Aspirations of the QCD research community

Thomas Gehrmann
Universität Zürich
Open Symposium on the ESPP Update, Granada 13.5.-16.5.2019
Where do we stand?

• QCD firmly established as theory of strong interactions
• Remarkably simple Lagrange density

\[\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu \nu}^a F_{\alpha \mu \nu}^a + \bar{\psi}(i \mathcal{D} - m) \psi \]

• Enormously rich phenomenology
• Many successful qualitative explanations and predictions
• Quantitative understanding not always feasible
Where do we stand?

• QCD at high energies: weak coupling and asymptotic freedom
 • Perturbative QCD as quantitative framework
 • Dynamics of quarks and gluons
 • Jet observables were early test of QCD
 • Factorization separates weak from strong coupling effects

• Quantitative predictions
 • Multi-loop calculations for inclusive quantities
 • Higher orders (NLO, NNLO, ...), resummation and parton shower simulation
 • Strong coupling dynamics parametrized in parton distributions, hadronization
Where do we stand?

- Precision tests of the Standard Model
- Measurements of masses and couplings
- Interplay of calculations and measurements
 - Accuracy on most cross sections $\geq 5\%$
 - Limited by PDFs, QCD corrections
- Perturbative QCD as analysis tool
 - Jet substructure techniques
 - Data-driven background predictions
Where do we stand?

• QCD at strong coupling: diverse research program
 • Hadron physics, low-energy dynamics, heavy ions
 • Precision spectroscopy of light hadrons ↔ lattice QCD at high precision
 • Determination of hadron properties
 • Proton radius
 • Form factors
 • Nucleon structure

• Demands and drives new quantitative approaches
 • Understanding non-perturbative dynamics of QCD
Where do we stand?

• Crucial interplay between QCD at strong and at weak coupling

• Non-perturbative effects on precision collider observables
 • Parton distributions
 • Intrinsic transverse momentum
 • Soft underlying event and hadronization

• Hadronic input to SM tests and BSM searches
 • Form factors in flavor physics
 • Hadronic cross sections in neutrino and astroparticle physics
 • Hadronic effects in QED precision observables: $\alpha(M_Z)$, $(g-2)_\mu$
Where do we stand?

• Feed-in and feed-back between strong and weak coupling QCD

• Example: photon content of the proton (photon PDF)
 • Important ingredient to EW corrections of collider processes
 • Required for precision predictions at highest energies
 • Previously ad-hoc models with large uncertainty
 • LUXqed
 • relate to elastic and inelastic form factors
 • Exploit low-energy data
 • Combine with perturbative QCD evolution

• Different motivation to address similar questions
The challenges ahead

- Precision physics at HL-LHC and future high-energy colliders (G. Salam, D.d’Enteria)
- Aiming for ultimate precision in Standard Model tests and searches
 - Direct and indirect probes of physics at much higher energy scales
 - Sub-per-mille level precision on M_W, M_{top}, α_s
 - Requires major leaps in QCD+EW theory and experiment
- QCD theory into novel data analysis techniques

![Graph showing expected relative uncertainty for various processes](image)
The challenges ahead

• Nucleon structure: parton distributions (U.Klein, J.P.Lansberg)
 • Precision on large-\(x\), highest-\(Q^2\), flavor decomposition
 • Reliable quantification of uncertainties (theory and experiment)
 • Ultimate precision on theory framework

• Establish three-dimensional nucleon structure (D. Boer)
 • Spin-dependent parton distributions
 • Transverse-momentum structure
 • Semi-inclusive observables
The challenges ahead

- Understand and predict hadronic cross sections (T. Pierog, D. Boer)
 - Soft production mechanisms in vacuum and QCD medium
 - Interplay with heavy-ion physics (U. Wiedemann, J. Stachel, T. Galatyuk)
 - Quantitative input for high-energy cosmic radiation, neutrino physics

- QCD predictions at strong coupling (H. Wittig)
 - Lattice QCD: improvements and novel applications
 - New methods and approaches
 - Towards first-principles understanding of parton-hadron transition, confinement
The challenges ahead

• Targeted precision studies at low energies (K. Kirch)
 • Searches for new physics: QCD θ-term (strong CP-problem), charge radii
 • Antimatter spectroscopy
 • Exotic bound states: hadronic atoms, multi-quark states
 • QED-QCD interplay: hadronic vacuum polarization, light-by-light scattering

• Better exploit synergies between QCD at weak and strong coupling
QCD at future facilities

- Highest-precision QCD program at FCC-ee (D.d’Enteria)
 - Precision measurements, hadronization, light and heavy flavour spectroscopy

- High-energy frontier: HL-LHC and FCC-hh (G.Salam)
 - Precision QCD predictions crucial to all aspects of physics exploitation
 - Open up new kinematical regimes for QCD studies

- Specific precision experiments (K.Kirch)
 - MuOnE, PSI muon and neutron programs
QCD at future facilities

• Lepton-hadron collisions from low to high energies
 (D. Boer, U.Klein)
 • Elastic, inelastic and deeply inelastic scattering on fixed targets at
 PBC@CERN (COMPASS++/AMBER): nucleon interactions and
 structure
 • Medium energy range US-based EIC project: 3D nucleon structure
 • High-energy frontier LHeC, FCC-eh: ultimate precision on PDF and
 QCD studies

• Fixed-target hadron physics program
 (G.Schnell, J.P.Lansberg)
 • PBC@CERN (DIRAC++, COMPASS++): spectroscopy, hadron structure
 • Fixed target at HL-LHC: benchmark processes
Aspirations of the QCD research community

• Optimal scientific exploitation of present and future measurements
 • QCD effects are ubiquitous in all areas of particle and astroparticle physics
 • Strive for highest accuracy and robustness in description and understanding

• Understanding of the strong interaction
 • Map out nucleon structure
 • Aim for first-principles predictions at strong coupling

• Large scientific diversity as a major strength
 • Fruitful interplay between research at strong and weak coupling