

Fixed-Target Opportunities at the (HL)LHC

J.P. Lansberg

IPN Orsay - Paris-Sud U./Paris Saclay U. -CNRS/IN2P3

Open Symposium - Update of the European Strategy for Particle Physics 13-16 May 2019, Granada, Spain

Part I

Introduction

2 / 22

Contributions to the ESPP update and other scientific sources

Contributions to the ESPP update and other scientific sources

3 ESPPU Contributions submitted in December [overall signed by 200+ physicists]

Physics opportunities for a fixed-target programme in the ALICE experiment
 by F. Galluccio et al.: ID 47

- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

Contributions to the ESPP update and other scientific sources

3 ESPPU Contributions submitted in December [overall signed by 200+ physicists]

- Physics opportunities for a fixed-target programme in the ALICE experiment
 by F. Galluccio et al.: ID 47
- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

Physics Beyond Colliders documents

- Physics Beyond Colliders: QCD Working Group Report
 by the PBC QCD Working Group (A. Dainese et al.): arXiv:1901.04482
- Summary Report of Physics Beyond Colliders at CERN

by R. Alemany *et al.*: arXiv:1902.00260

- CERN-PBC-Notes: e.g. 2019-003,2019-002,2019-001,2018-008,2018-007,2018-003,2018-001
- Summary by the PBC LHC FT Working Group: yet to appear

Contributions to the ESPP update and other scientific sources

3 ESPPU Contributions submitted in December [overall signed by 200+ physicists]

Physics opportunities for a fixed-target programme in the ALICE experiment

by F. Galluccio et al.: ID 47

- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

Physics Beyond Colliders documents

- Physics Beyond Colliders: QCD Working Group Report
 by the PBC QCD Working Group (A. Dainese et al.): arXiv:1901.04482
- Summary Report of Physics Beyond Colliders at CERN

by R. Alemany *et al.*: arXiv:1902.00260

- CERN-PBC-Notes: e.g. 2019-003,2019-002,2019-001,2018-008,2018-007,2018-003,2018-001
- Summary by the PBC LHC FT Working Group: yet to appear

Reviews, special issues

- S.J. Brodsky et al.: Phys.Rept. 522 (2013) 239
- AFTER@LHC Study Group Review: arXiv:1807.00603 [hep-ex]
- Adv. High En. Phys. Special issue

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for $x \gtrsim 0.5$.
- Gluon EMC effect to understand the quark EMC effect

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for $x \gtrsim 0.5$.
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

 $\leftrightarrow high\text{-energy neutrino \& cosmic-ray physics}$

Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

- Test of the QCD factorisation framework
- Determination of the linearly polarised gluons in unpolarised protons

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for $x \gtrsim 0.5$.
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

 $\leftrightarrow high\text{-energy neutrino \& cosmic-ray physics}$

Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g,q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

- Test of the QCD factorisation framework
- Determination of the linearly polarised gluons in unpolarised protons

Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
- · Rapidity scan of the azimuthal asymmetries thanks to a broad rapidity reach
- Test the factorisation of cold nuclear effects from p + A to A + B collisions with Drell-Yan

Part II

Kinematics, Possible Implementations and Luminosities

5 / 22

6 / 22

Energy range similar to RHIC

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:

 $\gamma = \sqrt{s}/(2m_N) \approx 60$

 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

Boost:

c.m.s. energ	gy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$	
Boost:	$\nu \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Energy range similar to RHIC

7 TeV proton beam on a fixed target

	c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
--	----------------	---	-----------------

Boost: $\gamma = \sqrt{s}/(2m_N) \approx 60$

 $y_{c.m.s.}=0 \rightarrow y_{lab}=4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$	Rapidity shift:
--	-----------------

Boost: $\gamma \approx 40$

Effect of boost:

[particularly relevant for high energy beams]

Energy range similar to RHIC

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	R
	_	

Rapidity shift:

$$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$$

2.76 TeV Pb beam on a fixed target

c.m.s. energ	$gy: \sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$	
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

 $\gamma = \sqrt{s/(2m_N)} \approx 60$

Effect of boost:

Boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[y_{c.m.s.} < 0]$
- The ALICE central barrel becomes an extreme backward detector

Energy range similar to RHIC

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	R
Boost:	$\gamma = \sqrt{s}/(2m_N) \approx 60$	

Example 2 (apidity shift:
$$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$$

2.76 TeV Pb beam on a fixed target

c.m.s. energ	$\mathbf{y}: \sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \mathrm{G}$	V	
Boost:	$\gamma \approx 40$		$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[y_{c.m.s.} < 0]$
- The ALICE central barrel becomes an extreme backward detector
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers

half of the backward region for most probes $[-1 < x_F < 0]$

Energy range similar to RHIC

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:

Boost: $\gamma = \sqrt{s}/(2m_N) \approx 60$

 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: v	s_{NN}	$=\sqrt{2m_N E_{Pb}}$	≈ 72 GeV	Rapidity shift:

Boost: $\gamma \approx 40$

 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

 $[y_{c.m.s.} < 0]$

- The ALICE central barrel becomes an extreme backward detector
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$
- Allows for backward physics up to high x_2

[uncharted for proton-nucleus coll.; most relevant for pp^{\uparrow} with large x^{\uparrow}]

Effect of boost:

[particularly relevant for high energy beams]

LHCb and the ALICE muon arm become backward detectors

 $[y_{c.m.s.} < 0]$

- The ALICE central barrel becomes an extreme backward detector
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$
- Allows for backward physics up to high x_2

[uncharted for proton-nucleus coll.; most relevant for pp^{\uparrow} with large x^{\uparrow}]

Internal gas target (with or without storage cell)

7 / 22

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

- [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux: up to $5 \times 10^8 \text{ s}^{-1}$ & lead flux: up to $2 \times 10^5 \text{ s}^{-1}$

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: up to $5 \times 10^8 \text{ s}^{-1}$ & lead flux: up to $2 \times 10^5 \text{ s}^{-1}$
 - Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - Beam split: similar fluxes; less/no civil engineering; could be coupled to an existing experiment

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: up to $5 \times 10^8 \text{ s}^{-1}$ & lead flux: up to $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - Beam split: similar fluxes; less/no civil engineering; could be coupled to an existing experiment

→ Luminosities with internal gas target or crystal-based solutions are not very different

J.P. Lansberg (IPNO) FT@(HL)LHC May 14, 2019 7 / 22

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- + the LHC beam halo is recycled on dense target: proton flux: up to $5 \times 10^8 \text{ s}^{-1}$ & lead flux: up to $2 \times 10^5 \text{ s}^{-1}$
 - Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - Beam split: similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- → Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- SMOG2 approved by LHCb: open-end cell to increase the luminosity with the same gas flux
- · Storage cell with polarised gases in LHCb: R&D needed for coating and polarisation performance
- A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

- [UA9 collaboration]
- + the LHC beam halo is recycled on dense target: proton flux: up to $5 \times 10^8~s^{-1}$ & lead flux: up to $2 \times 10^5~s^{-1}$
 - Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - Beam split: similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- → Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)
- The gas targets are the best polarised targets and satisfactory for heavy-ion studies

8 / 22

$$\begin{split} &\int \mathcal{L} dt \sim 5 \text{ nb}^{-1} \times \frac{pot}{10^{22}} \\ &\times \frac{p_{gas}}{2 \times 10^{-7} \text{mbar}} \times \text{Exp_Efficiency} \end{split}$$

Largest sample (pNe 2017) $\sim 100 \text{ nb}^{-1}$

Physics results now flowing in

- PRL 122 (2019) 132002; PRL 121 (2018) 222001
- Limited statistical samples (hundreds of J/ψ only) and no pH baseline yet \rightarrow The physics reach is still currently very limited

$$\begin{split} &\int \mathcal{L} dt \sim 5 \text{ nb}^{-1} \times \frac{pot}{10^{22}} \\ &\times \frac{p_{gas}}{2 \times 10^{-7} \text{mbar}} \times \text{Exp_Efficiency} \end{split}$$

Largest sample (pNe 2017) $\sim 100 \text{ nb}^{-1}$

Physics results now flowing in

- PRL 122 (2019) 132002; PRL 121 (2018) 222001
- Limited statistical samples (hundreds of J/ψ only) and no pH baseline yet
 - → The physics reach is still currently very limited
- Approved installation of a storage cell [SMOG2] to increase the target local density

$$\begin{split} \int \mathcal{L} dt \sim 5 \text{ nb}^{-1} \times \frac{pot}{10^{22}} \\ \times \frac{p_{gas}}{2 \times 10^{-7} \text{mbar}} \times \text{Exp_Efficiency} \end{split}$$

Largest sample (pNe 2017) $\sim 100 \text{ nb}^{-1}$

Physics results now flowing in

- PRL 122 (2019) 132002; PRL 121 (2018) 222001
- Limited statistical samples (hundreds of J/ψ only) and no pH baseline yet
 - \rightarrow The physics reach is still currently very limited
- Approved installation of a storage cell [SMOG2] to increase the target local density
- Different options discussed for future LHCb upgrades: No decision taken yet

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for H_2 or D_2 injection [\rightarrow absolutely essential for the physics case]

SMOG 2: installation of an openable storage cell during LS2 boost the local gas density with the same gas flow [approved by LHCb]

might allow for H_2 or D_2 injection \rightarrow absolutely essential for the physics case

LHCb-PUB-2018-015 & CERN-PBC-Notes-2018-007

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for H_2 or D_2 injection [\rightarrow absolutely essential for the physics case]

LHCSpin: injection of polarised gases

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for H_2 or D_2 injection [\rightarrow absolutely essential for the physics case]

LHCSpin: injection of polarised gases

R & D needed for the coating (depolarisation); goal :installation during LS3

J.P. Lansberg (IPNO) FT@(HL)LHC May 14, 2019 9 / 22

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for H_2 or D_2 injection [\rightarrow absolutely essential for the physics case]

LHCSpin: injection of polarised gases

- R & D needed for the coating (depolarisation); goal :installation during LS3
- The target position is critical: acceptance toward large x^{\uparrow} lost if too remote

J.P. Lansberg (IPNO) FT@(HL)LHC May 14, 2019 9 / 22

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for H_2 or D_2 injection [\rightarrow absolutely essential for the physics case]

LHCSpin: injection of polarised gases

- R & D needed for the coating (depolarisation); goal :installation during LS3
- The target position is critical: acceptance toward large x^{\uparrow} lost if too remote
- Gain of an additional tracker yet to be studied

SMOG 2: installation of an openable storage cell during LS2 [approved by LHCb]

- boost the local gas density with the same gas flow
- might allow for H_2 or D_2 injection [\rightarrow absolutely essential for the physics case]

LHCSpin: injection of polarised gases

- R & D needed for the coating (depolarisation); goal :installation during LS3
- The target position is critical: acceptance toward large x^{\dagger} lost if too remote
- Gain of an additional tracker yet to be studied
 - A similar solution w/o storage cell like the RHIC H-jet polarimeter is an alternative

Different options for the FT mode used with ALICE can be considered

- Different options for the FT mode used with
- ALICE can be considered
- An internal gas target is obviously one

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration
- Extraction of the secondary proton halo is preferred. Luminosity reduction can be compensated by a thicker target.

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration
- Extraction of the secondary proton halo is preferred. Luminosity reduction can be compensated by a thicker target.
- A gas-target layout will also be studied within STRONG2020

- Different options for the FT mode used with ALICE can be considered
- An internal gas target is obviously one
- Investigations are most advanced for a solid target coupled with a bent crystal for beam-halo deviation
- ITS removal during EYETS ⇒ target location at min. -4.8m from the IP using the existing valve layout
- A possible extraction layout worked out by the UA9 collaboration
- Extraction of the secondary proton halo is preferred. Luminosity reduction can be compensated by a thicker target.
- A gas-target layout will also be studied within STRONG2020
- Gain of an additional tracker and TPC perf. yet to be studied within STRONG2020

10 / 22

J.P. Lansberg (IPNO) FT@(HL)LHC May 14, 2019

[w detector constraints]

[w detector constraints]

LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.)

 $\mathcal{L}_{pH_2/H^{\dagger}}$: 10 fb⁻¹ yr⁻¹; \mathcal{L}_{pXe} : 300 pb⁻¹ yr⁻¹; \mathcal{L}_{PbXe} : 30 nb⁻¹ yr⁻¹

[w detector constraints]

LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.)

 $\mathcal{L}_{pH_2/H^{\uparrow}}$: 10 fb⁻¹ yr⁻¹; \mathcal{L}_{pXe} : 300 pb⁻¹ yr⁻¹; \mathcal{L}_{PbXe} : 30 nb⁻¹ yr⁻¹

LHCb 'SMOG2' baseline for Run3

Assumption: Storage cell installed, very parasitic mode

 $\mathcal{L}_{p \text{ beam}}$: 150 pb⁻¹ on H, 10 pb⁻¹ on D or 45 pb⁻¹ on Ar; $\mathcal{L}_{Pb \text{ beam}}$: 5 nb⁻¹ on Ar

[w detector constraints]

LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.)

 $\mathcal{L}_{pH_2/H^{\uparrow}}$: 10 fb⁻¹ yr⁻¹; \mathcal{L}_{pXe} : 300 pb⁻¹ yr⁻¹; \mathcal{L}_{PbXe} : 30 nb⁻¹ yr⁻¹

LHCb 'SMOG2' baseline for Run3

Assumption: Storage cell installed, very parasitic mode

 $\mathcal{L}_{p \text{ beam}}$: 150 pb $^{-1}$ on H, 10 pb $^{-1}$ on D or 45 pb $^{-1}$ on Ar; $\mathcal{L}_{Pb \text{ beam}}$: 5 nb $^{-1}$ on Ar

ALICE 'possible' from Run4*

Assumption: Readout rate: 50 kHz in PbPb coll. and possibly up to 1 MHz in *pp* and *pA* coll.

With internal gas target: $\mathcal{L}_{pH_2/H^{\uparrow}}$: 250 pb⁻¹; \mathcal{L}_{PbXe} : 8 nb⁻¹

With beam splitting and solid target: \mathcal{L}_{pW} : 0.6 ÷ 6 pb⁻¹; \mathcal{L}_{PbW} : 3 nb⁻¹

Part III

Examples of Physics Studies

C. Hadjidakis et al., 1807.00603

Unique acceptance (with a LHCb-like detector) compared to existing DY *pA* data used for nuclear PDF fit (E866 & E772 @ Fermilab).

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- · Same acceptance for *pp* collisions

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released

C. Hadjidakis et al., 1807.00603

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Same acceptance for pp collisions
- A single measurement (in pp coll.) at RHIC, recently released
- Decrease of the proton PDF uncertainties: FoM using Bayesian reweighting

pp case

C. Hadjidakis et al., 1807.00603

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Same acceptance for pp collisions
- A single measurement (in pp coll.) at RHIC, recently released
- Decrease of the proton PDF uncertainties: FoM using Bayesian reweighting

pp case

C. Hadjidakis et al., 1807.00603

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Same acceptance for *pp* collisions
- · A single measurement (in pp coll.) at RHIC, recently released
- Decrease of the proton PDF uncertainties: FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties

pW case

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, recently released
- Decrease of the proton PDF uncertainties: FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties
- On-going theory study for W^{\pm} production accounting for threshold resummation

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017) 139

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017) 139

DY pair production on a transversely polarised target

DY pair production on a transversely polarised target

Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!

	op •	[Ellos into dettert					-1	
C 11. 12	Experiment	colliding systems	beam energy [GeV]	\sqrt{s} [GeV]	<i>x</i> [†]	$\mathcal{L}_{[cm^{-2}s^{-1}]}$	$\mathcal{P}_{ ext{eff}}$	$ \frac{\mathcal{F}/\sum_{i}A_{i}}{[\mathrm{cm}^{-2}\mathrm{s}^{-1}]} $
C. Hadji	AFTER@LHCb	pH^{\uparrow}	7000	115	0.05÷0.95	1×10^{33}	80%	6.4×10^{32}
ely	AFTER@LHCb	p^3 He $^{\uparrow}$	7000	115	0.05÷0.95	2.5×10^{32}	23%	1.4×10^{31}
•	$\mathbf{AFTER@ALICE}_{\mu}$	pH^{\uparrow}	7000	115	$0.1 \div 0.3$	2.5×10^{31}	80%	1.6×10^{31}
	COMPASS (CERN)	$\pi^- NH_3^{\uparrow}$	190	19	0.05÷0.55	2×10^{33}	14%	4.0×10^{31}
•	PHENIX/STAR (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	0.05 ÷ 0.1	2×10^{32}	50%	5.0×10^{31}
	E1039 (FNAL)	pNH_3^{\uparrow}	120	15	0.1 ÷ 0.45	4×10^{35}	15%	9.0×10^{33}
	E1027 (FNAL)	$p^{\uparrow}H_2$	120	15	$0.35 \div 0.9$	2×10^{35}	60%	7.2×10^{34}
	NICA (JINR)	$p^{\uparrow}p$	collider	26	$0.1 \div 0.8$	1×10^{32}	70%	4.9×10^{31}
	fsPHENIX	$p^{\uparrow}p^{\uparrow}$	collider	200	$0.1 \div 0.5$	8×10^{31}	60%	2.9×10^{31}
	(RHIC)							
	fsPHENIX (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	0.05 ÷ 0.6	6 × 10 ³²	50%	1.5×10^{32}
	PANDA (GSI)	$\bar{p}H^{\uparrow}$	15	5.5	0.2 ÷ 0.4	2×10^{32}	20%	8.0×10^{30}

- DY pair production on a transversely polarised target
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- From an exploration phase to a consolidation phase

	1	4		-				-
1	Experiment	colliding systems	beam energy [GeV]	\sqrt{s} [GeV]	<i>x</i> [†]	\mathcal{L} [cm ⁻² s ⁻¹]	$\mathcal{P}_{ ext{eff}}$	$\begin{array}{c} \mathcal{F}/\sum_i A_i \\ [\mathrm{cm}^{-2} \mathrm{s}^{-1}] \end{array}$
ıdji	AFTER@LHCb	pH^{\uparrow}	7000	115	0.05÷0.95	1×10^{33}	80%	6.4×10^{32}
	AFTER@LHCb	p^3 He $^{\uparrow}$	7000	115	0.05÷0.95	2.5×10^{32}	23%	1.4×10^{31}
	$\mathbf{AFTER@ALICE}_{\mu}$	pH^{\uparrow}	7000	115	$0.1 \div 0.3$	2.5×10^{31}	80%	1.6×10^{31}
	COMPASS (CERN)	$\pi^- NH_3^{\uparrow}$	190	19	0.05÷0.55	2×10^{33}	14%	4.0×10^{31}
	PHENIX/STAR (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	0.05 ÷ 0.1	2×10^{32}	50%	5.0×10^{31}
	E1039 (FNAL)	pNH_3^{\uparrow}	120	15	$0.1 \div 0.45$	4×10^{35}	15%	9.0×10^{33}
	E1027 (FNAL)	$p^{\uparrow}H_2$	120	15	$0.35 \div 0.9$	2×10^{35}	60%	7.2×10^{34}
	NICA (JINR)	$p^{\uparrow}p$	collider	26	$0.1 \div 0.8$	1×10^{32}	70%	4.9×10^{31}
	fsPHENIX (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	200	0.1 ÷ 0.5	8×10^{31}	60%	2.9×10^{31}
	fsPHENIX (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	0.05 ÷ 0.6	6×10^{32}	50%	1.5×10^{32}
	PANDA (GSI)	$\bar{p}H^{\uparrow}$	15	5.5	0.2 ÷ 0.4	2×10^{32}	20%	8.0×10^{30}

- C. Had

 DY pair production on a transversely polarised target

 Check the sign change in A_N DY vs
- SIDIS: hot topic in spin physics!
- From an exploration phase to a consolidation phase
- ³He[↑] target → quark Sivers effect in the neutron via DY: unique!

	Experiment	colliding systems	beam energy [GeV]	\sqrt{s} [GeV]	<i>x</i> [†]	$\mathcal{L}_{[cm^{-2}s^{-1}]}$	$\mathcal{P}_{ ext{eff}}$	$\begin{array}{c} \mathcal{F}/\sum_i A_i \\ [\mathrm{cm}^{-2}\mathrm{s}^{-1}] \end{array}$
lji	AFTER@LHCb	pH^{\uparrow}	7000	115	0.05÷0.95	1×10^{33}	80%	6.4×10^{32}
	AFTER@LHCb	p^3 He $^{\uparrow}$	7000	115	0.05÷0.95	2.5×10^{32}	23%	1.4×10^{31}
	AFTER@ALICE $_{\mu}$	pH^{\uparrow}	7000	115	$0.1 \div 0.3$	2.5×10^{31}	80%	1.6×10^{31}
	COMPASS (CERN)	$\pi^- NH_3^{\uparrow}$	190	19	0.05÷0.55	2×10^{33}	14%	4.0×10^{31}
	PHENIX/STAR (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	0.05 ÷ 0.1	2×10^{32}	50%	5.0×10^{31}
	E1039 (FNAL)	pNH_3^{\uparrow}	120	15	$0.1 \div 0.45$	4×10^{35}	15%	9.0×10^{33}
	E1027 (FNAL)	$p^{\uparrow}H_2$	120	15	$0.35 \div 0.9$	2×10^{35}	60%	7.2×10^{34}
	NICA (JINR)	$p^{\uparrow}p$	collider	26	$0.1 \div 0.8$	1×10^{32}	70%	4.9×10^{31}
	fsPHENIX	$p^{\uparrow}p^{\uparrow}$	collider	200	$0.1 \div 0.5$	8×10^{31}	60%	2.9×10^{31}
	(RHIC)							
	fsPHENIX (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	0.05 ÷ 0.6	6×10^{32}	50%	1.5×10^{32}
	PANDA (GSI)	$\bar{n}H^{\uparrow}$	15	5.5	02 ÷ 04	2×10^{32}	20%	8.0×10^{30}

ALICE could extend its coverage with $\eta_{\text{Lab}} \sim 1-2$ for quarkonia into dileptons with one muon in the muon arm and another in the central barrel

- ALICE could extend its coverage with $\eta_{\text{Lab}} \sim 1-2$ for quarkonia into dileptons with one muon in the muon arm and another in the central barrel
 - Both for LHCb and ALICE, the coverage depends on the target position

- ALICE could extend its coverage with $\eta_{\text{Lab}} \sim 1-2$ for quarkonia into dileptons with one muon in the muon arm and another in the central barrel
- Both for LHCb and ALICE, the coverage depends on the target position
- Access towards large *x* crucial : EMC effect, spin and UHE neutrinos

May 14, 2019

Quarkonium Projections for spin asymmetries

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017)

Quarkonium Projections for spin asymmetries

A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$ can be measured. Few Body Syst. 58 (2017)

[So far, only J/ψ by PHENIX with large uncertainties]

 A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$ can be measured

[So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution

A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$ can be measured

[So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]

A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$ can be measured. Even Body Syst. 58 (2017)

[So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]

Also access to polarised neutron (${}^{3}\text{He}^{\uparrow}$) at the per cent level for J/ψ !

A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$ can be measured. Even Body Syst. 58 (2017)

[So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]

Also access to polarised neutron (${}^{3}\text{He}^{\dagger}$) at the per cent level for J/ψ !

Completely new perspectives to study the gluon Sivers effect

[and beyond $\rightarrow \mathcal{L}_g$]

A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b & \eta_c)$ can be measured

[So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution or with ALICE]

Also access to polarised neutron (${}^{3}\text{He}^{\uparrow}$) at the per cent level for J/ψ !

Completely new perspectives to study the gluon Sivers effect

[and beyond $\rightarrow \mathcal{L}_g$]

Di- J/ψ allow one to study the k_T dependence of the gluon Sivers function for the very first time!

Energy domain: between SPS and RHIC

- Energy domain: between SPS and RHIC
- Rapidity scan through $\mu_B \& T$ with a good PID (LHCb and ALICE)

- Energy domain: between SPS and RHIC
- Rapidity scan through $\mu_B \& T$ with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states (e.g. $\chi_{c,b}$, η_c) and on open charm and beauty

- Energy domain: between SPS and RHIC
- Rapidity scan through $\mu_B \& T$ with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states (e.g. $\chi_{c,b}$, η_c) and on open charm and beauty
- FoMs for $\chi_{c,b}$ and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations

Rapidity scan

Illustration of the ALICE-LHCb complementarity

C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

• Like for nPDF studies (see later), multiple quarkonium studies are needed

C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline

C. Hadjidakis et al., 1807.00603; B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline
- Statistical-uncertainty projections (accounting for background subtraction)

C. Hadjidakis et al., 1807.00603

20 / 22

 Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data ex-

ist there. See PRL 121 (2018) 052004]

- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRI. 121 (2018) 052004]
- These projections assume that other nuclear effects are under control: different observables are thus needed

J.P. Lansberg (IPNO) FT@(HL)LHC May 14, 2019 20 / 22

- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRI. 121 (2018) 0520041
 - These projections assume that other nuclear effects are under control: different observables are thus needed
- Proton PDFs projections: yet to be done along the lines of the studies carried out for low-x gluon at the LHC
 PROSA Coll. EPIC 75 (2015) 396: B. Gaulid. I. Rolo PRL 118 (2017) 072001

- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRI. 121 (2018) 052004]
- These projections assume that other nuclear effects are under control: different observables are thus needed
- Proton PDFs projections: yet to be done along the lines of the studies carried out for low-x gluon at the LHC
 PROSA Coll. EPIC 75 (2015) 396: R. Gauld, J. Rojo PRI. 118 (2017) 072001
 - Leaving to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties

- Extremely promising first projections using Bayesian reweighting [esp. since initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. See PRI. 121 (2018) 0520041
 - These projections assume that other nuclear effects are under control: different observables are thus needed
- Proton PDFs projections: yet to be done along the lines of the studies carried out for low-x gluon at the LHC
 PROSA COIL. EPIC 75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001
 - Leaving to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties

Reward: unique constraints on gluon (n)PDFs at high *x* and low scales

Part IV

Conclusions and recommandation

• Three main themes push for a fixed-target program at the LHC

22 / 22

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement and connections with astroparticles

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

• The nucleon spin and the transverse dynamics of the partons

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments

→ backup slides

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 WAYS TOWARDS FIXED-TARGET COLLISIONS WITH THE LHC BEAMS

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

The physics reach of the LHC complex can greatly be extended at a very limited cost with the adjunction of an ambitious and long term research program using the LHC beams in the fixed-target mode.

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies new energy, new rapidity domain and new probes
- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments → backup slides
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

The physics reach of the LHC complex can greatly be extended at a very limited cost with the adjunction of an ambitious and long term research program using the LHC beams in the fixed-target mode. The CERN laboratory should support the efforts of the existing LHC experiments to implement such a program, including specific R&D actions on the LHC.

Part V

Backup slides

Qualitative comparison

		nternal gas	target	Internal solid target	Beam	Beam
Characteristics	SMOG	Gas Jet	Storage Cell	with beam halo	splitting	extraction
Run duration	*	**	**	*	**	***
Parasiticity	**	**	**	*	**	***
Integrated luminosity	*	***	***	*	**	***
Absolute luminosity determination	*	**	**	*	**	***
Target versatility	*	**	**	*	**	***
(Effective) target polarisation	-	***	**	-	-/ *	*
Use of existing experiment	***	**	*	**	**	-
Civil engineering or R&D	* * **	***	**	**	**	*
Cost	***	**	**	***	**	*
Implementation time	***	**	**	***	**	*
High x	*	***	* * **	*	**	* * **
Spin Physics	-	***	***	-	-/**	***
Heavy-Ion	*	***	***	**	**	* * **

Bent crystals proposal

 Magnetic (MDM) and electric (EDM) dipole moments of short-lived particles, i.e. charm, beauty baryons, τ lepton, have never been measured

A tool for SM and BSM physics

 Exploit the high electric field between Si or Ge crystallographic planes to induce spin precession

J.P. Lansberg (IPNO) FT@(HL)LHC May 14, 2019 25 / 22

interactions outside acceptance, to be absorbed downstream the detector

Bent crystals proposal

Ongoing activities:

LHC Collimation: layout, simulations, beam extraction, collimators, absorbers

LHCh SELDOM erc project & LHCb experiment: exp. techniques, physics program, preparatory measurements, R&D on long bent crystals

Si crystal (8 cm, 16 mrad) tested on beam at SPS (October 2018, courtesy of A. Mazzolari, INFN-Ferrara)

Phys. Lett. B 758 (2016) 129

Aiming for:

1st phase installation at IR8 (LHCb) in YETS Run3:

physics studies

Eur. Phys. J. C 77 (2017) 828 IHFP 1708 (2017) Up to ~10¹⁵ PoT (5 mm W target)

e.g. for Λ_a^+ , MDM ~ 10^{-3} μ_N and EDM ~ 10^{-17} e cm

2nd phase (high lumi) in dedicated experiment (e.g. IR7 or IR3, longer term) e.g. for τ lepton, ~10¹⁷ PoT for $g-2\sim10^{-3}$ (SM) and EDM~10⁻¹⁷ e cm

JHEP 1903 (2019) 156 arXiv:1810.06699 (2018)

Heavy-Ion Physics

- Estimation of the freeze-out parameters reachable in the AFTER@LHC project by V. Begun, D. Kikola, V. Vovchenko, D. Wielanek, Phys. Rev. C 98 (2018)
- Rapidity scan in heavy ion collisions at √s_{NN} = 72 GeV using a viscous hydro + cascade model by I. Karpenko: arXiv:1805.11998 [nucl-th]
- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at $\sqrt{s_{NN}}$ = 115 GeV and Pb+p collisions at $\sqrt{s_{NN}}$ = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv. High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC
 By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

イロト (部) (単) (単) (単)

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a
 TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]].
 Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

Hadron structure

- Exclusive vector meson photoproduction in fixed target collisions at the LHC by V.P. Goncalves, M.M.
 Jaime. Eur.Phys.J. C78 (2018) no.9, 693
- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).
 by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon
 by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of ∃_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

▼ロト→御ト→車ト→車 りQ@

29 / 22

Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment
 Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546
 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams
 (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al.
 [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams
 By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.