Workshop on
Ultimate Precision at Hadron Colliders

Institut Pascal, Paris-Saclay

Fabrice Balli, Louis Fayard, Marumi Kado,
Zhiqing Zhang, Maarten Boonekamp
Institut Pascal

- Website:

 https://www.universite-paris-saclay.fr/fr/institut-pascal

- Scientific programme:

- Location:

 https://www.universite-paris-saclay.fr/fr/location-of-the-pascal-institute

- Support:

 - Good working environment (offices, meeting rooms, ...)

 - Accommodation for up to 20 people for two weeks

 - Limited support for travel (4 kEur)
All proposals downstream are for discussion!
Scientific objectives

- In short, try to estimate how far the LHC, its upgrades or companion machines, and low-energy data can push the exploration of QCD and Electroweak symmetry breaking by ~2035

- To be (re-)discussed:
 - QCD precision: pQCD developments; PDFs
 - Measurement precision of traditional EW parameters
 - Inputs from low-energy experiments
 - Higgs boson properties
 - TeV-scale vector boson scattering
 - Interpretation

Many documents were produced recently, or will come out this year. Complementarity?

- Context
 - HL-LHC
 - DIS: LHeC (EIC?) (a fundamental component)
 - HE-LHC
Proposed working groups

- **Topical studies**
 - A1: EW precision observables
 - W&Z mass, weak mixing angle, top mass and properties in relation with electroweak symmetry breaking.
 - A2: High energy probes of electroweak symmetry breaking
 - VBS measurements in relation with Higgs couplings. What deviations VBS are allowed and can be probed given the couplings of the Higgs? Impact of going from 14 to 27 TeV?
 - A3: Fundamental parameters at low energy
 - Prospects for g-2, $\Delta\alpha_{\text{had}}$, $\sin^2\theta_W$ in ep scattering
 - A4: Higgs boson properties
 - Limiting systematic uncertainties (not an exhaustive review), in particular related to PDFs and theoretical predictions. Where should we improve?
 - A5: EW fit & global interpretation
 - In particular, role of PDF uncertainties and correlations in global interpretation analyses. Impact of "ultimate PDFs" from various machines.
Proposed working groups

- **Topical studies**
 - A1: EW precision observables
 - W&Z mass, weak mixing angle, top mass and properties in relation with electroweak symmetry breaking.
 - A2: High energy probes of electroweak symmetry breaking
 - VBS measurements in relation with Higgs couplings. What deviations VBS are allowed and can be probed given the couplings of the Higgs? Impact of going from 14 to 27 TeV?
 - A3: Fundamental parameters at low energy
 - Prospects for g-2, Δα had, sin 2 θ W in ep scattering
 - A4: Higgs boson properties
 - Limiting systematic uncertainties (not an exhaustive review), in particular related to PDFs and theoretical predictions. Where should we improve?
 - A5: EW fit & global interpretation
 - In particular, role of PDF uncertainties and correlations in global interpretation analyses. Impact of "ultimate PDFs" from various machines.

Merge?
Proposed working groups

• Topical studies

 – A1: EW precision observables
 • W&Z mass, weak mixing angle, top mass and properties in relation with electroweak symmetry breaking.

 – A2: High energy probes of electroweak symmetry breaking
 • VBS measurements in relation with Higgs couplings. What deviations VBS are allowed and can be probed given the couplings of the Higgs? Impact of going from 14 to 27 TeV?

 – A3: Fundamental parameters at low energy
 • Prospects for g-2, \(\Delta \alpha \) had, \(\sin 2 \theta_W \) in ep scattering

 – A4: Higgs boson properties
 • Limiting systematic uncertainties (not an exhaustive review), in particular related to PDFs and theoretical predictions. Where should we improve?

 – A5: EW fit & global interpretation
 • In particular, role of PDF uncertainties and correlations in global interpretation analyses. Impact of "ultimate PDFs" from various machines.

Merge?
Proposed working groups

● Transverse groups

 – B1: pp theory
 • Prospects for improved cross section predictions; impact on coupling measurements, PDF determination etc. Further parton shower MC developments (multilegs, NLO EW corrections..?)

 – B2: towards ultimate PDFs
 • critical review of HL-LHC and LHeC prospects. Are there limitations to be overcome to achieve the advertised precision (e.g. what is the required theory accuracy?)

 – B3: Experimental requirements.
 • Review of requirements on performance, referring to the available public documents.
Proposed working groups

• Transverse groups

 – B1: pp theory
 • Prospects for improved cross section predictions; impact on coupling measurements, PDF determination etc. Further parton shower MC developments (multilegs, NLO EW corrections..?)

 – B2: towards ultimate PDFs
 • critical review of HL-LHC and LHeC prospects. Are there limitations to be overcome to achieve the advertised precision (e.g. what is the required theory accuracy?)

 – B3: Experimental requirements.
 • Review of requirements on performance, referring to the available public documents.

Needed?
Workshop structure

- Institut Pascal targets “long” workshops a la GGI, KITP, …

- Week 1
 - Morning: detailed, topical presentation + discussion
 - Afternoon: group activity (and/or a second detailed presentation?)

Each presentation would cover and question the area of a given working group

- Week 2
 - Plenary, open meeting with short presentations
 - One half day per WG
Workshop results & document (ambitious proposal)

- Define, in advance, a limited number of “money plots”, to be discussed at the workshop (and prepared as much as possible in advance). For example:
 - m_W vs $\sin^2\theta$, experimental precision including correlations.
 - Higgs coupling overview. Self-coupling?
 - VBS cross sections; and implications on Higgs couplings to vector bosons (?)
 - Interpretation : EW fit, S/T/U,
 - PDF uncertainties

Everywhere relevant, present now / HL-LHC / HL-LHC+LHeC (or EIC) / HE-LHC

- If we manage, these results could be summarized in a relatively short document (15 pages?), with a clear message. Could be drafted ~rapidly following the workshop

- Goal : summarize the precision we can hope for at the LHC, to be used as a reference to evaluate the larger future projects
Relation with LPCC

- We would like this workshop to work as a joint meeting of the relevant LPCC working groups, dedicated to future prospects at the LHC

- Some WG's directly match their LPCC counterparts (e.g., A1/A5 and the EWWG, A4 and the HWG), and the IPa meeting can be seen as a topical meeting of the latter. Foreseen EWWG meetings during 2019 can be used for preparation.

- A3 (low energy) is disconnected from LPCC, but scientifically complementary

- For A2, the situation is unclear (to me) – a dedicated effort? How to prepare?

- Workshop document (previous page):
 - Should clarify connection with the EWWG documents in preparation (avoid overlap, conflicting statements, ...)
 - Realism can be assessed shortly before the workshop, as a function of how well the preparatory work will have progressed
Organization

- **Local organizers**
 - Fabrice, Louis, Marumi, Zhiqing and Maarten

- **Organizing committee**
 - Daniel Froidevaux; Gautier Hamel de Monchenault; Claude Charlot; Huasheng Shao; Lucia Di Ciaccio; Bogdan Malaescu; Luca Malgeri;
 - Awaiting a few answers from LHCb members

- **Advisory board**
 - Being formed; Michelangelo Mangano.
Organization

• Role of the organizing committee
 – Re-discuss WG perimeters, and workshop objectives. Missing or redundant topics?
 – Help find conveners of the WGs (can be yourself!)
 – Oversee the preparation of the workshop agenda, and the drafting of the workshop document
 – Advertise :)

• Role of WG conveners
 – Define perimeter of the detailed presentations of the 1st week; propose/invite speakers
 – Lead discussions
 – Oversee the preparation of the desired results ahead of the workshop
 – Define agenda of 2nd week