large range of x and $Q^2 \Rightarrow$ evolution.

• The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, **mostly unknown in nuclei**.

• It can be done at the EIC/LHeC/FCC-eh in a large range of x and $Q^2 \Rightarrow$ evolution.

• The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, **mostly unknown in nuclei**.

• It can be done at the EIC/LHeC/FCC-eh in a large range of x and $Q^2 \Rightarrow$ evolution.

 $\gamma^* + p \rightarrow \gamma + p$

- Incoherent diffraction sensitive to fluctuations: hot spots? that determine the initial stage of HIC, the distribution of MPIs,...
- Exclusive dijet production and sensitive to the gluon Wigner distribution, forward DDbar to gTMDs.

$$\frac{d\sigma(\gamma p \to J/\psi p)}{dt} \bigg|_{T,L} = \frac{(R_g^{T,L})^2}{16\pi} \left| \left\langle A(x, Q^2, \vec{\Delta})_{T,L} \right\rangle \right|^2$$

$$\frac{d\sigma(\gamma p \to J/\psi Y)}{dt} \bigg|_{T,L} = \frac{(R_g^{T,L})^2}{16\pi} \left(\left\langle \left| A(x, Q^2, \vec{\Delta})_{T,L} \right|^2 \right\rangle - \left| \left\langle A(x, Q^2, \vec{\Delta})_{T,L} \right\rangle \right|^2 \right)$$

- Most of these observables can, in principle, be studied in UPCs, even for larger energies, but for photoproduction: separation of coherent and incoherent diffraction, reach and resolution in t,...?
- Also extensive studies in FT mode (1807.00603), mainly focused on spin physics.

- Incoherent diffraction sensitive to fluctuations: hot spots? that determine the initial stage of HIC, the distribution of MPIs,...
- Exclusive dijet production and sensitive to the gluon Wigner distribution, forward DDbar to gTMDs.

$$\frac{d\sigma(\gamma p \to J/\psi p)}{dt} \bigg|_{T,L} = \frac{(R_g^{T,L})^2}{16\pi} \left| \left\langle A(x, Q^2, \vec{\Delta})_{T,L} \right\rangle \right|^2$$

$$\frac{d\sigma(\gamma p \to J/\psi Y)}{dt} \bigg|_{T,L} = \frac{(R_g^{T,L})^2}{16\pi} \left(\left\langle \left| A(x, Q^2, \vec{\Delta})_{T,L} \right|^2 \right\rangle - \left| \left\langle A(x, Q^2, \vec{\Delta})_{T,L} \right\rangle \right|^2 \right)$$

- Most of these observables can, in principle, be studied in UPCs, even for larger energies, but for photoproduction: separation of coherent and incoherent diffraction, reach and resolution in t,...?
- Also extensive studies in FT mode (1807.00603), mainly focused on spin physics.

Nuclear diffractive PDFs:

- Diffractive PDFs give the conditional probability of measuring a parton in the hadron with the hadron remaining intact: ~10 % events at HERA are diffractive!
- Never measured in nuclei, incoherent diffraction dominant above relatively small -t: interplay between multiple scattering and survival probability of the colourless exchange (rapidity gap), relation between diffraction in ep and nuclear shadowing \Rightarrow MPIs, CEP.
- At the LHeC/FCC-eh, extractable in nuclei with the same accuracy as in proton.

Contents:

I. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Evolution of the medium in pp/pA/AA.

5. Summary.

References:

- Future Circular Collider: Vol. 1 Physics opportunities, CERN-ACC-2018-0056, and 1605.01389;
- 1812.06772 (HL-LHC with ions);
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- EIC Physics White paper, 1212.1701;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC and EIC talks at DIS 2019, https://indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Search for new dynamics at small x in ep/eA:

• Saturation modifies evolution: tension between the description in DGLAP analyses of different inclusive observables (with different sensitivities to glue and sea, e.g. F_2 and F_L or σ_r^{HQ}),

if enough lever arm in Q² at small x available.

• High scales are small x at the FCC-AA: e.g. top production in pPb sensitive to $x \sim 0.02$ -0.2 at HL-LHC and 0.0002-0.2 at the FCC-hh (1501.05879).

Search for new dynamics at small x in pA:

• Single particle suppression increasing with rapidity was proposed as a signal of saturation.

$$R_{\rm pA} = rac{
m yield~in~eA/pA}{
m scaled~yield~in~ep/pp}$$

• To be contrasted with an extraction of PDFs in collinear factorisation: tensions?

dijet yield modification pPb/pp, anti-k_T, R=0.5

Non-linear, saturation.

• UPCs are an alternative, though less precise.

• Large uncertainties, e.g. charm mass (1402.4831).

h-linear, iration.

- Saturation (the approach to the black disk limit) affects both the energy and the t (impact parameter)-dependence of coherent exclusive VM production: softer energy dependence, shrinking of the diffractive peak.
- Saturation results in a larger diffractive over inclusive cross section (Nikolaev et al., Z.Phys. A351 (1995) 435): interplay between non-linear phenomena and survival probability.

- Saturation (the approach to the black disk limit) affects both the energy and the t (impact parameter)-dependence of coherent exclusive VM production: softer energy dependence, shrinking of the diffractive peak.
- Saturation results in a larger diffractive over inclusive cross section (Nikolaev et al., Z.Phys. A351 (1995) 435): interplay between non-linear phenomena and survival probability.

- Saturation (the approach to the black disk limit) affects both the energy and the t (impact parameter)-dependence of coherent exclusive VM production: softer energy dependence, shrinking of the diffractive peak.
- Saturation results in a larger diffractive over inclusive cross section (Nikolaev et al., Z.Phys. A351 (1995) 435): interplay between non-linear phenomena and survival probability.

Correlations en eA/pA (I):

- Dihadron azimuthal decorrelation: currently discussed at RHIC as suggestive of saturation.
- To be studied far from kinematical limits.

Correlations en eA/pA (I):

 $\chi_A << \chi_p$

- Dihadron azimuthal decorrelation: currently discussed at RHIC as suggestive of saturation.
- To be studied far from kinematical limits.

central-forward exclusive dijets in ep/eA, 1511.07452

Correlations en eA/pA (II):

- Studying dijet azimuthal decorrelation or forward jets
- (p_T~Q) in ep/eA/pp/pAwould allow to understand the mechanism of radiation:
- → k_T-ordered: DGLAP.
- → k_T-disordered: BFKL.
- → Saturation?
- Further imposing a rapidity gap (diffractive jets) would be most interesting: perturbatively controllable observable.

• Nuclear and saturation effects on usual BFKL signals (e.g. dijet azimuthal decorrelation, Mueller-Navelet jets) has not been extensively addressed: A-dependence contrary to linear resummation?

Contents:

I. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Evolution of the medium in pp/pA/AA.

5. Summary.

References:

- Future Circular Collider: Vol. 1 Physics opportunities, CERN-ACC-2018-0056, and 1605.01389;
- 1812.06772 (HL-LHC with ions);
- 1901.09076 (diffraction in ep and eA);
- LHeC CDR, 1206.2913;
- EIC Physics White paper, 1212.1701;
- 2018 LHeC and FCC-eh workshop, https://indico.cern.ch/event/698368/;
- LHeC and EIC talks at DIS 2019, https://indico.cern.ch/event/749003/.
- Fixed target program at the HL-LHC, 1807.00603.

Small systems:

• Observables measured in small systems: pp and pA, that in AA are taken as QGP signals:

Collective hadronisation

Collective expansion (hydro-like)

Direct photons

Final state interactions (non-hydro)

Observable or effect	Pb–Pb	p-Pb (high mult.)	pp (high mult.)	Refs.
Low p_{T} spectra ("radial flow")	yes	yes	yes	[47, 71, 317, 318, 654, 657, 663, 664, 667, 668]
Intermediate $p_{\rm T}$ ("recombination")	yes	yes	yes	[317,657–663]
Particle ratios	GC level	GC level except Ω	GC level except Ω	[318,638,664,665]
Statistical model	$\gamma_s^{\rm GC} = 1, 10–30\%$	$\gamma_s^{ m GC} pprox 1, 20$ –40%	MB: $\gamma_s^{\rm C} < 1, 20$ –40%	[318, 638, 669]
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{ m out}/R_{ m side} \approx 1$	$R_{ m out}/R_{ m side} \lesssim 1$	$R_{ m out}/R_{ m side} \lesssim 1$	[670–677]
Azimuthal anisotropy (v _n) (from two particle correlations)	$v_1 - v_7$	$v_1 - v_5$	$v_2 - v_4$	[48, 312–314, 632, 633, 652, 678–688]
Characteristic mass dependence	$v_2 - v_5$	v_2, v_3	v_2	[48, 315, 326, 683, 686, 689–691]
Directed flow (from spectators)	yes	no	no	[692]
Charge-dependent correlations	yes	yes	yes	[249, 253, 254, 693–696]
Higher-order cumulants	" $4 \approx 6 \approx 8 \approx \text{LYZ}$ "	" $4 \approx 6 \approx 8 \approx \text{LYZ}$ "	"4 ≈ 6"	[316,683,688,697–708]
(mainly $v_2\{n\}, n \geq 4$)	+higher harmonics	+higher harmonics		
Symmetric cumulants	up to $SC(5,3)$	only $SC(4,2)$, $SC(3,2)$	only $SC(4,2)$, $SC(3,2)$	[227,687,709–712]
Non-linear flow modes	up to v_6	not measured	not measured	[713]
Weak η dependence	yes	yes	not measured	[685,707,714–719]
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[682, 684, 720–722]
Event-by-event v _n distributions	n = 2-4	not measured	not measured	[723–725]
Direct photons at low $p_{\rm T}$	yes	not measured	not observed	[544,726]
Jet quenching through dijet asymmetry	yes	not observed	not observed	[348, 360, 374, 727–729]
Jet quenching through R_{AA}	yes	not observed	not observed	[323, 344, 346, 347, 352, 730–737]
Jet quenching through correlations	yes (Z-jet, γ -jet, h-jet)	not observed (h-jet)	not measured	[354,357,375,376,380,388,733,738–740]
Heavy flavor anisotropy	yes	yes	not measured	[262, 326, 460–464, 497, 741–745]
Quarkonia production	suppressed [†]	suppressed	not measured	[262,454,456,459,478,479,491,492,494, 495,497,579,746–755]

† J/ ψ ↑, Y(\downarrow) w.r.t. RHIC energies.

Small systems:

• Azimuthal correlations extended in η (the ridge) are found in all systems from almost minimum bias pp (10) to central AA (2000) and are describable by viscous relativistic hydro (with suitable ICs):

- → Final state interactions, so QGP-like physics in all systems?
- → Correlations already present in the hadron or nucleus wave functions, as in CGC calculations?

- One way to proceed: go to even smaller systems, ep/eA, down to a point where final state interactions cannot be justified.
 - → Correlations appear (e.g. in eA) for large multiplicities: final state interactions?
 - → No correlations: initial state effects?
- Note: preliminary analysis by ZEUS and ALEPH put strong limits on azimuthal 2-particle correlations in ep at HERA and e⁺e⁻ at LEP.

Small systems:

Multiplicity-dependent $c_1\{2\}$ and $c_2\{2\}$ with increasing η -separation

ZEUS at DIS2019

 $|\Delta \eta| > 2.0$: $c_1\{2\}$ changes sign → consistent with momentum conservation.

Low T; 'multi-jet'

 $|\Delta \eta| > 2.0$: $c_2\{2\}$ consistent with zero.

Switching off the flow: e+e-Talk: J-Y Lee 1906.00489 ALEPH e+e- thrust axis $N \ge 35$ MOD PRELIMINARY 10 < N < 20ALEPH e⁺e⁻, √s=91GeV ALEPH e+e+, (s=91GeV 10≤N_{Trk}^{Offline}<20 35≤N_{Trk}Offline<999 $|\eta| < 5.0$ 0.0<p_<100.0 GeV 0.0<p_<100.0 GeV High-multiplicity events 0.025 Archived Data Systematical Uncertainty No evidence of long-range correlations beyond Pythia expectation

Charged multiplicity distribution $|\eta| < 1.5$

High T; 'di-jet'

 $1.6 < \Delta \eta < 3.0$

0 0.5 1 1.5 2 2.5 3

Initial stages though hard probes:

- Recent activity on the use of hard probes to study the initial stages of hadronic collisions (1902.03231).
- Large energies and statistics (lighter ions at HL-LHC?; FCC-AA) make boosted tops available (1711.03105).

Apolinario at HP2018

Semi-leptonic decay of tt events produce

jets that start interacting with the QGP only

Initial stages though hard probes:

- Recent activity on the use of hard probes to study the initial stages of hadronic collisions (1902.03231).
- Large energies and statistics (lighter ions at HL-LHC?; FCC-AA) make boosted tops available (1711.03105).
 - ◆ Reconstructed W Mass as a function of the top p_T:
 - Useful probe of the QGP density evolution

Apolinario at HP2018

- QGP tomography:
 - HE-LHC: Some discrimination between short vs long lived medium
 - √ FCC: able to scan entire QGP lifetime!

Lighter ions in Runs 5 and 6:

- There has been a proposal to collider lighter ions: O(Z=8,A=16), Ar(Z=18,A=40), Kr(Z=36,A=78), Xe(Z=52,A=129),..., in Runs 5 and 6 to:
- \Rightarrow Test size dependencies of QGP properties and dynamical mechanisms, getting rid of centrality definitions that introduce strong biases in peripheral collisions and pA \Rightarrow link to small systems.
- → Get rid of centrality dependence for nPDFs, ridge, etc., that introduce additional correlations.
- \rightarrow Get larger statistics: gains of factors 2 (Xe) to 15 (O), for e.g. top studies, Z+jet,...
- We may have new detectors/experiments there: LHCb Upgrade II, new detector in IP2 (HI detector focused on soft physics (1902.01211), or LHeC that would offer ep/eA at the same time as pp/pA/AA).

Summary:

- I have done an incomplete, **personal** overview of the possibilities for high-density QCD with ions at the HL-LHC and beyond: FCC as representative of AA colliders, ep/eA and fixed target possibilities.
 - → Partonic structure of the nucleus, in the collinear framework and beyond.
 - → New dynamics at small x.
 - → Some discussion on medium evolution.
- Hadron/DIS machines are complementary in terms of 'reach'/'precision'.
- Both proton and nuclear targets will be required to unravel the existence of a new regime of QCD.
- Most interesting things are waiting for us!!!

Summary:

Many thanks to:

- → My HL-LHC, FCC-AA, LHeC/FCC-eh and EIC colleagues for discussions and the opportunity to work with them;
- → Christophe and Paul for the invitation to provide this talk;
- → You all for your attention.
- Hadron and DIS machines are complementary in terms of 'discovery'/'precision'.
- Both proton and nuclear targets will be required to unravel the existence of a new regime of QCD.
- Most interesting things are waiting for us!!!

Backup

nPDFs: implications on HI physics

$$R = \frac{f_{i/A}}{Af_{i/p}} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}}$$

 Lack of data ⇒ large uncertainties for the nuclear glue at small scales and x: problem for benchmarking in HIC in order to extract medium parameters.

nPDFs: implications on HI physics

• Extraction of transport properties and hydrodynamisation times finds its key limitation in the uncertainties in the initial conditions for hydrodynamical evolution.