Beyond Colliders

Mike Lamont Joerg Jaeckel, Claude Vallée PBC working groups

PBC - Brief

- Maximize physics reach of existing complex
 - New facilities exploiting existing complex
 - Novel exploitation of existing facilities
 - Provide support for novel off-site facilities
 - Harness the existing expertise and resources

Within the limits posed by an already vibrant and diverse physics program (beam, resources)

Evaluate these options motivation and competitiveness in a world wide scape

PBC accelerator side - main themes

- Exploitation of SPS/North Area
 - Conventional North Area beams, BDF for SHiP/TauFV, eSPS, nuSTORM
- Novel approaches
 - EDM storage ring, Gamma Factory, AWAKE++
- LHC
 - LHC fixed target (gas, crystals), Long Lived Particles
- Technology
 - Leveraging CERN's technical expertise various options (IAXO, LSW, VMB...)

3

North Area

Attempting to rebrand as the HSC (Hidden Sector Campus)

NA64++ (muons)

Conventional Beams at the North Area

Proposals followed by the CB WG - healthy mix of HS/QCD

NA62++	Dark Sector	Optimise conditions for NA62 in beam dump mode
NA64++ (e,h)	Dark Sector	Increase electron flux and optimise hadron beams in the H4 line
NA64++ (u)	Dark Sector	Study a NA64-like experiment with muons in EHN2
KLEVER	$K_0 o \pi^0 \nu \bar{\nu}$	New beam for a rare decays with high proton flux
NA61++	QGP charm	Higher intensity with better protection
COMPASS++	Full QCD program	Study new requests from COMPASS, including a RF separated beam
MUonE	HVP (g-2)	Implementation for operation with μ and e beams
DIRAC++	Chiral QCD	Options for a DIRAC follow-up experiment at the SPS
NA60++	QGP phase	Options for a NA60 follow-up experiment with heavy ion beams

- Maturity of proposals and the effort required varies considerably
- Follow-up dictated by collaboration strength and CERN side resources; overseen by CERN committees

SPS Beam Dump Facility (BDF)

- Slow extraction from SPS into existing TT20 transfer line
- Switch to new transfer line at existing North Area splitters
- Heavy target plus hadron absorber
- Target complex with sophisticated handling capabilities
- Underground Experimental Hall

Momentum	400 GeV/c	
Beam intensity on target per cycle	4.0e13	
Cycle length	7.2 s	
Spill duration	1 s	
Avg. power on target	355 kW	
Avg. power on target during spill	2560 kW	
Protons on target (PoT) per year	4e19	
PoT in 5 years' data taking	2.0e20	

BDF Study

- 2016-2018: 3 year feasibility study following work since EOI 2013
 - extraction, beamlines, target, target complex, experimental hall, integration, civil engineering, safety, and radiation protection
- BDF Comprehensive Design Study in pre-publication

BDF Study

• Feasibility confirmed:

- factor 3 reduction in SPS slow extraction losses demonstrated confident to reach required x4
- transfer line and dilution well within CERN's established capabilities
- target challenging extensive studies prototype built and tested with beam
- fully developed target complex study in collaboration with external company
- phase 1 civil engineering and integration studies completed
- RP studies showed the general feasibility in terms of radiation/radiological impact on the environment

Extraction losses

New BDF beamline

Target prototype

BDF - Summary

- The study is mature.
- Operationally it will be challenging but no show stoppers were identified.
- Possible time-line:
 - continued design studies and prototyping
 - ~3 years for TDR, followed by preparation for construction, component production
 - Construction of BDF ~5 years
 - Civil engineering for junction cavern/first part of new transfer line during LS3 (North Area stop)
 - Operation in Run 4
- Material cost: ~160 MCHF (class 4 estimate)

TauFV

Search for Lepton Flavour Violation and rare decays

Using a thin in-line target to intercept about 2% of the intensity delivered to the SHiP target

Would have access to close to 8e13 tau lepton and 5e15 D₀ meson decays

Proposal under development (appendix in BDF CDS)

eSPS

- ~70 m long X-band based linac (CLIC technology) in TT4-5 accelerates e- to 3.5 GeV
- SPS filled in 1 to 2 s via TT60
- Acceleration to 16 GeV in the SPS
- Slow resonant extraction down the TT10 transfer line in ~10 s
- Beam delivered via the existing TT10 line to the Meyrin site
- A new, short beamline would branch from TT10 to the experimental hall (LDMX)

eSPS: Feasibility

• Feasibility – following initial study looks good

- Additional RF in SPS to be studied (old LEP or FCC-ee cavities)

- Maximal use of existing structures, small foot print, and thus relatively inexpensive.
- SPS cycle sharing implications

– ~12 s cycle, 10 s slow extraction giving 1e8 – 1e9 EOT/s

• Material cost: ~80 MCHF

Well developed proposal: **"Dark Sector Physics with a Primary Electron Beam Facility at CERN"** presented as Eol to SPSC

eSPS: Motivation

- Electrons back in the complex good given CERN's apparent long term options
- Staged deployment of X-band return on the significant investment
- Possible deployment of FCC-ee RF cavities and high-efficiency power generation
- Strong case made for accelerator based R&D and other studies at the linac R&D facility
- Physics case unique LDM search reach

Preparing for future – staged deployment of FCC-ee/CLIC technology while preparing the long term strategic vision; at the same time performing a competitive LDM search - a game changer in the case of positive result and naturally important input to future plans.

nuSTORM

- Well developed proposal for possible siting at FNAL circa 2013
- Siting at CERN exploratory study:
 - Via existing fast extraction system at SPS point 6 into a new transfer line
 - Graphite target, magnetic horn
 - Target complex design based exploits extensive work done for CENF
 - Containment and transport of pion beam
 - New design for decay ring (SC FFA):
 - Central momentum between 1 GeV/c and 6 GeV/c;
 - Momentum acceptance of up to ±16%

nuSTORM

- Fast extraction, transfer, target/horn within CERN's established expertise
- Potential green field site with appropriate geology
- Study in early stages. Muon storage ring is certainly challenging.

Potential major SPS/North Area users

	Momentum GeV/c	Int/Cycle	Flat top length	POT/year	3.0 SPS availability: 80%
NA CB	400	2 – 4.9e13	4.8	~1e19	2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
SHiP	400	4e13	1.2	4e19	
KLEVER	400	~2e13	4.8	1e19	2018
ENUBET	400	4.5e13	4.8	5.2e19	E E
nuSTORM	100	4e13	1.0	4e19	Preliminary
eSPS	16	~3.1e11	10.0	1e18 EOT	0.0 0 1 2 3 4 5 Protons on target for BDF/SHiP [1e19/year

- Standard NA operations compatible with BDF for SHiP/TauFV
- KLEVER in parallel would be possible with some penalties
- Another major user (eSPS, nuSTORM, ENUBET) would imply compromise or temporal separation

EDM Storage Ring

- Principles of all electric proton storage ring with frozen spin at "magic momentum" well established
- Interesting potential statistical sensitivity (~10⁻²⁹ e.cm)
- Challenging systematics
 - in particular parasitic radial magnetic field (~10 aT mimics 10⁻²⁹ e.cm)
- Extensive studies by EDM community:
 - Polarimetry, deflectors, magnetic shielding, instrumentation
 - Optics, lattice, ring design, beam dynamics
 - Systematics and proposed mitigation measures, simulations

EDM rotation detected here

EDM Roadmap

1 Precursor Experiment	→ 2 Prototype Ring	→ 3 All-electric Ring	
dEDM proof-of-capability (orbit and polarization control; first dEDM measurement)	pEDM proof-of-principle (key technologies, first direct pEDM measurement)	pEDM precision experiment (sensitivity goal: 10 ⁻²⁹ e cm)	
 Magnetic storage ring Polarized deuterons d-Carbon polarimetry Radiofrequency (RF) Wien- filter 	 High-current all-electric ring Simultaneous CW/CCW op. Frozen spin control (with combined E/B-field ring) Phase-space beam cooling 	 Frozen spin all-electric (at p = 0.7 GeV/c) Simultaneous CW/CCW op. B-shielding, high E-fields Design: cryogenic, hybrid, 	
Ongoing at COSY (Jülich) 2014 → 2021	Ongoing within CPEDM 2017 → 2020 (CDR) → 2022 (TDR) Start construction > 2022	After construction and operation of prototype > 2027	

Impressive "precursor" results at COSY with polarized deuterons in magnetic storage ring

PROTOTYPE SEEN AS ESSENTIAL NEXT STEP

- Small (100 m circum.) designed to operate 2 modes: all-electric at 30 MeV; and combined electric and magnetic fields to allow frozen spin operation at 45 MeV.
- Lattice design will mimic that of the full ring in order to test as many features as possible on a smaller scale.
- If the prototype is at COSY, takes advantage of the existing facility for the production of polarized proton (and deuteron) beams, beam bunching, and spin manipulation.

Yellow report in pre-publication – includes preliminary design of prototype

July 2018: Birth of Atomic Physics research at CERN

Symmetry dimensions of particle physics

follow +

A joint Fermilab/SLAC publication

Q

LHC accelerates its first "atoms"

07/27/18 | By Sarah Charley

Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

https://home.cern/about/updates/2018/0 Mhc-accelerates-its-first-atoms

https://www.sciencealert.com/toe-large-hadron-collider-just-successfully-accelerated-its-first-atoms https://www.forbes.com/sites/meriameberboucha/2018/07/31/lhc-at-cern-accelerates-atoms-for-the-first-time/ #36db60ae5cb4

https://www.livescience.com/63211-lhc-atoms-with-electrops-light-speed.html

https://interestingengineering.com/cerns-large-hadron-collider-accelerates-its-first-atoms

https://www.sciencenews.org/article/physicists-accelerate-atoms-large-hadron-collider-first-time

https://insights.globalspec.com/article/9461/the-lhc-successfully-accelerated-its-first-atoms

https://www.maxisciences.com/lhc/le-grand-collisionneur-de-hadrons-lhc-accomplit-une-grande-premiere_art41268.html

https://www.symmetrymagazine.org/article/lhc-accelerates-is-first-atoms

Gamma factory

 Accelerate and store high energy beams of highly ionised atoms and excite their atomic degrees of freedom by laser photons to produce:

primary beams:

- partially stripped ions
- electron beam (for LHC)
- gamma rays

secondary beam sources:

- polarised electrons,
- polarised positrons
- polarised muons
- neutrinos
- neutrons
- vector mesons
- radioactive nuclei

"Tools Made from Light"

collider schemes:

Gamma Factory project milestones

- **1.** *Production*, *acceleration* and *storage* of *"atomic beams"* at CERN accelerator complex.
- 2. Proof-of-Principle (PoP) experiment in the SPS tunnel.

- 3. Development "ab nihilo" the requisite Gamma Factory software tools.
- 4. Realistic assessment of Gamma Factory performance figures.
- 5. Physics highlights of Gamma Factory based research programme.
- 6. Gamma Factory TDR.

Early stages of a well developed program – significant potential

Next step: Proof of principle in SPS

Technology

Exploration and evaluation of possible technological contributions of CERN to non-accelerator projects possibly hosted elsewhere:

	Technology concerned	benefit from CERN	benefit to CERN	how facilitate?	Exps concerned
	Magnet, con-	availability of	make opti-	advertise mag-	IAXO, JURA,
Magnets	cretely: high- field, large-bore	strong fields, CERN expertise to build custom magnets	mal physics use of mag- net resources (spares)	net usage times, provide expertise in magnet design, PBC-fellow for IAXO	STAX, VMB@CERN
	Optics/Optics	surface coat-	add local exper-	"optics hub", as	aKWISP,
Optics	sensing, con- cretely: Fabry Perot, mem-	ing, possibility to combine magnet with	tise on cavity optics technolo- gies	described in the document	VMB@CERN, JURA
	branes	optics			
	Radiofrequency cavities, con- cretely: design	experience in design and production	new cavity designs for various physics	mandate for cavity experts to aid in design	Grenoble initia- tive, & other Haloscope ini-
RF	for axion searches		purposes, tuning and characterization in cryogenic environment		tiatives operat- ing already at CERN, STAX
	Cryogenics,	availability	participate in	mandate	DarkSide,
Cryo	concretely: large-scale: helium, argon, krypton from 120K to mK	of cryogenic facilities	research beyond collider	through TE- CRG	aKWISP, VMB@CERN, IAXO
Vacuum	Vacuum, concretely: large-scale leak testing	experience & availability	participate in research beyond collider	mandate through TE- VSC	DarkSide, JURA, aK- WISP, CNT <u>23</u>

Initiatives integrated into the Techno WG

Technology: Summary

"In summary, albeit CERN being an accelerator lab, also non-accelerator experiments can profit from CERN expertise and bring further diversity to CERN."

Initiative	Goal		Tech	CERN
VMB@CERN	VMB	Search for Vacuum Magnetic Birefringence	optics, magnets	Y
JURA	LSW/ALPS	Via optics, detector development at ALPS II + FCC magnets	magnets	Y
STAX	LSW/ALPS	transition-edge-sensors (TES); high Q Fabry-Perot cavities	magnets, cryo, RF	Р
BabyIAXO/IAXO	Helioscope	Next generation CAST, independent collaboration	magnets	Ν
DarkSide	WIMPs	Independent collaboration	vac, cryo, SIPM	Ν
Carbon Nano Tubes	CNB, DM	Electron recoils in large arrays of parallel carbon nanotubes - DM target for PTOLEMY	new material studies, neutrons	Ν
aKWISP	Chameleons	short-distance interactions at sub-micron scales	cryo, thin films	Ν
Optics Technology Hub		Advanced optics technologies	optics	Y

Also considered

• LHC fixed target

- Standard and polarized gaseous targets
- Crystals: single to target; double (Λ MDM), triple (Ds -> tau)...

• LHC LLP

- FASER for installation in LS2
- MATHUSLA, CODEX-b, milliQan considered by BSM WG

• AWAKE++

- Possible use of PWFA in an electron beam dump experiment

• **REDTOP**

– eta factory, possible at PS but POT would conflict with existing users

Physics Motivation (BSM)

- **Sub-eV:** axions, axion-like particles
- MeV GeV: RH neutrinos below the EW scale, Axion-Like Particles, Light Dark Matter
- >>TeV: search for NP in clean and very rare flavour processes or in EDMs

The **BSM PBC projects** offer significant discovery potential over a wide range of masses and couplings.

- Very sensitive low energy experiments target the sub-eV mass area.
- SPS Fixed Target beam-dump-like experiments and long lived particle searches at LHC have unique capabilities to target the MeV-GeV domain
- The precision tests of flavor violation (lepton and quark), as well as of CP violation, probe new particles in a mass range exceeding LHC direct searches.

in addition: QCD and others facilities

Hidden sector with "beam dumps" NA64++ (e,μ) Rare decays and precise measurements NA62++ **QCD** measurements KLEVER ($K^{0} \rightarrow \pi^{0} \nu \nu$) Beam Dump Facility at North Area (SHiP) COMPASS++, DIRAC++ TauFV@BDF: $\tau \rightarrow 3\mu$ LDMX@eSPS NA61++, NA60++ REDTOP (η decays) AWAKE++ Fixed target (gas, crystals) in ALICE & LHCb MUonE (hadronic vacuum polarization for $(g-2_{\mu})$) EDM proton storage ring

Non-accelerator projects

Exploit CERN's technology (RF, vacuum, magnets, optics, cryogenics) for experiments possibly located in other labs.

E.g. axion searches: IAXO (helioscope), JURA (Light Shining through Wall)

Long-lived particles from LHC collisions

FASER, MATHUSLA, CODEX-b, milliQAN

Other facilities:

 γ -factory from Partially Stripped Ions; nuSTORM

courtesy FG

Conclusions

- Interesting exercise, fostered a number of options to exploit the complex and technology mix of:
 - smaller scale options which can be addressed within CERN's remit
 - promising novel proposals venture capital
 - larger scale projects
- Initiatives are :
 - well motivated by their physics potential in interesting times;
 - cost-effective opportunities to make a significant contribution and provide important input to future plans;
 - allow full exploitation of the complex in parallel to the LHC and preparation for the longer term.

BACKUP

Reports

Submission to ESPP update/recent summary as appropriate

Document	Submitted by	Link to document
Summary Report of Physics Beyond Colliers at CERN	PBC coordination	CDS
Physics Beyond Colliders QCD Working Group Report	QCD Working Group	<u>CDS</u>
Report of the BSM Working Group of the Physics Beyond Colliders at CERN	BSM Working Group	<u>CDS</u>
SPS Beam Dump Facility Comprehensive Design Study	BDF Working Group	CDS (to be published)
Report from the Conventional Beams Working Group	Conventional Beams Working Group	CDS
AWAKE++: The AWAKE Acceleration Scheme for New Particle Physics Experiments at CERN	AWAKE++ Working Group	CDS (to be published)
PBC technology subgroup report	Technology Working Group	CDS
Dark Sector Physics with a Primary Electron Beam Facility at CERN	eSPS	CDS
Report from the LHC Fixed Target working group of the CERN Physics Beyond Colliders forum	Fixed Target Working Group	<u>CDS</u>
TECHNICAL PROPOSAL: FASER, THE FORWARD SEARCH EXPERIMENT AT THE LHC	FASER collaboration	CDS
The CERN Gamma Factory Initiative: An Ultra-High Intensity Gamma Source	Gamma Factory collaboration	IPAC (report in prep.)
Feasibility Study for a storage ring to search for an Electric Dipole Moment of charged particles	CPEDM	CDS (to be published)
nuSTORM at CERN: Feasibility Study	nuSTORM Working Group	CDS (to be published)
SPS Operation and Future Proton Sharing scenarios for the SHiP experiment at the BDF facility	Proton perf. post-LIU WG	CDS

see http://pbc.web.cern.ch/

HSC	Status	Deploy	Cost	Physics
BDF/SHiP,tauFV	CDS	LS3+	C6	Hidden Sector
eSPS/LDMX	Eol	<ls3< td=""><td>C5</td><td>DM</td></ls3<>	C5	DM
nuSTORM	→CDS	LS3++	C6	Neutrinos
CB/KLEVER	Eol	LS3+	C3	Precision
CB/COMPASS-RFSB	Eol/proposal	LS3+	C4	QCD
NA62++	studies	Run 3	C1	Hidden Sector
NA64++	OP	Run 3	C1	DM
MUonE	proposal	Run3	C2	muon anomaly
LHC				
LHC FT - gas	ТР	Run 3	C1	PDF,DY,spin
LHC FT - crystal	proto	Run 3	C2	MDM/EDM
FASER	TP/approval	Run 3	C2	LLP
MATHUSLA	LOI	LS3	C5	LLP
CODEX-b	LOI	LS3	C3	LLP
milliQan	demo	Run 3	C2	LLP
NOVEL				
Gamma Factory PoP	→Eol	Run 3	C2	PSI/Laser
pEDM protype	→CDS	2022	C4	EDM
AWAKE++	exploratory	LS3+	C4	DM
PS				
REDTOP	proposal	LS3+	C3	BSM+
TECHNOLOGY				
VMB	LOI	Run 3	C2	VMB
BabyJURA, JURA1, JURA 2	proposal	2023	C2,C2,C4	ALPs
BabyIAXO/IAXO	advanced	2023	C3,C4	Axions

Summary

- Class 4 for BDF, eSPS;
- Preliminary for nuSTORM
- Conventional beams see PBC report
- Technology all options see PBC report

Cost Scale

C1	< few 100 kCHF
C2	From few 100 KCHF to 1-2 MCHF
C3	From 1-2 to 5-10 MCHF
C4	~10-50 MCHF
C5	> 50 MCHF
C6	> 150 MCHF

Approximate "ideal" timelines

