Strong interaction physics at future eA colliders

Néstor Armesto

IGFAE, Universidade de Santiago de Compostela

nestor.armesto@usc.es
1. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Nuclear effects in the final state.

5. Summary/recommendations.

Note: this is a selection of topics; for additional discussions and supplementary material (e.g. on spin, relations with other fields,...), see the talks by Daniel Boer, David d’Enterria, Thomas Gehrmann, Uta Klein, Jean-Philippe Lansberg, Tanguy Pierog, Gavin Salam, Gunar Schnell, Johanna Stachel and Urs Wiedemann, and the backup.

Main contributions: 159 (LHeC/FCC-eh), 99 (US-based EIC) and 103 (DIS).

Many thanks to Daniel Boer, Elena Ferreiro, Max and Uta Klein, Guilherme Milhano, Paul Newman and Bernd Surrow for information and feedback.
Nuclear structure functions:

- Bound nucleon ≠ free nucleon: search for process independent nPDFs that realise this condition, within collinear factorisation.

\[
\sigma_{\ell+\text{A} \rightarrow \ell+X}^{\text{DIS}} = \sum_{i=q,\bar{q},g} f_i^A(x, \mu^2) \otimes \hat{\sigma}_{\ell+i \rightarrow \ell+X}^{\text{DIS}}(\mu^2)
\]

- Flavor dependence?; relation with shadowing and coherence

- Short versus long range correlations, pion cloud, intrinsic charm,...

- Multiple scattering, saturation, ...; high-energy QCD

- Fermi-motion

- EMC-effect

- Superfast quarks

How much does the structure of a hadron change when it is immersed in a nuclear medium?

\[
R = \frac{f_i^A}{Af_i^p} \approx \text{expected if no nuclear effects}
\]

ePb at LHeC/FCC-eh
eAu at EIC

Strong interaction physics at future eA colliders: 1. Introduction.
Small-x physics:

- HERA found $xg \propto x^{-0.3}$.
- Present data can be described by:
 - Linear evolution approaches, either DGLAP or resummation at low x.
 - Non-linear approaches - weak coupling but high density: saturation.

- Theory: at high energies (i.e. small x), non-linear dynamics must be present.

Where is it? At HERA:
- Hints of failure of DGLAP at small x, Q^2, resummation?
- No ridge azimuthal structures yet found.

- Saturation is density-driven: $\downarrow x/\uparrow A \Rightarrow ep&eA + large range in 1/x & Q^2$ essential for full understanding.

\[xG_A(x, Q^2_s) \approx 1 \implies Q^2_s \propto A^{1/3}x^{-0.3} \]

Strong interaction physics at future eA colliders: 1. Introduction.

N. Armesto, 15.05.2019
Implications on pA/AA:

- Nucleus ≠ Zp+(A-Z)n.
- Particle production at large scales similar to pp (dilute regime).
- Medium behaves very early like a low viscosity liquid: macroscopic description.
- Medium is very opaque to coloured particles traversing it.

- Lack of information about small-x partons, correlations and transverse structure.
- We do not understand the dense regime.

- How isotropised the system becomes?
- Why is hydro effective so fast, which dynamics?
- Dynamical mechanisms for such opacity? Weak or strong coupling?
- How to extract accurately medium parameters?

- eA: nuclear WF and mechanism of particle production.
- eA: initial conditions; how small can a system become and still show ‘collectivity’?
- eA: in-medium QCD radiation, cold nuclear effects on hard probes.

Gluons from saturated nuclei → Glasma? → QGP → Reconfinement

Strong interaction physics at future eA colliders: I. Introduction.
Strong interaction physics at future eA colliders: 1. Introduction.

- Projects of eA colliders with $E_{cm} \sim \mathcal{O}(0.1) \text{ TeV/A}$ (EICs at US and China) and $\mathcal{O}(1) \text{ TeV/A}$ (LHeC and FCC-eh at CERN) addressing different physics.
The EIC Physics Pillars

QCD dynamics / Parton distributions in nuclei

- Strongly Correlated Quark-Gluon Dynamics
- Linear evolution
- Non-linear evolution
- High-Density Gluon Matter
- Confinement, Chiral Symmetry Breaking
- Non-linear regime
- Pomerons? Regge trajectories?

- Ratio $R(x,Q^2)$ of PDF's of Pb/p - Significant reduction of uncertainties of nuclear sea quarks / gluons with EIC
- Explore QCD landscape in various aspects over a wide range in x and Q^2 - Heavy nuclei at high energy critical to explore high-density gluon matter!
Strong interaction physics at future eA colliders: 1. Introduction.
Kinematics:

- **LHeC-FCC-eh**: extension of 4-5 orders of magnitude in x and Q^2 w.r.t. existing DIS data.

- **DIS versus hh**:
 - \rightarrow pA/AA covers largest range in kinematics.
 - **DIS offers**:
 - A clean experimental environment - low multiplicity, no pileup, fully constrained kinematics x,Q^2 reconstructing the outgoing lepton;
 - A more controlled theoretical setup - many first-principles calculations, factorisation tests.
Contents:

1. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Nuclear effects in the final state.

5. Summary/recommendations.

Note: this is a selection of topics; for additional discussions and supplementary material (e.g. on spin, relations with other fields,…), see the talks by Daniel Boer, David d’Enterria, Thomas Gehrmann, Uta Klein, Jean-Philippe Lansberg, Tanguy Pierog, Gavin Salam, Gunar Schnell, Johanna Stachel and Urs Wiedemann, and the backup.

Main contributions: 159 (LHeC/FCC-eh), 99 (US-based EIC) and 103 (DIS).

Many thanks to Daniel Boer, Elena Ferreiro, Max and Uta Klein, Guilherme Milhano, Paul Newman and Bernd Surrow for information and feedback.
nPDFs: status

- Large uncertainties for $x<0.01$ and for large x glue (parametrisation biases, weakly constrained flavour decomposition and impact parameter dependence); small impact of present LHC data.
- Few data for any single A e.g. Pb (15 DIS+30 pPb+νA): A-dependence of initial conditions.
- Sizeable impact on precision in hard probes of the QGP.
- HL-LHC to provide additional constrains, see 1812.06772: W/Z, jets, heavy quarks (including top) and quarkonium (inclusive, and exclusive in UPCs) under study; FT@LHC for large x.
- eA will provide precise nPDFs to be contrasted with pA/AA: checks of factorisation in the nuclear environment required for hard probes of the QGP.

\[R_{i/A}(x, Q^2) = \frac{f_{i/A}(x, Q^2)}{A f_{i/p}(x, Q^2)} \]

EPPS16

unconstrained

unconstrained
nPDFs: fits to a single nucleus

- LHeC/FCC-eh ePb included in EPPS16-like global fits and HERAPDF DIS-only fits: large reduction of uncertainties in a completely new kinematical region.

- Fit to a single nucleus: no A-dependence modelling.

- Charm, beauty, c-tagged CC for strange (not yet in) ⇒ complete unfolding of different parton species.

NA at DIS2019, LHeC CDR update to appear

uncertainty on the gluon

proton

Pb

presently unconstrained

Pb/proton

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus.

N. Armesto, 15.05.2019
3D - GPDs and TMDs:

- The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, **mostly unknown in nuclei**.

- Coherent exclusive production \((\gamma/\text{VM}) \Rightarrow q/g\) with GPDs, transverse profile.
- Incoherent exclusive production yields information about fluctuations: hot spots \(\Rightarrow\) MPIs.

- It can be done at the LHeC/FCC-eh in a large range of \(x\) and \(Q^2\) \(\Rightarrow\) evolution.
3D - GPDs and TMDs:

- The extraction of 3D-structure (GPDs and TMDs and their evolution equations) is a huge undergoing program: scarcely known in the proton, **mostly unknown in nuclei**.

Coherent exclusive production (γ^*/VM) ⇒ q/g

GPDs, transverse profile.

- Incoherent exclusive production yields information about fluctuations: hot spots ⇒ MPIs.

- It can be done at the LHeC/FCC-eh in a large range of x and Q^2 ⇒ evolution.
Nuclear diffractive PDFs:

- Diffractive PDFs give the conditional probability of measuring a parton in the hadron with the hadron remaining intact: \(\sim 10\% \) events at HERA are diffractive!
- Never measured in nuclei, incoherent diffraction dominant above relatively small \(-t\): interplay between multiple scattering and survival probability of the colourless exchange (rapidity gap), relation between diffraction in ep and nuclear shadowing \(\Rightarrow \) MPIs, CEP.

- At the LHeC/FCC-eh, extractable in nuclei with the same accuracy as in proton.

See Uta Klein’s talk
1. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Nuclear effects in the final state.

5. Summary/recommendations.

Note: this is a selection of topics; for additional discussions and supplementary material (e.g. on spin, relations with other fields,...), see the talks by Daniel Boer, David d’Enterria, Thomas Gehrmann, Uta Klein, Jean-Philippe Lansberg, Tanguy Pierog, Gavin Salam, Gunar Schnell, Johanna Stachel and Urs Wiedemann, and the backup.

Main contributions: 159 (LHeC/FCC-eh), 99 (US-based EIC) and 103 (DIS).

Many thanks to Daniel Boer, Elena Ferreiro, Max and Uta Klein, Guilherme Milhano, Paul Newman and Bernd Surrow for information and feedback.
Search for new parton dynamics at small x:

- **Saturation modifies evolution**: tension between the description in DGLAP analyses of different inclusive observables (with different sensitivities to glue and sea, e.g. F_2 and F_L or σ_r^{HQ}), if enough lever arm in Q^2 at small x available.

- High scales are small x at the FCC-AA: e.g. top production in pPb sensitive to $x \sim 0.02-0.2$ at HL-LHC and 0.0002-0.2 at the FCC-hh (1501.05879).

See LHeC CDR 1206.2913 and 1203.1043

Strong interaction physics at future eA colliders: 3. New dynamics at small x. N. Armesto, 15.05.2019
Diffractive observables:

- Saturation (the approach to the black disk limit) affects both the energy and the t (impact parameter)-dependence of coherent exclusive VM production: smaller energy dependence, shrinking of the diffractive peak.

\[
e+p(Pb) \rightarrow e+p(Pb)+J/\psi
\]
\[
Q^2=0.1 \text{ GeV}^2
\]

Mantysaari in DIS2018; LHeC CDR update to appear

\[
e+p(Pb) \rightarrow e+p(Pb)+J/\psi
\]
\[
Q^2=10-100 \text{ GeV}^2
\]

Strong interaction physics at future eA colliders: 3. New dynamics at small x.
Correlations:

- Dihadron azimuthal decorrelation: currently discussed at RHIC as suggestive of saturation.
- To be studied at LHeC/FCC-eh far from kinematical limits.

Nuclear and saturation effects on usual BFKL signals (e.g. dijet azimuthal decorrelation, Mueller-Navelet jets) has not been extensively addressed: A-dependence contrary to linear resummation?

- HL-LHC and higher energy hh/AA colliders: many of these signals can be considered (nuclear modification factors at small-x, exclusive vector meson production in UPCs, particle and jet decorrelation), but larger uncertainties will remain: collectivity, factorisation,... **DIS would be decisive to set the existence of a new regime of QCD.**
Contents:

1. Introduction.

2. Partonic structure of the nucleus.

3. New dynamics at small x.

4. Nuclear effects in the final state.

5. Summary/recommendations.

Note: this is a selection of topics; for additional discussions and supplementary material (e.g. on spin, relations with other fields,…), see the talks by Daniel Boer, David d’Enterria, Thomas Gehrmann, Uta Klein, Jean-Philippe Lansberg, Tanguy Pierog, Gavin Salam, Gunar Schnell, Johanna Stachel and Urs Wiedemann, and the backup.

Main contributions: 159 (LHeC/FCC-eh), 99 (US-based EIC) and 103 (DIS).

Many thanks to Daniel Boer, Elena Ferreiro, Max and Uta Klein, Guilherme Milhano, Paul Newman and Bernd Surrow for information and feedback.
Jets:

- Jet observables in AA: energy loss + response of the medium must be disentangled for characterisation of the medium.
- Jets not suppressed in pPb @ LHC: compatibility with softer observables? → **small systems**.
- Jets (inclusive and diffractive) abundantly produced in eA up to sizeable E_T, they can be used to test factorisation and for precision studies of changes of QCD radiation in the nuclear environment ⇒ hard probes of the QGP.
Fragmentation functions:

- eA: dynamics of QCD radiation and hadronization for light and heavy particles (energy loss of light and heavy, and quarkonium production and suppression), **relevant for particle production off nuclei** (nPDF determination in pA) and for QGP analysis in AA.

 → High energy: partonic evolution altered in the nuclear medium.

 → Low energy: hadronization inside formation time, (pre-)hadronic absorption,...

\[
R^h_A(z, \nu) = \frac{1}{N^e_A} \frac{dN^h_A(z, \nu)}{d\nu \, dz} / \frac{1}{N^e_D} \frac{dN^h_D(z, \nu)}{d\nu \, dz}
\]

LHeC CDR 1206.2913

- Ratio of FFs A/p

 \[z = p_{\text{hadr}} / p_{\text{parton}} \]

 \[\nu = E_{\text{hadron rest frame}} / E_{\text{struck parton}} \]

Strong interaction physics at future eA colliders: 4. Nuclear effects in the final state.
• eA: dynamics of QCD radiation and hadronization for light and heavy particles (energy loss of light and heavy, and quarkonium production and suppression), **relevant for particle production off nuclei** (nPDF determination in pA) and for QGP analysis in AA.

→ **High energy**: partonic evolution altered in the nuclear medium.

→ **Low energy**: hadronization inside \(\rightarrow \) formation time, (pre-)hadronic absorption,...

\[
R_A^h(z, \nu) = \frac{1}{N_A^{e^+}} \frac{dN_A^h(z, \nu)}{d\nu \, dz} \bigg/ \frac{1}{N_D^{e^+}} \frac{dN_D^h(z, \nu)}{d\nu \, dz}
\]

EIC example

1212.1701

<table>
<thead>
<tr>
<th>D0 mesons</th>
<th>x > 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 GeV^2 < Q^2 < 45 GeV^2</td>
<td></td>
</tr>
<tr>
<td>140 GeV < x < 150 GeV</td>
<td></td>
</tr>
<tr>
<td>(\int L dt = 10 \text{ fb}^{-1})</td>
<td></td>
</tr>
</tbody>
</table>

\(z \) fraction of virtual photons energy carried by hadron.
Summary / recommendations:

- eA colliders offer huge possibilities for QCD physics in new kinematic and dynamics domains:
 - Determination of nuclear partonic structure with high precision: collinear nuclear PDFs, nuclear GPDs/TMDs (3D-structure), diffractive nuclear PDFs, to be contrasted with those in pA and AA.
 - Searches of signals of a new regime of QCD - saturation - in inclusive and diffractive observables, and through correlations; both ep & eA are required to discover it and understand the underlying dynamics.
 - Modifications of particle production, hadronisation and QCD radiation in the nuclear environment.

Support further studies of the eA physics case at the largest possible energy and its implications on pp/pA/AA.

- The EIC and the LHeC are complementary:
 - PDFs for future AA colliders and the study of saturation demand the highest possible energy.
 - 3D-structure and hadronisation/QCD radiation will be studied in complementary domains.
 - The EIC will have a unique role in spin.

Support the exploitation of synergies and complementarities between the EIC and the LHeC/FCC-eh.

- All these aspects are relevant for the heavy-ion program:
 - Benchmarking of hard probes.
 - Initial conditions for collective behaviour.
 - Understanding of the onset of collectivity: small systems, MPIs, ...

Encourage the development of a broad QCD program for the 2030’s comprising pp/pA/AA and ep/eA.

Strong interaction physics at future eA colliders.
Backup
Purpose:

- **To cover:** Prospects and Challenges for Electron-Ion Collider, also from the perspectives of the US-EIC, to trigger our understanding of the rich variety of structures at the subatomic scale.

- **Related contributions submitted to the ESPPU:**

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>LHeC/PERLE</td>
</tr>
<tr>
<td>99</td>
<td>US-based EIC</td>
</tr>
<tr>
<td>103</td>
<td>DIS</td>
</tr>
<tr>
<td>152</td>
<td>QCD/HI at HL-LHC</td>
</tr>
<tr>
<td>135</td>
<td>QCD/HI at FCC-hh and FCC-eh</td>
</tr>
<tr>
<td>163</td>
<td>QCD theory</td>
</tr>
<tr>
<td>148</td>
<td>NuPECC</td>
</tr>
<tr>
<td>21</td>
<td>INFN hadron</td>
</tr>
<tr>
<td>114</td>
<td>MC generators</td>
</tr>
<tr>
<td>33</td>
<td>Germany HEP</td>
</tr>
</tbody>
</table>
Consider the process of lepton (e, \(\mu \), \(\nu \)) scattering on a proton (or neutron or nucleus).

For charged lepton scattering and neglecting \(Z \) exchange,

\[
\frac{d^2\sigma_{NC}}{dx dQ^2} = \frac{2\pi \alpha^2 Y_+}{Q^4} \cdot \sigma_{r,NC} \\
\sigma_{r,NC} = F_2 + \frac{Y_+}{Y_+} x F_3 - \frac{y^2}{Y_+} F_L, \\
\sigma_{r,CC} = W_2^+ + \frac{Y_+}{Y_+} x W_3^+ - \frac{y^2}{Y_+} W_L^+ \\
F_2^+ = F_2 + \kappa_Z (-v_e \mp P a_e) \cdot F_2^Z + \kappa_Z^2 (v_e^2 + a_e^2 \pm 2Pv_e a_e) \cdot F_2^Z \\
x F_3^+ = \kappa_Z (\pm a_e + P v_e) \cdot x F_3^Z + \kappa_Z^2 (\mp 2v_e a_e - P(v_e^2 + a_e^2)) \cdot x F_3^Z
\]
nPDFs: status

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eDIS</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DY</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>×</td>
</tr>
<tr>
<td>π₀</td>
<td>✔</td>
<td>✔</td>
<td>✘</td>
<td>✘</td>
<td>✔</td>
<td>✘</td>
</tr>
<tr>
<td>vDIS</td>
<td>✘</td>
<td>✔</td>
<td>✘</td>
<td>✘</td>
<td>✔</td>
<td>✘</td>
</tr>
<tr>
<td>pPb</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
<td>✔</td>
<td>✘</td>
</tr>
<tr>
<td># data</td>
<td>929</td>
<td>1579</td>
<td>740</td>
<td>1479</td>
<td>1811</td>
<td>451</td>
</tr>
<tr>
<td>order</td>
<td>NLO</td>
<td>NLO</td>
<td>NLO</td>
<td>NNLO</td>
<td>NLO</td>
<td>NNLO</td>
</tr>
<tr>
<td>proton PDF</td>
<td>CTEQ6.1</td>
<td>MSTW2008</td>
<td>~CTEQ6.1</td>
<td>JR09</td>
<td>CT14NLO</td>
<td>NNPDF3.1</td>
</tr>
<tr>
<td>mass scheme</td>
<td>ZM-VFNS</td>
<td>GM-VFNS</td>
<td>GM-VFNS</td>
<td>ZM-VFNS</td>
<td>GM-VFNS</td>
<td>FONLL-B</td>
</tr>
<tr>
<td>comments</td>
<td>Δχ²=50, ratios, huge</td>
<td>Δχ²=30, ratios, medium-modified FFs for π₀</td>
<td>Δχ²=35, PDFs, valence flavour sep., not enough sensitivity</td>
<td>PDFs, deuteron data included</td>
<td>Δχ²=52, flavour sep., ratios, LHC pPb data</td>
<td>NNPDF methodology, isoscalarity assumed</td>
</tr>
</tbody>
</table>

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 25

N. Armesto, 15.05.2019
nPDFs: status

\[
R = \frac{f_i/A}{Af_i/p} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}}
\]

- Lack of data \(\Rightarrow\) large uncertainties for the nuclear glue at small scales and \(x\): problem for benchmarking in HIC in order to extract medium parameters.

\(1506.03981\)
nPDFs: status

- nCTEQ15 vs. EPPS16: note the parametrisation bias.

- Presently available LHC data seem not to have a large effect: large-x glue (baseline=no ν, no LHC data).
Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus.

- LHeC/FCC-eh ePb and EIC eAu pseudodata included in EPPS16-like global fits: large impact.

- Inclusion of charm has sizeable impact (on glue).
- Not yet included: beauty, c-tagged CC for strange.

\[
\begin{align*}
\text{LHeC/FCC-eh} & \quad \text{EIC} \\
\text{ePb and EIC eAu} & \quad \text{pseudodata} \\
\text{included in} & \quad \text{EPPS16-like} \\
\text{global fits:} & \quad \text{large} \\
\text{impact.} & \quad \text{large} \\
\end{align*}
\]

- Inclusion of charm has sizeable impact (on glue).
- Not yet included: beauty, c-tagged CC for strange.

\[
\begin{align*}
10^2 & \quad 10^3 & \quad 10^4 & \quad 10^5 & \quad 10^6 & \quad 10^7 \\
Q^2 (\text{GeV}^2) & \quad LHC & \quad NC+CC, \ EPPS16^*, \ Pb \\
& \quad \text{LHeC charm, EPPS16}, \ Pb \\
& \quad \text{LHeC NC+CC, xFitter, Pb} \\
& \quad \text{FCC-eh NC+CC, xFitter, Pb} \\
\end{align*}
\]
Presently, only dijet and W/Z data from pPb at the LHC are used in global fits.

- Use of heavy quarks (including top) and quarkonium under study.

- Also exclusive vector meson production in UPCs - additional assumptions are required.

- **nPDFs from eA to be contrasted with pA/AA:** precise checks of factorisation in the nuclear environment.

See [1812.06772]
New kinds of factorisation (or lack of it), new evolution equations.
Directly related with spin.
Most of these quantities can be ideally explored in the EIC and the LHeC; they also can be explored in fixed target programs (talks by Lansberg and Schnell) and UPCs (at Q=0).
Quark and gluon GPDs:

\[\int \frac{d^2w}{2\pi} e^{-i\mathbf{P} \cdot \mathbf{w}} \left(P' | T \bar{\psi} \left(0, \frac{1}{2} w^-, 0_T \right) \frac{1}{2} \psi \left(0, -\frac{1}{2} w^-, 0_T \right) | P \right) \]

- Coherent exclusive production of \(\gamma \) and VM yields information about quark and gluon GPDs.

EIC, 1212.1701

LHeC 1206.2913
Quark and gluon GPDs:

- Coherent exclusive production of γ and VM yields information about q and g GPDs.

\[
\int \frac{d\omega}{2\pi} e^{-i\omega \cdot \mathbf{w}} \left(\rho_p \frac{1}{2} T_\psi j \left(0, \frac{1}{2} w^-, 0_T \right) \frac{1}{2} \bar{\psi}_j \left(0, -\frac{1}{2} w^-, 0_T \right) \right) \left| p \right|^c
\]

\[
\text{Mantysaari, DIS 2018, LHeC CDR update to appear}
\]
Quark and gluon GPDs:

\[\int \frac{d\omega^+}{2\pi} e^{-i\omega^+ p^+} \left(P^+ \Gamma \psi_j \left(0, \frac{1}{2} w^-, 0_T \right) \frac{\gamma^+}{2} \bar{\psi}_j \left(0, -\frac{1}{2} w^-, 0_T \right) \right) \left| P \right| C \]

- Coherent exclusive production of γ and VM yields information about q and g GPDs.
- Incoherent exclusive production yields information about fluctuations: hot spots.

\[\text{Pb} + \text{Pb} \rightarrow J/\psi + \text{Pb} + \text{Pb}, \sqrt{s} = 5.02 \text{ TeV}, \gamma = 0 \]

\[\text{Geometric and } \xi, \text{ fluctuations in the nucleus} \]

\[\text{No subnucleon fluctuations: } 1703.09256 \]
Spin:

\[
\frac{1}{2} = \text{Spin of Quarks} + \text{Spin of Gluons} + \text{Angular Momentum of Quarks} + \text{Angular Momentum of Gluons}
\]

- The origin of proton spin has been an open issue for several decades: schematically speaking, quarks account for ~30%, gluons for ~20% (known in a limited x-range), the rest?

Inclusive Measurement: \(e+p \rightarrow e'\pi X \)

\[
\frac{1}{2} \left[\frac{d^2\sigma^\uparrow}{dx\,dQ^2} - \frac{d^2\sigma^\downarrow}{dx\,dQ^2} \right] \approx \frac{4\pi\alpha^2}{Q^4} y(2-y) g_1(x, Q^2)
\]

Leading Order:

\[
g_1(x, Q^2) = \frac{1}{2} \sum_q c_q^2 [\Delta q(x, Q^2) + \Delta\bar{q}(x, Q^2)]
\]

\[
\Delta\Sigma(Q^2) = \int_0^1 dx\, g_1(x, Q^2)
\]

Higher Order:

\[
\frac{dg_1}{d\log Q^2} \propto \Delta g(x, Q^2)
\]

- Inclusive measurements with both e and p polarised (EIC): huge improvement at low x.
Several TMDs to be determined by different observables: beyond inclusive DIS, further possibilities are SIDIS (FFs required), CC,…

Besides, polarised light nuclei, diffraction,…

TMD factorisation can be tested in non-polarised collisions: dijets, charm,… Relation at small x with CGC.
The EIC Physics Pillars

Tomography (p/A)
Transverse Momentum Distribution and Spatial Imaging
Spin and Flavor Structure of the Nucleon and Nuclei
Parton Distributions in Nuclei
QCD at Extreme Parton Densities - Saturation

EICUG: ~ 860 people (1/3 from Europe)
The EIC Physics Pillars

- Tomography (p/A)
- Transverse Momentum Distribution and Spatial Imaging
- Spin and Flavor Structure of the Nucleon and Nuclei
- Parton Distributions in Nuclei
- QCD at Extreme Parton Densities - Saturation

EICUG: ~ 860 people (1/3 from Europe)
The EIC Physics Pillars

1212.1701

Tomography (p/A)
Transverse Momentum Distribution and Spatial Imaging
Spin and Flavor Structure of the Nucleon and Nuclei

Parton Distributions in Nuclei
QCD at Extreme Parton Densities - Saturation

EICUG: ~ 860 people (1/3 from Europe)
The EIC Physics Pillars

1212.1701

Tomography (p/A)
Transverse Momentum
Distribution and Spatial
Imaging

Spin and Flavor Structure of
the Nucleon and Nuclei

Parton Distributions in Nuclei
QCD at Extreme Parton
Densities - Saturation

EICUG: ~ 860 people (1/3 from Europe)
LHeC & EIC: synergies and complementarities

- **EIC versus LHeC/FCC-eH: different kinematics and different focus of the physics programs - even on the QCD side.**

- **Synergies:**
 - Detector studies: forward instrumentation for diffraction?
 - QCD Monte Carlo simulators.
 - Analysis frameworks?
 - Theoretical developments: higher orders e.g. N^3LO DGLAP.

- **Complementarities:**
 - Kinematics: Q^2 < 1 GeV^2 and large x and not so large Q^2 to be studied at the EIC; evolution to be obtained at the LHeC/FCC-eH.
 - Detector optimisation: EIC more focused to PID and low transverse momentum.
 - Nuclear species: in principle, more flexibility at the EIC, but proposals for lighter ions at the LHC in the 2030's have been done in the context of the HL/HE-LHC studies (see 1812.06772).
Relation with other fields:

- **String theory (AdS/CFT correspondence):** models for QCD at strong coupling at zero and finite temperature, applied to model DIS at low Q^2.

- **Cosmic ray physics,** see Tanguy Pierog’s talk.

- **Information theory:** how to reconcile the parton picture with the proton/nucleus as a pure quantum state? Relation with:
 - The physics of open quantum systems.
 - Entropy produced in hadronic and nuclear collisions.
 - Wigner distributions: TMDs, GPDs.
 - Entropy in QCD radiation: jets.