lattice QCD for precision flavour physics ⇒ precision prospects for CKM determination

CERN Council Open Symposium on the Update of the European Strategy for Particle Physics - Granada, May 2019

why we care

• NP: energy frontier has revealed the/a Higgs boson+barren (?) land

- exquisite control of SM predictions needed to dig up possible new Physics

- hadronic sector: α_s, quark masses, ...

[ATLAS 2019]

why we care

• NP: energy frontier has revealed the/a Higgs boson+barren (?) land

- exquisite control of SM predictions needed to dig up possible new Physics
- hadronic sector: α_s, quark masses, ...

intensity frontier

- land of opportunity (LHCb, Belle II, BESIII; NA62, KOTO; $(g-2)_{\mu}$ programme; nEDM; ...)
- strong interaction effects key

[HFLAV 2019]

why we care

- NP: energy frontier has revealed the/a Higgs boson+barren (?) land
 - exquisite control of SM predictions needed to dig up possible new Physics
 - hadronic sector: α_s , quark masses, ...
- intensity frontier
 - land of opportunity (LHCb, Belle II, BESIII; NA62, KOTO; $(g-2)_{\mu}$ programme; nEDM; ...)
 - strong interaction effects key
- is the SM's CKM mechanism the only source of flavourchanging interactions, CP violation? [and: is LFU preserved?]

$$b \qquad V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

[Cabibbo PRL 10 (1963) 531] [Kobayashi, Maskawa Prog. Theor. Phys. 49 (1973) 652]

extremely active experimental programme in coming decade(s):

- heavy quark physics: LHCb, Belle II, BESIII (charm), ...
- kaon physics: NA62, KOTO, ...

lattice QCD needs to keep up with experimental precision — and make an effort to deliver PREdictions (including new physics).

extremely active experimental programme in coming decade(s):

- heavy quark physics: LHCb, Belle II, BESIII (charm), ...
- kaon physics: NA62, KOTO, ...

projections — including reduction in theory (lattice) uncertainty:

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	$50 {\rm ~ab^{-1}}$
$ V_{cb} $ incl.	$42.2 \cdot 10^{-3} \cdot (1 \pm 1.8\%)$	1.2%	_
$ V_{cb} $ excl.	$39.0 \cdot 10^{-3} \cdot (1 \pm 3.0\%_{\text{ex.}} \pm 1.4\%_{\text{th.}})$	1.8%	1.4%
$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} \cdot (1 \pm 6.0\%_{\text{ex.}} \pm 2.5\%_{\text{th.}})$	3.4%	3.0%
$ V_{ub} $ excl. (WA)	$3.65 \cdot 10^{-3} \cdot (1 \pm 2.5\%_{\text{ex.}} \pm 3.0\%_{\text{th.}})$	2.4%	1.2%
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$91 \cdot (1 \pm 24\%)$	9%	4%
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	20%	7%
$R(B \to D \tau \nu)$ (Had. tag)	$0.374 \cdot (1 \pm 16.5\%)$	6%	3%
$R(B \to D^* \tau \nu)$ (Had. tag)	$0.296 \cdot (1 \pm 7.4\%)$	3%	2%

[Belle II Physics Book, arXiv:1808.10567]

extremely active experimental programme in coming decade(s):

- heavy quark physics: LHCb, Belle II, BESIII (charm), ...
- kaon physics: NA62, KOTO, ...

to do list:

- bring precision standards of lattice B-physics to (or below) 1% for (semi)leptonic meson decay, **as already achieved in kaon sector**.
- ditto, few % in baryon channels, neutral meson mixing.
- make inroads in multihadron/(broad) resonance final states.
- long-distance OPE: rare decays, charm CP violation, ...

global fit:

[PDG 2018]

global fit:

$$|V_{\rm CKM}| = \begin{pmatrix} 0.97446(10) & 0.22452(44) & 0.00365(12) \\ 0.22438(44) & 0.97359^{(10)}_{(11)} & 0.04214(76) \\ 0.00896^{(24)}_{(23)} & 0.04133(74) & 0.999105(32) \end{pmatrix}$$
[PDG 2018]

exclusive determination with lattice input: errors between few permille (light, strange) and few percent (charm, bottom)

$$|V_{\rm CKM}| = \begin{pmatrix} 0.97437(16) & 0.2249(7) & 0.00373(14) \\ 0.2166(7)(50) & 1.004(2)(16) & 0.0401(10) \end{pmatrix}$$

[FLAG 2018]

exclusive determination with lattice input:

$$|V_{\rm CKM}| = \begin{pmatrix} 0.97437(16) & 0.2249(7) & 0.00373(14) \\ 0.2166(7)(50) & 1.004(2)(16) & 0.0401(10) \end{pmatrix}$$
[FLAG 2018]

exclusive determination with lattice input:

$$|V_{\rm CKM}| = \begin{pmatrix} 0.97437(16) & 0.2249(7) & 0.00373(14) \\ 0.2166(7)(50) & 1.004(2)(16) & 0.0401(10) \end{pmatrix}$$
[FLAG 2018]

exclusive determination with lattice input:

OPE for weak decays of hadrons

electromagnetic corrections to hadronic weak matrix elements traditionally neglected in lattice studies.

as precision has started to approach percent levels, estimation of e.m. effects has become an issue.

lattice QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g^2} \operatorname{tr} \left[F_{\mu\nu} F^{\mu\nu} \right] + \sum_{q=1}^{N_{\text{f}}} \bar{\psi}_q \left[i D - m_q \right] \psi_q + \frac{i\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \operatorname{tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

first-principles approach = control all systematic uncertainties

- spacetime = Euclidean lattice
- allows to define path integral rigorously and compute it via Monte Carlo methods
- QCD recovered by removing cutoffs at physical kinematics
- values of Lagrangian parameters fixed by N_f+1 hadron masses/decay constants everything else are predictions

[Wilson 1974]

physics reach

lattice QCD for phenomenology: FLAG

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

FLAG 2019 4th edition: results up to 2018/09/30 [Aoki et al., arXiv:1902.08191]

advisory board: S Aoki, M Golterman, R Van de Water, A Vladikas editorial board: G Colangelo, S Hashimoto, A Jüttner, S Sharpe, U Wenger working groups: quark masses T Blum, A Portelli, A Ramos V_{ud}, V_{us} S Simula, T Kaneko, JN Simone LECs S Dürr, H Fukaya, UM Heller P Dimopoulos, G Herdoíza B Mawhinney kaon mixing D Lin, Y Aoki, M Della Morte heavy leptonic + mixing heavy semileptonic E Lunghi, D Bečirević, S Gottlieb, CP R Sommer, R Horsley, T Onogi α_{s} nuclear matrix elements R Gupta, S Collins, A Nicholson, H Wittig

lattice QCD for phenomenology: FLAG

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

FLAG 2019 4th edition: results up to 2018/09/30

advisory board: S Aoki, M Golterman, R Van Water, A Vladikas

editorial board: G Colangelo, S Hashimoro, A Juttner, S Sharpe, U Wenger

working groups:

quark masses

V_{ud}, V_{us}

LECs

kaon mixing

heavy leptonic + mig

heavy semileptonic

 $\boldsymbol{\alpha}_{s}$

nuclear matrix elements

arXiv:1902.08191]

T Blum, A Portelli, A Ramos S Simula, T Kaneko, JN Simone S Dürr, H Fukaya, UM Heller P Dimopoulos, G Herdoíza B Mawhinney D Lin, Y Aoki, M Della Morte E Lunghi, D Bečirević, S Gottlieb, CP R Sommer, R Horsley, T Onogi R Gupta, S Collins, A Nicholson, H Wittig **FLAG** references

[FNAL/MILC 04] PRL 94 (2005) 011601

[FNAL/MILC 05] PRL 95 (2005) 122002

[FNAL/MILC 15] PRD 92 (2015) 014024

[FNAL/MILC 16] PRD 93 (2016) 113016

[FNAL/MILC 17] PRD 98 (2018) 074512

[FNAL/MILC 18] arXiv:1809.02827

[HPQCD 06] PRD 73 (2006) 074502 [HPQCD 06A] PRD 76 (2007) 01150

[HPQCD 07] PRL 100 (2008) 062002

[HPQCD 10A] PRD 82 (2010) 114504

[HPQCD 10B] PRD 82 (2010) 114506

[HPQCD 11] PRD 84 (2011) 114505

[HPQCD 11A] PRD 85 (2012) 031503 [HPQCD 12] PRD 86 (2012) 034506

[HPOCD 12A] PRD 86 (2012) 054510

[HPQCD 13] PRL 110 (2013) 222003

[HPQCD 13A] PRD 88 (2013) 074504

[JLQCD 11] POS LAT2011 (2011) 284

[JLQCD 12] PoS LAT2012 (2012) 11

[JLQCD 17] PRD 96 (2017) 034501

[XQCD 14] PRD92 (2015) 034517

[HPQCD 15] PRD 92 (2015) 054510

[HPOCD 09] PRD 80 (2009) 01450

[FNAL/MILC 11] PRD 85 (2012) 11450

[MILC 04] PRD 70 (2004) 031504 [FNAL/MILC 12B] PoS LAT2012 (2012) 159 [MILC 09] RMP 82 (2010) 1349 [FNAL/MILC 12I] PRD 87 (2013) 073012 [MILC 09A] PoS CD09 (2009) 007 [FNAL/MILC 13E] PRL 112 (2014) 112001 [MILC 10] PoS LAT2010 (2010) 07 [FNAL/MILC 13C] POS LATTICE2013 (2013) 395 [MILC 11] POS LAT2011 (2011) 107 [MILC 13A] PRL 110 (2013) 172003 [FNAL/MILC 14A] PRD 90 (2014) 074509 [FNAL/MILC 15C] PRD 92 (2015) 034506 [PACS/CS 11] PRD 84 (2011) 074505 [QCDSF/UKQCD 07] PoS LAT2007, 133 [QCDSF/UKQCD 16] PLB 767 (2017) 366 [RBC/UKQCD 07] PRL 100 (2008) 141601 [RBC/UKQCD 08] PRD 78 (2008) 114509 [RBC/UKQCD 10] EPJC 69 (2010) 159 [RBC/UKQCD 10A] PRD 83 (2011) 074508 [RBC/UKQCD 10B] PRD 84 (2011) 014503 [RBC/UKQCD 12] PRD 87 (2013) 094514 [RBC/UKQCD 12A] PRD 86 (2012) 116003 [RBC/UKQCD 13] JHEP 1308 (2013) 132 [RBC/UKQCD 13A] POS LATTICE2013 (2014) 377 [RBC/UKQCD 14] PRD 91 (2015) 054502 [RBC/UKQCD 14A] PRD 91 (2015) 114505 [RBC/UKQCD 14B] PRD 93 (2016) 074505 [RBC/UKQCD 15] PRD 91 (2015) 074510 [RBC/UKQCD 15A] JHEP 1506 (2015) 164 [HPQCD/UKQCD 07] PRL 100 (2008) 062002 [RBC/UKQCD 16] JHEP 11 (2016) 001 [RBC/UKQCD 17] JHEP 12 (2017) 008 [Riggio 17] EPJC 78 (2018) 501 [JLQCD 15C] POS LATTICE2015 (2016) 074 [SWME 10] PRD 82 (2010) 114509 [JLQCD 17B] EPJ Web Conf. 175 (2018) 13007 [SWME 11A] PRL 109 (2012) 041601 [SWME 13] POS LATTICE2013 (2013) 476 [JLQCD/TWQCD 10] Pos LAT2010 (2010) 117 [SWME 13A] PRD 88 (2013) 071503 [SWME 14] PRD 89 (2014) 074504 [SWME 15A] PRD 93 (2016) 01451 [TWQCD 14] PLB 736 (2014) 231

[Laiho 11] PoS LATTICE2011 (2011) 293

[ALPHA 14] PLB 735 (2014) 349 [ALPHA 14A] PRL 114 (2015) 102001 [Aubin 08] PoS LAT2008 (2008) 105 [Aubin 09] PRD 81 (2010) 014507 [Blossier 18] PRD 98 (2018) 054506 [BMW 10] PRD 81 (2010) 054507 [BMW 11] PLB 705 (2011) 477 [Dürr 16] PRD 95 (2017) 054513 [ETM 09] JHEP 0907 (2009) 043 [ETM 09A] PRD 80 (2009) 111502 [ETM 09D] JHEP 1004 (2010) 049 [ETM 10A] PRD 83 (2011) 014505 [ETM 10D] PoS LAT2010 (2010) 316 [ETM 10E] POS LAT2010 (2010) 128 [ETM 11A] JHEP 1201 (2012) 046 [ETM 12A] POS LAT2012 (2012) 105 [ETM 12B] POS LAT2012 (2012) 104 [ETM 12D] JHEP 03 (2013) 089 [ETM 13] JHEP 1310 (2013) 175 [ETM 13B] JHEP 1403 (2014) 016 [ETM 13C] POS LATTICE2013 (2014) 382 [ETM 13E] POS LATTICE2013 (2014) 313 [ETM 13F] POS LATTICE2013 (2014) 314 [ETM 14D] PoS LATTICE2014 (2014) 119 [ETM 14E] PRD 91 (2015) 054507 [ETM 15] PRD 92 (2015) 034516 [ETM 16] PRD 93 (2016) 114512 [ETM 16B] PRD 93 (2016) 114505 [ETM 17D] PRD 96 (2017) 054514

[ALPHA 11] PoS LAT2011 (2011) 280

[ALPHA 12A] PoS LAT2012 (2012) 273

[ALPHA 13] POS LATTICE2013 (2014) 381

[ALPHA 13A] POS LATTICE2013 (2013) 315

[ALPHA 13B] POS LATTICE2013 (2014) 475

$$\frac{\mathcal{B}(B^+ \to l^+ \nu_l)}{\tau_{B^+}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B^+}^2 \left(1 - \frac{m_l^2}{m_{B^+}^2}\right)^2 |V_{ub}|^2 f_{B^+}^2$$

$$\langle 0|\bar{b}\gamma^{\mu}\gamma^5 q|B^+(p)\rangle = f_{B^+}p^{\mu}$$

$$\frac{\mathcal{B}(B^+ \to l^+ \nu_l)}{\tau_{B^+}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B^+}^2 \left(1 - \frac{m_l^2}{m_{B^+}^2}\right)^2 |V_{ub}|^2 f_{B^+}^2$$

 $\langle 0|b\gamma^{\mu}\gamma^{5}q|B^{+}(p)\rangle = f_{B^{+}}p^{\mu}$

precision at few-per-mille, QED+IB corrections crucial for next stage

$$\frac{\mathcal{B}(B^+ \to l^+ \nu_l)}{\tau_{B^+}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B^+}^2 \left(1 - \frac{m_l^2}{m_{B^+}^2}\right)^2 |V_{ub}|^2 f_{B^+}^2$$

 $\langle 0|\bar{b}\gamma^{\mu}\gamma^{5}q|B^{+}(p)\rangle = f_{B^{+}}p^{\mu}$

precision at few-per-mille, QED+IB corrections crucial for next stage

$$\frac{\mathcal{B}(B^+ \to l^+ \nu_l)}{\tau_{B^+}} = \frac{G_{\rm F}^2}{8\pi} m_l^2 m_{B^+}^2 \left(1 - \frac{m_l^2}{m_{B^+}^2}\right)^2 |V_{ub}|^2 f_{B^+}^2$$

 $\langle 0|\bar{b}\gamma^{\mu}\gamma^{5}q|B^{+}(p)\rangle = f_{B^{+}}p^{\mu}$

precision reaching sub-percent, QED+IB corrections crucial for next stage

semileptonic decay

$$\frac{\mathrm{d}\Gamma(P_i \to P_f l\nu)}{\mathrm{d}q^2} = \frac{G_{\rm F}^2 |V_{jk}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 \sqrt{E_f^2 - m_f^2}}{q^4 m_i^2} \times \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_i^2 (E_f^2 - m_f^2) |f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_i^2 - m_f^2)^2 |f_0(q^2)|^2 \right]$$

$$\langle P_f(p')|\bar{D}_k\gamma_\mu U_j|P_i(p)\rangle = f_+(q^2)\left(p_\mu + p'_\mu - \frac{m_i^2 - m_f^2}{q^2}q_\mu\right) + f_0(q^2)\frac{m_i^2 - m_f^2}{q^2}q_\mu, \qquad q = p - p'$$

semileptonic decay: $K \rightarrow \pi$

precision at few-per-mille, QED+IB corrections crucial for next stage

semileptonic decay: $K \rightarrow \pi$

precision for CKMs still theorydominated (exp results for *K* decay much more precise)

negligible dependence on charm mass, good agreement among various determinations.

semileptonic decay: $D \rightarrow \pi$, $D \rightarrow K$

very few results, although ETMC (+ ongoing FNAL/MILC) has the first computation of the q^2 dependence of all form factors

(**relevant:** extrapolation of exp rates to $q^2=0$ already sensitive to parametrisation)

semileptonic decay: $B \rightarrow D$, $B \rightarrow \pi$

parametrisation of q^2 dependence plays a key role

semileptonic decay: $B \rightarrow D$, $B \rightarrow \pi$

CKMs: few % errors

Schacht 2016-17 고 공

Gambino,

·J

Ъ.

СĤ

neutral meson mixing

$$\epsilon_K = \frac{\mathcal{A}[K_L \to (\pi\pi)_{I=0}]}{\mathcal{A}[K_S \to (\pi\pi)_{I=0}]} = \exp(i\phi_\epsilon)\sin(\phi_\epsilon) \left[\frac{\operatorname{Im}(M_{12}^{\text{SD}})}{\Delta M_K} + \frac{\operatorname{Im}(M_{12}^{\text{LD}})}{\Delta M_K} + \frac{\operatorname{Im}(A_0)}{\operatorname{Re}(A_0)}\right]$$

$$\operatorname{Im}(M_{12}^{\text{SD}}) = \frac{G_{\text{F}}^2 M_W^2}{12\pi^2} \left[\lambda_c^2 S_0(x_c) \eta_1 + \lambda_t^2 S_0(x_t) \eta_2 + 2\lambda_c \lambda_t S_0(x_c, x_t) \eta_3 \right] f_K^2 m_K \hat{B}_K$$

 $= \frac{G_F^2 M_W^2}{12\pi^2} |V_{cb}|^2 \lambda^2 \bar{\eta} \left[S_0(x_c) \eta_1 + |V_{cb}|^2 (1 - \bar{\rho}) S_0(x_t) \eta_2 + S_0(x_c, x_t) \eta_3 \right] f_K^2 m_K \hat{B}_K$ $\lambda_q = V_{qs}^* V_{qd} , \qquad x_q = \frac{m_q^2}{M_W^2}$

 $B_K = \frac{\langle K^0 | (\bar{s}_{\rm L} \gamma^{\mu} d_{\rm L}) (\bar{s}_{\rm L} \gamma_{\mu} d_{\rm L}) | K^0 \rangle}{\frac{8}{3} f_K^2 m_K^2}$

long-distance contribution relevant at $\sim 1\%$ precision

neutral meson mixing

$$\Delta m_q = 2|M_{12}|$$
$$M_{12} = \frac{G_F^2 M_W^2}{12\pi^2} (V_{tq}^* V_{tb})^2 S_0(m_t^2/M_W^2) \eta_B m_{B_q} f_{B_q}^2 \hat{B}_{B_q}$$

$$B_{B_{q}} = \frac{\langle \bar{B}_{q}^{0} | (\bar{b}_{\rm L} \gamma^{\mu} q_{\rm L}) (\bar{b}_{\rm L} \gamma_{\mu} q_{\rm L}) | B_{q}^{0} \rangle}{\frac{8}{3} f_{B_{q}}^{2} m_{B_{q}}^{2}}$$

neutral meson mixing

FLAG average sports 1.3% error — work out long-distance contribution, QED corrections

the present

• CKMs from pion/kaon physics receive **permille** uncertainties from the lattice; **few %** in charm, bottom CKMs. Kaon mixing at %.

- several exclusive channels allow for crosschecks
 - pion, kaon, charm: leptonic+semileptonic (including Λ_c).
 - bottom: baryon decay (Λ_b , p, ...); $B \rightarrow D^* l \nu$; **predictions** for $B_s \rightarrow K l \nu$, $B_s \rightarrow D_s^{(*)} l \nu$, $B_c \rightarrow (M) l \nu$, ...; first information on channels with other vector resonances.
 - **bonus:** same techniques provide equally-precise **BSM input**.
- largest room for bread-and-butter improvement: charm SL, B mixing
- developing: multihadron/resonances in final state

the (short-term) future

• fully tame the B sector: fully relativistic b quarks

- systematically add electromagnetic + strong isospin breaking
 - QCD+QED
 - working examples
- work out long-distance OPE contributions
 - **bonus:** open new channels (rare *K* decays, charm CP violation, ...)
- improve channels with resonances / >1 hadron in final state

 $(am_b)^2 \lesssim \frac{1}{3} \leftrightarrow a \lesssim 0.03 \text{ fm} \Rightarrow \text{populate lower lattice spacings in}$ simulation landscape

[Herdoíza summer 2015+partial updates]

algorithmic issue: strong lattice space dependence of autocorrelations

[Lüscher, Schaefer 2011; CLS N_f=2+1 obc programme] [Mages et al. 2015; Laio et al. 2015; Brower et al. 2015; Detmold, Endres 2016] [MILC $N_f = 2 + 1 + 1$ ensembles]

algorithmic issue: strong lattice space dependence of autocorrelations

 improve algorithmic performance by simulating with non-trivial boundary conditions.

[Lüscher, Schaefer 2011; CLS N_f=2+1 programme]

- [Husung et al. Lattice 2017] () $(a/r_0)^2$ [sweeps]
- estimate finite-volume corrections stemming from long autocorrelations (MILC's quark masses, decay constants).
 [Bernard, Toussaint PRD 97 (2018) 074502;

MILC N_f=2+1+1 programme]

	$m_l = physical$	
$Q_{\rm sample}^2/Q_{\chi \rm PT}^2$	0.65	
f_K/f_π	1.19680(0.00114)[0.00015]	
aM_{π}	0.028964(0.000020)[0.000008]	
af_D	0.045389(0.000245)[0.000006]	
aM_D	0.400678(0.000258)[0.000001]	
af_{D_s}	0.053582(0.000025)[0.000	F
aM_{D_s}	0.422041(0.00003	
·	7 2	

reliance on effective theory being ra

QED (+ isospin breaking)

[Aoki et al. arXiv:1902.08191; Cirigliano et al. RMP 84 (2012) 399]

precision of standalone QCD computation in isospin limit well below the size of e.m.+IB corrections

QED (+ isospin breaking)

no mass gap in QED \Rightarrow massless photons in physical spectrum \Rightarrow not easy to work in finite volume; two ways out:

• expand observables in α_{em} and $m_u - m_d$, compute coefficients of expansion non-perturbatively in QCD [de Divitiis et al. (RM123) PRD 87 (2013) 114505]

• simulate QCD+QED directly, including isolated charges — possibly at unphysically large values of α_{em} and m_{u} - m_d + extrapolation.

- formulate QED in finite volume, treat zero modes by hand

[Hayakawa, Uno Prog. Theor. Phys. 120 (2008) 413]

- introduce photon mass (fixed gauge), extrapolate to massless photon limit [Endres et al. PRL 117 (2016)]
- introduce non-trivial C* boundary conditions [Wiese NPB 375 (1992) 45; Lucini et al. JHEP 1602 (2016) 076]

QED+IB: illustrative pioneering results

 ab-initio computation of baryon mass splittings

[BMW Collab. Science 347 (2015) 1452]

light-meson leptonic rates

[RM123 PRL 120 (2018) 072001; arXiv:1904.08731] [also: RBC/UKQCD arXiv:1902.00295]

meson masses and HVP [RBC/UKQCD JHEP 1709 (2017) 153]

• strong IB in $(g-2)_{\mu}$

[FNAL/MILC+HPQCD PRL 120 (2018) 152001]

 $\Gamma(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0153 \pm 0.0019) \,\Gamma^{(0)}(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}),$ $\Gamma(K^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0024 \pm 0.0010) \Gamma^{(0)}(K^{\pm} \to \mu^{\pm} \nu_{\ell})$

practical implementation on the lattice worked out by RBC/UKQCD [Christ et al. PRD88 (2013) 014508]

preliminary result: $\Delta m_K = 5.5(1.7) \times 10^{-12} \text{ MeV}$

[Bai et al. Lattice 2017]

OPE long-distance contributions (+ rare decays/charm \mathcal{C}^{\diamond})

with this technique in place, other similar problems can be attacked.

• rare kaon decays: $K \to \pi l^+ l^-, \ K \to \pi \nu \bar{\nu}$

[RBC/UKQCD PoS Lattice2016 (2017) 303; PRD 98 (2018) 074509]

OPE long-distance contributions (+ rare decays/charm CP)

with this technique in place, other similar problems can be attacked.

• CP-conserving rare kaon decays: $K \to \pi l^+ l^-, \ K \to \pi \nu \bar{\nu}$

[RBC/UKQCD PoS Lattice2016 (2017) 303; PRD 98 (2018) 074509]

• charm CP violation???

conclusions & outlook

- lattice flavour phenomenology has long reached its age of maturity, keeping apace with/abreast of experiment.
- upcoming era will require sub-percent precision in staple observables. tools are in place.
 - finer lattice spacings for precision B-physics
 - quantitative control of e.m. and strong isospin breaking corrections
- new avenues being open for lattice studies.
 - baryon decay
 - long-distance contributions to OPE
 - multihadron/resonances in final state
 - inclusive rates
- lattice collaborations have become large and resource-intensive, in both human and computational terms; sustained support is needed to keep synergy with experimental efforts.

conclusions & outlook

 exploring and mapping the flavour sector remains as important a problem as any other in particle physics

- why the generation structure? why 3 families?
- is there a structure in the values of quark masses and CKMs?
- is new physics lingering out there?

strong support to a synergic exp/th flavour programme crucial;
 what can future colliders offer?

• eagerly waiting for Belle II, LHCb Upgrade II, kaon expts.

backup slides

resonance/multihadron final states

cf.
$$\operatorname{Re}\left(\frac{\delta}{\epsilon}\right)_{\exp} = 16.6(2.3) \times 10^{-4}$$

u. d

 π^{\mp}

[RBC/UKQCD Collaboration, PRL 115 (2015) 212001]

resonance/multihadron final states

• QFT aspects well understood in simplest $1 \rightarrow 2$ transitions (e.g., $K \rightarrow \pi \pi$) — large errors down to algorithmic/computational issues.

- huge recent QFT developments in the wider picture
 - up to $2{\rightarrow}3$ processes worked out in detail
 - detailed characterisation of resonances, including their coupling to currents

[see, e.g., MT Hansen & R Briceño @ Confinement XIII]

• non-trivial QFT tools in place, good prospects for resonances in final state (e.g., $B \rightarrow K^*$); non-leptonic decay, couplings to 4-quark operators still very demanding numerically.

Belle II timeline

[K Hara @ 6th KEK Flavor Factory Workshop, 2019/02]

extremely active experimental programme in coming decade(s):

- heavy quark physics: LHCb, Belle II, BESIII (charm), ...
- kaon physics: NA62, KOTO, ...

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
<u>CKM tests</u>					
$\overline{\gamma}$, with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm s}^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad [44]	14 mrad	_	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{mrad}$	_	9 mrad	—
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	—	11 mrad	Under study [611]
$a_{ m sl}^s$	$33 \times 10^{-4} \ [211]$	10×10^{-4}	—	3×10^{-4}	_
$ V_{ub} / V_{cb} $	$6\% \ [201]$	3%	1%	1%	_
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	$21\% \ [612]$
$ au_{B^0_s ightarrow\mu^+\mu^-}$	22% [264]	8%	_	2%	_
$S_{\mu\mu}$	-	_	_	0.2	-
$b ightarrow c \ell^- ar{ u_l} { m LUV} { m studies}$					
$\overline{R(D^*)}$	$0.026 \ [215, 217]$	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_

[C Langenbruch @ Implications of LHC measurements and future prospects, 2018/10]

evolution

Ę

lattice QCD: state-of-the-art

lattice QCD: state-of-the-art

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)_{\mathrm{SM}} = 1.38(5.15)(4.43) \times 10^{-4}$$

cf. Re
$$\left(\frac{\epsilon}{\epsilon}\right)_{exp} = 16.6(2.3) \times 10^{-4}$$

[RBC/UKQCD Collaboration, PRL 115 (2015) 212001]

 $(am_b)^2 \lesssim \frac{1}{3} \leftrightarrow a \lesssim 0.03 \text{ fm} \Rightarrow \text{populate lower lattice spacings in}$ simulation landscape

[Herdoíza summer 2015+partial updates]

approaches to B physics

what one would like to do [cf. MILC's finest lattices]

approaches to B physics

effective theory used differently, different pros/cons balance: crosschecks crucial

lattice QCD for phenomenology: FLAG

Flavour Lattice Averaging Group: your one-stop repository of lattice results, world averages / estimates

FLAG 2019 4th edition: results up to 2018/09/30 [Aoki et al., arXiv:1902.08191]

advisory board: S Aoki, M Golterman, R Van de Water, A Vladikas editorial board: G Colangelo, S Hashimoto, A Jüttner, S Sharpe, U Wenger working groups: quark masses T Blum, A Portelli, A Ramos V_{ud}, V_{us} S Simula, T Kaneko, JN Simone LECs S Dürr, H Fukaya, UM Heller P Dimopoulos, G Herdoíza B Mawhinney kaon mixing D Lin, Y Aoki, M Della Morte heavy leptonic + mixing heavy semileptonic E Lunghi, D Bečirević, S Gottlieb, CP R Sommer, R Horsley, T Onogi α_{s} nuclear matrix elements R Gupta, S Collins, A Nicholson, H Wittig

FLAG

what FLAG provides for each quantity:

- complete list of references
- summary of relevant formulae and notation
- quick-look summary tables
- quality assessment of computation setup: colour-coded tables
- averages/estimates (if sensible)
- a "lattice dictionary" for non-experts
- thorough appendix tables with details of all computations for experts
- between-editions updates at <u>http://itpwiki.unibe.ch/flag</u>

cite the original works!

FLAG

tables:							
Collaboration	Ref. N_f	Publication Continuum star.	this extraction us the structure of the second seco	$f^{H_{art}}_{H_{art}}$ $f^{H_{art}}_{h_{eat}}$ $f^{H_{art}}_{h_{eat}}$ $f^{H_{art}}_{h_{eat}}$	f_{B^0}	f_B	f_{B_s}
FNAL/MILC 17	[5] 2+1+1	A ★ ★	* * √	189.4(1.4)	190.5(1.3)	189.9(1.4)	230.7(1.2)
HPQCD 17A	[72] 2+1+1	A ★ ★	★ 0 ✓	_	_	196(6)	236(7)
ETM 16B	[27] 2+1+1	A ★ 0	0 0 √	—	_	193(6)	229(5)
ETM 13E	[551] 2+1+1	С \star о	00 🗸	—	_	196(9)	235(9)
HPQCD 13	[71] 2+1+1	A ★ ★	★ 0 √	184(4)	188(4)	186(4)	224(5)
RBC/UKQCD 14	[76] 2+1	Αοο	0 0 √	195.6(14.9)	199.5(12.6)	_	235.4(12.2)
RBC/UKQCD 14A	[75] 2+1	A o o	00 🗸	_	_	219(31)	264(37)
RBC/UKQCD 13A	[552] 2+1	С о о	00 🗸	_	_	$191(6)^{\diamond}_{\mathrm{stat}}$	$233(5)^{\diamond}_{\mathrm{stat}}$
HPQCD 12	[74] 2+1	A o o	0 0 √	_	_	191(9)	228(10)
HPQCD 12	[74] 2+1	A o o	00 🗸	_	_	$189(4)^{\triangle}$	_
HPQCD 11A	[73] 2+1	A ★ O	★ ★ √	_	_	_	$225(4)^{\nabla}$
FNAL/MILC 11	[63] 2+1	A o o	★ 0 √	197(9)	_	_	242(10)
HPQCD 09	[78] 2+1	Αοο	00 🗸	_	_	$190(13)^{\bullet}$	$231(15)^{\bullet}$
ALPHA 14	[77] 2	A \star ★	* * √	_	_	186(13)	224(14)
ALPHA 13	[553] 2	С \star ★	★ ★ ✓	_	_	187(12)(2)	224(13)
ETM 13B, $13C^{\dagger}$	[65, 554] 2	A ★ O	★ 0 √	_	_	189(8)	228(8)
ALPHA 12A	[555] 2	С \star ★	★ ★ ✓	_	_	193(9)(4)	219(12)
ETM 12B	[556] 2	С \star о	★ 0 √	-	_	197(10)	234(6)
ALPHA 11	[557] 2	С \star о	★ ★ √	-	_	174(11)(2)	_
ETM 11A	[197] 2	A o o	★ 0 √	-	_	195(12)	232(10)
ETM 09D	[558] 2	Αοο	001	_	_	194(16)	235(12)

 $_ \star/\checkmark$ allows for satisfactory control of systematics

- allows for reasonable (but improvable) estimate of systematics
- unlikely to allow for reasonable control of systematics

 $^{\diamond} \mathrm{Statistical}$ errors only.

^{Δ}Obtained by combining f_{B_s} from HPQCD 11A with f_{B_s}/f_B calculated in this work. ^{∇}This result uses one ensemble per lattice spacing with light to strange sea-quark mass ratio $m_{\ell}/m_s \approx 0.2$. •This result uses an old determination of $r_1 = 0.321(5)$ fm from Ref. [559] that has since been superseded. [†]Update of ETM 11A and 12B.

FLAG

plots:

- result included in average or estimate
- result OK but not included (superseded, unpublished, ...)
- all other results

baryon SL decay

new exclusive determination of $|V_{cb}|/|V_{ub}|$ from LHCb measurement + LQCD computation of form factors

[Detmold, Lehner, Meinel PRD 92 (2015) 034503] [LHCb, Nature Phys 11 (2015) 743]

work since extended to charm channels, radiative decays, ...

[Detmold, Meinel PRD 93 (2016) 074501] [Meinel, Rendon PoS Lattice2016 (2016) 299] [Meinel PRL 118 (2017) 082001] [Meinel PRD 97 (2018) 034511]

baryonic decays

[Detmold, Lehner, Meinel PRD 92 (2015) 034503] [cf. Detmold, Lin, Meinel, Wingate PRD 88 (2013) 014512]

radiative decays/BSM

lattice results at similar level of maturity as for SM tree-level decays

- channels with vectors in final state (e.g. K*) much more complicated: treatment of resonances in Euclidean amplitudes quite non-trivial
- matrix elements of charmed penguins in H_w involve similar difficulties as n non-leptonic K and B decay difficult nut to crack. (bounds?)

 $\Rightarrow O_7, O_9, O_{10}$ (similar for $B \rightarrow \pi$ by FNAL/MILC, id. charm ETM)

radiative decays/BSM

[ETMC arXiv:1710.07121]

q² dependence of form factors

[from H Ma's talk on behalf of BESIII at CHARM 2015]

a benchmark case: $f_+(B \to \pi l \nu)$

various parametrisations based on pole dominance: Bećirević-Kaidalov, Ball-Zwicky, Hill, ... difficult to systematically improve precision

[Bečirević, Kaidalov PLB 478 (2000) 417] [Ball, Zwicky PRD 71 (2005) 014015] [Hill PRD 73 (2006) 014012]

z-parametrisations proposed to solve this issue (almost) rigourously by exploiting unitarity and crossing symmetry

[Okubo PRD 3 (1971) 2807, 4 (1971) 725] [Bourrely, Machet, de Rafael NPB 189 (1981) 157] [Boyd, Grinstein, Lebed PRL 74 (1995) 4603] [Lellouch NPB 479 (1996) 353] [Bourrely, Caprini, Micu EJPC 27 (2003) 439] [Arnesen, Grinstein, Rothstein, Stewart PRL 95 (2005) 071802] [Becher, Hill PLB 633 (2006) 61] [Flynn, Nieves PRD 75 (2007) 013008] [Bourrely, Caprini, Lellouch PRD 79 (2009) 013008] a benchmark case: $f_+(B \to \pi l \nu)$

$$z = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \implies f_{+}(q^{2}) = \frac{1}{B(q^{2})\phi(q^{2}, t_{0})} \sum_{n \ge 0} a_{n} z(q^{2}, t_{0})^{n}$$
$$\implies t_{+} = (m_{B} + m_{\pi})^{2}, \qquad t_{0} < t_{+} \qquad \text{unitarity bound:} \sum_{m,n} B_{mn}^{(\phi)} a_{m} a_{n} \le 1$$

a benchmark case: $f_+(B \to \pi l \nu)$

$$f_{+}(q^{2}) = \frac{1}{B(q^{2})\phi(q^{2}, t_{0})} \sum_{n \ge 0} a_{n} z(q^{2}, t_{0})^{n} \qquad B(q^{2}) = z(q^{2}, m_{B^{*}}^{2})$$

BGL: complicated outer function $\phi \longrightarrow \sum_{n \ge 0} |a_n|^2 \lesssim 1$ [Boyd, Grinstein, Lebed PRL 74 (1995) 4603]

BCL:
$$f_+(q^2) = \frac{1}{1 - q^2/m_{B^*}^2} \sum_{n \ge 0} a_n z^n \longrightarrow \sum_{m,n \ge 0} B_{mn} a_m a_n \lesssim 1$$

(recommended by FLAG)

[Bourrely, Caprini, Lellouch PRD 79 (2009) 013008]

crucial for optimal use:

- all sub-threshold poles included in Blaschke factor
- fixed kinematics (coefficients implicitly depend on quark masses)

does the unitarity bound apply?

using a z-parametrisation as part of a global fit including a, m_q, ...
 (modified z-expansion) tricky

- poles can cross threshold as quark masses change
- complicated entanglement of (m_q, a) dependence (complete form factor vs. *z*-parametrisation coefficient)
- pole structure not always well-known (scalar channels, D decay), or complicated (Λ_b decay)
- missing sub-threshold poles may imply convergence breakdown (proton charge radius analysis by Hill, Paz et al, D semileptonic decay data by Bećirević et al)

[Hill, Paz PRD 82 (2010) 113005] [Bhattacharya, Hill, Paz PRD 84 (2011) 073006] [Epstein, Paz, Roy PRD 90 (2014) 074027] [Bečirević et al arXiv:1407.1019]