Alberto Lusiani

Scuola Normale Superiore and INFN, sezione di Pisa

CERN Council Open Symposium on the Update of

SCUOLA NORMALE SUPERIORE

European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

Introduction

in this presentation: "proper" tau Physics topics

- ▶ tau properties (mass, lifetime, g-2, EDM, CPV ...)
- tau decays
 - EW precision measurements
 - ▶ $|V_{us}|$, low energy QCD
 - LFV in tau decays
- treated here a selection of most relevant ones for strategy, due to time constraints

not in this presentation: topics I believe belong to other Physics topics

- processes where the tau is a decay product
 - $e^+e^-
 ightarrow Z
 ightarrow au^+ au^-$ (EW precision measurements)
 - ► $H, Z \rightarrow \tau^+ \tau^-$ (EW)
 - ▶ $H, Z \rightarrow \mu^+ \tau^-$ (LFV)
 - $\blacktriangleright W^- \to \tau^- \bar{\nu}_\tau \ ({\rm EW})$
 - $B
 ightarrow D^{(*)} au
 u$ (Heavy Flavour anomalies)
 - heavy flavour hadrons decays with LFV and that involve also tau leptons

Main "strategic" tau Physics topics (personal selection)

Searches for Lepton Flavour Violation in tau decays

- clean & effective search for "natural" NP processes extremely suppressed in SMu
- upper limits are effective constraints on NP models

Lepton Universality tests

- EW precision tests
- effective constraints on NP models

$|V_{us}|$, $\alpha_s(m_{\tau})$, low energy QCD

- \blacktriangleright $|V_{us}|$ measurement alternative to kaons and without lattice QCD inputs
- measure $\alpha_s(m_{\tau})$ and test running of α_s from m_{τ} to m_Z
- alternative measurement of HVP contribution to muon g-2
- other low-energy-QCD measurements (specialized and active theorists' community)
- in practice: measure hadronic BRs and spectral functions

Tau LFV searches dominated by *B*-factories

HL-LHC and HE-LHC opportunities, arXiv:1812.07638 [hep-ph]

B factories expected to be the most powerful and versatile tool for tau LFV (but see later for more complete information on tau LFV prospects)

Tau/Muon LFV searches over time (and Muon LFV prospects)

remarkable progress expected in near future on Muon LFV searches

Tau LFV searches probe & constrain New Physics models

do not forget the second step: if LFV discovered on muons, studies on the many tau LFV modes are essential to investigate the underlying LFV mechanism and how it breaks down in μ vs. τ

Lepton universality tests (unofficial prelim. HFLAV)

$$\begin{pmatrix} \frac{g_{\tau}}{g_{\mu}} \end{pmatrix} = \sqrt{\frac{\mathcal{B}_{\tau e}}{\mathcal{B}_{\mu e}} \frac{\tau_{\mu} m_{\mu}^{5} f_{\mu e} R_{\gamma}^{\mu} R_{W}^{\mu}}{\tau_{\tau} m_{\tau}^{5} f_{\tau e} R_{\gamma}^{\gamma} R_{W}^{\tau}}} = 1.0010 \pm 0.0014 = \sqrt{\frac{\mathcal{B}_{\tau e}}{\mathcal{B}_{\tau e}}}$$
$$\begin{pmatrix} \frac{g_{\tau}}{g_{e}} \end{pmatrix} = \sqrt{\frac{\mathcal{B}_{\tau \mu}}{\mathcal{B}_{\mu e}} \frac{\tau_{\mu} m_{\mu}^{5} f_{\mu e} R_{\gamma}^{\mu} R_{W}^{\mu}}{\tau_{\tau} m_{\tau}^{5} f_{\tau \mu} R_{\gamma}^{\tau} R_{W}^{\tau}}} = 1.0029 \pm 0.0014 = \sqrt{\frac{\mathcal{B}_{\tau \mu}}{\mathcal{B}_{\tau \mu}^{5}}}$$
$$\begin{pmatrix} \frac{g_{\mu}}{g_{e}} \end{pmatrix} = \sqrt{\frac{\mathcal{B}_{\tau \mu}}{\mathcal{B}_{\tau e}} \frac{f_{\tau e}}{f_{\tau \mu}}} = 1.0018 \pm 0.0014$$

using Standard Model predictions for leptons λ , $ho=e,\mu, au$ (Marciano 1988)

$$\begin{split} &\Gamma[\lambda \to \nu_{\lambda} \rho \bar{\nu}_{\rho}(\gamma)] &= \Gamma_{\lambda \rho} &= \Gamma_{\lambda} \mathcal{B}_{\lambda \rho} &= \frac{\mathcal{B}_{\lambda \rho}}{\tau_{\lambda}} &= \frac{\mathcal{G}_{\lambda} \mathcal{G}_{\rho} m_{\lambda}^{2}}{192 \pi^{3}} f\left(m_{\rho}^{2}/m_{\lambda}^{2}\right) R_{W}^{\lambda} R_{\gamma}^{\lambda} \\ &G_{\lambda} = \frac{g_{\lambda}^{2}}{4\sqrt{2}M_{W}^{2}} ; \qquad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2}\ln x ; \qquad f_{\lambda \rho} = f\left(m_{\rho}^{2}/m_{\lambda}^{2}\right) \\ &R_{W}^{\lambda} = 1 + \frac{3}{5} \frac{m_{\lambda}^{2}}{M_{W}^{2}} + \frac{9}{5} \frac{m_{\rho}^{2}}{M_{W}^{2}} ; \qquad R_{\gamma}^{\lambda} = 1 + \frac{\alpha(m_{\lambda})}{2\pi} \left(\frac{25}{4} - \pi^{2}\right) ; \quad \text{all statistics correlations included} \end{split}$$

Lepton universality tests with hadronic decays (unofficial prelim. HFLAV)

$$\left(rac{g_{ au}}{g_{\mu}}
ight)_{\pi} = 0.9958 \pm 0.0026$$
 ,

$$\left(\frac{g_{ au}}{g_{\mu}} \right)_{K} = 0.9879 \pm 0.0063 \; .$$

Averaging the three $g_{ au}/g_{\mu}$ ratios:

$$\left(rac{g_{ au}}{g_{\mu}}
ight)_{ au+\pi+K} = 0.9999\pm 0.0014 \; .$$

using Standard Model predictions

$$\begin{pmatrix} g_{\tau} \\ g_{\mu} \end{pmatrix}^{2} = \frac{\mathcal{B}(\tau \to h\nu_{\tau})}{\mathcal{B}(h \to \mu\bar{\nu}_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1+\delta_{h})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{h}^{2}}{1-m_{h}^{2}/m_{\tau}^{2}}\right)^{2} \quad (h = \pi \text{ or } K)$$

rad. corr. $\delta_{\pi} = (0.16 \pm 0.14)\%, \quad \delta_{K} = (0.90 \pm 0.22)\% \text{ (Decker 1994)}$

note: electron tests less precise because h
ightarrow e
u decays are helicity-suppressed

Canonical tau lepton universality test plot (unofficial prelim. HFLAV)

Lepton universality from tau constrains New Physics models

Lepton universality from tau constrains New Physics models

Lepton universality from tau: experimental measurements

- $\blacktriangleright \ \mathcal{B}_{\tau \to \ell \bar{\nu} \nu}, \ \mathcal{B}_{\tau \to h \nu}$
 - best experimental inputs: ALEPH, then other LEP experiments
 - what mattered and what matters to improve
 - ▶ e⁺e⁻, hermeticity, tau decays statistics, PID systematics
 - ▶ e⁺e⁻ at Z peak much more effective if statistics is the same
 - best experimental inputs: Belle, then LEP experiments
 - what mattered and what matters to improve
 - ▶ e⁺e⁻, hermeticity, tau decays statistics, vertex detectors
 - e^+e^- at Z peak more effective if statistics is the same

m_{τ}

 $\succ \tau_{\tau}$

- ▶ best experimental inputs: BES III then KEDR i.e. e^+e^- at $\tau^+\tau^-$ threshold, then *B*-factories
- what mattered and what matters to improve
 - ▶ e⁺e⁻ at tau production threshold
 - e⁺e⁻ at higher energies contribute, but with higher systematics

" $au o X_s u$ inclusive" $|V_{us}|$ determination

 $\left\{ \begin{array}{l} R_s = \mathcal{B}(\tau \to X_s \nu) / \mathcal{B}(\tau \to e \bar{\nu} \nu) \\ R_{VA} = \mathcal{B}(\tau \to X_d \nu) / \mathcal{B}(\tau \to e \bar{\nu} \nu) \\ \delta R_{\text{theory}} = SU(3) \text{-breaking correction} \end{array} \right.$

Gamiz, Jamin, Pich, Prades, Schwab 2003/2005 does not require form factors from lattice QCD unlike $|V_{us}|$ from kaons \Rightarrow independent theory systematics

also alternative procedures used: use other inputs, tau spectral functions, lattice QCD techniques (also exploiting work done for the muon g-2 hadronic contribution)

 large Cabibbo-favoured BRs best measured at LEP (ALEPH)

 comparison with CKM unitarity determination of |V_{us}| is equivalent to testing the unitarity of the first row of the CKM matrix

α_s from tau decay measurements

- $\alpha_s(m_{\tau})$ from
 - $R_{VA} = \mathcal{B}(\tau \rightarrow X_d \nu) / \mathcal{B}(\tau \rightarrow e \bar{\nu} \nu)$
 - tau spectral functions
- tau data competitive
- $\alpha_s(m_{\tau})$ confirms running of α_s
- best experimental inputs e⁺e⁻ facilities at the Z peak
 - modest experimental progress since LEP times
 - statistics, clean data, non-trivial analysis needed
 - non-trivial exp. and theory systematics

Recent discussions

- different groups get somewhat inconsistent results disagreements on non-pert. effects, duality violations
- Pich 2019
 Boito, Golterman, Maltman, Peris 2019
 Pich, Rojo, Sommer, Vairo 2018
 Boito, Golterman, Maltman, Peris 2017
 Pich, Rodríguez-Sánchez 2016
- additional data welcome

Muon g-2 hadronic contribution from tau

Tau Physics plans of relevant facilities

Belle II

- ▶ The Belle II experiment at SuperKEKB: input to the European Particle Physics Strategy
- The Belle II Physics Book arXiv:1808.10567 [hep-ex]
- ▶ 50 ab⁻¹, improved detector w.r.t. Belle/BaBar, $50 \times$ Belle statistics, $9 \cdot 10^{10}$ tau decays
- B-factories scored well on LFV, less well on precision measurements and spectral functions
- ▶ $\mathcal{B}(au o \mu \gamma) < \sim 1 \cdot 10^{-9}$ 90% CL detailed study with BelleII sample, may be optimistic
- $\mathcal{B}(\tau \to 3\mu) < 3.3 \cdot 10^{-10}$ 90% CL extrap. from Belle assuming selection remains bkg-free
- similar improvements on many other tau LFV modes
- $\Delta m_{\tau} = \pm 0.10 0.15 \text{ MeV}$ "very optimistically" (BESIII $\pm 0.17 \text{ MeV}$)
- my personal statistics-only-driven estimate $\Delta \tau_{\tau} = 0.026\%$ (Belle 0.21%)
- ▶ improvements w.r.t. today WA expected on $\mathcal{B}(au o \ell ar{
 u}
 u)$ and $au_{ au}$ but non-trivial & non-assured
- significant improvements on Cabibbo-suppressed BRs and spectral functions, but non-trivial
- ▶ significant advances possible on many more measurements: Michel parameters, spectral functions, CPV, radiative decays, g-2, EDM...
- Belle III: luminosity upgrade of Belle II would advance the reach of the LFV searches

Tau Physics plans of relevant facilities

HL-LHC and HE-LHC

 $\mathcal{B}(au
ightarrow 3\mu)$

- inputs to the European Particle Physics Strategy
- Opportunities in Flavour Physics at the HL-LHC and HE-LHC, arXiv:1812.07638 [hep-ph]

Table 23: Actual and expected limits on BR($\tau \rightarrow 3\mu$) for different experiments and facilities. The ATLAS projections are given for the medium background scenario, see main text for further details.

	$BR(\tau \rightarrow 3\mu)$	Ref.	Comments
	(90% CL limit)		
	3.8×10^{-7}	ATLAS [429]	Actual limit (Run 1)
	4.6×10^{-8}	LHCb [428]	Actual limit (Run 1)
000/ CI	3.3×10^{-8}	BaBar [417]	Actual limit
90% CL	2.1×10^{-8}	Belle [423]	Actual limit
	3.7×10^{-9}	CMS HF-channel at HL-LHC	Expected limit (3000 fb ⁻¹)
	6×10^{-9}	ATLAS W-channel at HL-LHC	Expected limit (3000 fb ⁻¹)
	2.3×10^{-9}	ATLAS HF-channel at HL-LHC	Expected limit (3000 fb ⁻¹)
	$O(10^{-9})$	LHCb at HL-LHC	Expected limit (300 fb ⁻¹)
	3.3×10^{-10}	Belle-II [196]	Expected limit (50 ab ⁻¹)
	7.9×10^{-9}	LHCb M.Chrząszo	z priv.comm. (50 fb^{-1})

Tau Physics plans of relevant facilities

TauFV, project, SPS protons on fixed-targed, dedicated to tau LFV searches

inputs to the European Particle Physics Strategy

Instead, design dedicated experiment upstream of SHiP, with thin, distributed targets, to bleed off ~2% of the beam intended for SHiP \rightarrow 2 mm of tungsten (this value also set by upper limit of data rates in VELO).

- leverages on LHCb expertise, success and upgrade-related R&D, synergic with SHiP
- ▶ n. of tau decays: $900 \times Bellell$, $60 \times LHCb(50 \text{ fb}^{-1})$, $10 \times LHCb(300 \text{ fb}^{-1})$
- target and detector optimized for tau LFV searches
- earliest date 2026-2027
- $\mathcal{B}(au
 ightarrow 3\mu)$ 90% CL UL "down to 10⁻¹⁰"
- ▶ also sensitive to other ${\cal B}(au o \ell_1 \ell_2 \ell_3)$, one less order of magnitude for $e^+ \mu^- \mu^-$
- \blacktriangleright promising enterprise, could match and improve on BelleII for ${\cal B}(au o 3\mu)$

Tau Physics plans of relevant facilities

Super Charm-Tau Factories: SCT (BINP, Novosibirsk) and STCF/HIEPA (China)

- SCT/Russia inputs to the European Particle Physics Strategy
- ▶ STCF/China Haiping Peng, priv.comm., $\tau \rightarrow \mu \gamma$ study arXiv:1511.07228 [hep-ex]
- very similar projects, common description
- E = 2-6 or 2-7 GeV, $\mathcal{L} = 10^{35}$ cm⁻²s⁻¹, polarized e^- beam
- begin datataking 2029-2030
- max $au^+ au^-$ cross-section at 4.25 GeV (3.5 nb), unknown how many years at that CM energy
 - ▶ I rescaled estimates to 2 years at 4.25 GeV (each year $2 \cdot 10^7$ s and $7 \cdot 10^9$ tau pairs)
- $\Delta m_{ au}$ from ±0.166 MeV (BESIII) to ±0.012 MeV [10× better systematic uncertainty]
- $\mathcal{B}(au o \mu \gamma) < 5 \cdot 10^{-9}$ 90% CL
 - extrapolated from 3 fb⁻¹ assuming search bkg free (my understanding)
 - note that background is significantly less than at B-factories energies
- ▶ $\mathcal{B}(\tau \to 3\mu) < 3.5 \cdot 10^{-10} \ 90\% \ \text{CL}$ sensitive also to all other $\mathcal{B}(\tau \to \ell_1 \ell_2 \ell_3)$
- many LFV modes and other tau measurements possible, but little guiding past experience
 - both projects actively investigating/planning many tau Physics measurements

Tau Physics plans of relevant facilities

CEPC at the Z peak

- inputs to the European Particle Physics Strategy
- The CEPC Conceptual Design Report, Vol II: Physics and Detector, arXiv:1811.10545 [hep-ex]
- could be approved in 2022!
- ▶ $1 \cdot 10^{12}$ Z, $3 \cdot 10^{10}$ tau pairs (comparable to $4.5 \cdot 10^{10}$ of BelleII)
- expect tau LFV sensitivities similar to BelleII
 - ▶ but historic LEP LFV limits are much better than *B*-factories, for the same number of tau
- stat. uncertainties O(450)× better than LEP ⇒ must estimate reasonable limiting systematics
- expect $\Delta \mathcal{B}(\tau \to \ell \bar{\nu} \nu) \sim 0.02\%$ (by improving 10× ALEPH systematics 0.2%)
- expect $\Delta au_{ au} \sim 0.02\%$ (by improving 10× w.r.t. Belle total uncertainty of 0.2%)
- significant advances possible on about all measurements and LFV limits
- ► Z peak offers by far best conditions for about all tau Physics measurements

Tau Physics plans of relevant facilities

FCC-ee at the Z peak

- inputs to the European Particle Physics Strategy
- ▶ Future Circular Collider, Vol. 1 : Physics opportunities (December 2018)
- Dam 2019 (Tau 2018 proc.)
- 8y preparation, 10y construction, 15y operation
- ► Z peak phase delivers $5 \cdot 10^{12}$ Zs, $15 \cdot 10^{10}$ tau pairs (Bellell $4.5 \cdot 10^{10}$)
- ▶ stat. uncertainties $O(1000) \times$ better than LEP \Rightarrow must estimate reasonable limiting systematics
- expect $\Delta \mathcal{B}(au o \ell ar{
 u}
 u) \sim 0.02\%$ (by improving 10× ALEPH systematics 0.2%)
- expect $\Delta au_{ au} \sim 0.01\%$ (by improving 9× w.r.t. Belle detector alignment systematics of 0.1%)
- expect $\Delta m_{ au} \sim 0.07 \, {
 m MeV}$ (by calibrating on m_{D^+} , PDG 2018 WA $\pm 0.12 \, {
 m MeV}$)
- ▶ $\mathcal{B}(au o \mu \gamma) < 2 \cdot 10^{-9}$ 90% CL Monte Carlo study on 2% of full FCC-ee statistics
- $\mathcal{B}(au
 ightarrow 3\mu) < [1{-}0.1] \cdot 10^{-10}$ 90% CL guestimate
- significant advances possible on about all measurements and LFV limits
- Z peak offers by far best conditions for about all tau Physics measurements

Digression on tau g-2 and EDM with bent crystals

Additional notes

- ▶ best facilities for $\mathcal{B}(au o \ell ar{
 u}
 u)$ and $au_{ au}$ are best ones for most tau Physics, e.g.,
 - ▶ $|V_{us}|$ from tau, $\alpha_s(m_\tau)$, muon g-2 HVP and spectral functions
 - ▶ tau g−2 and EDM
 - CPV in tau decay and production
 - Michel parameters, radiative decays
- e^+e^- machines with hermetic detectors are best for most tau Physics
- tau decays at the Z peak offer much more favourable conditions than at lower energies

Additional notes on LFV searches

e^+e^- machines

proven record

- OK for many tau LFV modes
- limited by accelerator luminosity

hadronic tau production

- can produce many more tau's but experimental conditions much worse and seems only competitive for $\tau \rightarrow 3\mu$
- limited by detector ingenuity
- optimized experiments like TauFV may match or do better than e⁺e⁻ machines for τ → 3μ

Some benchmarks

Introduction and cautions

- ▶ in the next pages, future facilities are compared for their experimental reach
- Red is used when estimates of experimental sensitivity
 - are based on dedicated studies
 - similar past facilities have an extablished record of performance from which to extrapolate
- Orange is used when estimates of experimental sensitivity
 - have a less solid foundation
 - ▶ there are novel features for which it is difficult to extrapolate from past experience
- all estimates, including the ones in Red, are indicative
 - unfeasible to do studies close enough to the final analysis on simulated events
 - realization and operation of future, especially non-approved, projects is uncertain
 - extrapolations are not necessarily done in an equivalent way for different projects (I have tried to select and adapt the estimates to be comparable, but I almost always opted to report the original numbers)
- dates of estimated results are indicative and reflect my limited knowledge of future schedules
- benchmarks compare just an incomplete subset of features and are not an executive summary

Benchmark of LFV searches $\tau \rightarrow \mu \gamma$, $\tau \rightarrow 3\mu$

Benchmark of $\mathcal{B}(\overline{\tau} \to \ell \bar{\nu} \nu)$ and τ_{τ}

Benchmark of m_{τ}

Conclusions

- Bellell will
 - effectively search for LFV tau decays
 - do precision tau Physics
 - on statistically-limited measurements
 - on other measurements if dedicated efforts will reduce typical B-factory systematics
- TauFV may match or even improve the search for $au o 3\mu$ in the near future
 - \blacktriangleright other hadron facilities can search for $au
 ightarrow 3\mu$ but quite less effectively
- SCT and STCF are essential to improve the precision on $m_{ au}$
 - may be very good on tau LFV searches and precision tau Physics, despite lack of past track record, sensitivity studies are progressing and encouraging
- ▶ CEPC and FCC-ee at the Z peak are best facilities for about all aspects of tau Physics

Which future facility is scientifically the best one for your flavour topic?

FCC-ee with $5 \cdot 10^{12} Z$'s is the best for tau Physics

Thanks for your attention!