Technological challenges of particle physics experiments

Open Symposium – Update of the European Strategy for Particle Physics

Granada, May 13, 2019

Francesco Forti, INFN and University, Pisa
Disclaimer

• Lots of input from the community, but views expressed are my own.
 • And even more so are the provocations.

• Parallel session on detector R&D will be essential to discuss and reach clear conclusions
Tool-driven revolutions

The importance of detector development
Measurements and discoveries

Galileo Galilei
• Measure what can be measured, and make measurable what cannot be measured.

Freeman Dyson
• The effect of a concept-driven revolution is to explain old things in new ways.
• The effect of a tool-driven revolution is to discover new things that have to be explained.
Two examples of enabling technologies

Silicon Vertex Detectors @ LEP

- At the time of TDRs, silicon detectors were still in development (1983)
- They have enabled secondary vertices and a large fraction of LEP physics

Timing Detectors @ HL-LHC

- Timing Detectors where not included in initial ATLAS/CMS upgrade projects (2015)
- Hopefully will provide powerful tool to reduce pileup and increase effective luminosity
Detector R&D questions

Focus
- Generic
- Guided

Coordination
- Distributed
- Centralized

Human factor
- Recruiting
- Training
- Recognition
R&D Focus

• 70-20-10 guideline:
 • 70% on NOW – current detectors
 • 20% on NEXT – future detectors
 • 10% on HORIZON – blue sky R&D

• NOW and NEXT should be driven by well defined or prospective requirement

• HORIZON should be driven by technology and what’s possible
 • Need more connection to other fields

• % of what resources? Money, time
R&D Coordination

• Expertise is distributed in many institutions
• git model
 • Distributed effort, but with full information exchange
 • Essential to have flexible collaboration network
• Coordination in large labs important for
 • Ideas exchange
 • Technical support
 • Synergy and optimization
 • Data repository
 • Tools
CERN RD Projects

- Good examples of coordination towards common goals
- RD42 – Diamond detectors
- RD50 – Silicon radiation hard devices
- RD51 – Micropattern gas detectors
- RD53 – Pixel readout chip for ATLAS and CMS
- ...and several others in the past
- In general, large collaborations of interacting institutes.
- Good model, but
 - Focus can be lost and people just “keep going”
 - regular reassessment important.
 - Resources always a problem – especially people.
- CERN is central, but support needed from other labs and agencies
Humans

• The current career model just doesn’t work very well
 • Except for very few geniuses, one cannot be expert and innovative simultaneously in physics analysis, detectors, computing, teaching, outreach....

• Recruiting: if you fail discovering new physics you can start develop a new detector
 • Essential to attract brilliant young physicists to detector R&D

• Training: go in the lab and get that piece of hardware to work
 • Education and expertise transfer necessary to maintain knowledge and capabilities

• Career: this guy only knows about detectors, should we really hire him/her?
 • Career opportunities for detector physicists must be greatly strengthened and kept open in a systematic way
Humans

• The current career model just doesn’t work very well is broken
 • Except for very few geniuses, one cannot be expert and innovative simultaneously in physics analysis, detectors, computing, teaching, outreach....

• Recruiting: if you fail discovering new physics you develop a new detector
 • Essential to attract brilliant young physicists

• Training: go in the lab and get that
 • Education and expertise transfer necessary to maintain knowledge and capabilities

• Career: this guy only knows about detectors, should we really hire him/her?
 • Career opportunities for detector physicists must be greatly strengthened and kept open in a systematic way

May 13, 2019
F.Forti, Technological Challenges
Long R&D Process

• New findings for Leonardo’s anniversary
Long R&D Process

D. Contardo, parallel session

Technology innovation - incremental continuous process

Engineer devices for applications/production - continuous process

Engineer Systems

Technical Design Review ▼ Choice of technologies for experiment
Demonstrators ▼ Prototypes

Production

Upgrades

Physics

Research & Development

1990 LHC DRDC

LHCC first beams - HL-LHC R&D white paper 2008

2026 HL-LHC first beams

Typical HEP program timeline (R&D in blue)
R&D timescale is ≃ 10 years, approved experimental programs are natural...
Technology

- It’s a long long long time to market. For instance
 - CMOS image sensor invented in the early ‘90
 - CMOS MAPS for charged particles started around 1999

- Technology tracking and connection with industry
 - HEP is not driving the technology, but can develop new ideas and innovative applications
 - Need to go beyond the client-supplier model – for the most part we are small clients
 - Develop more collaboration mechanisms between scientists and industry

- Technology transfer and societal impact
 - Strive to look outside our niche (ATTRACT example)
 - Good discussion points for the parallel session
Technological challenges

A personal view trying to identify challenges
Looking more at future than current programs
Different environments

- Colliders and fixed target
 - Hadron / lepton / lepton-hadron collider detectors
 - Fixed target experiments
- Elusive particles
 - Accelerator neutrinos near and far detector
 - Reactor neutrinos
 - Low energy high sensitivity (0ν2β, g-2, EDM, ...)
- Astro-particle and cosmology
 - Dark matter detectors
 - Cosmic rays (charged, gamma)
 - Cosmic neutrinos
 - Gravitational waves
 - Satellite experiments
- Extremely different requirements
- Many possible synergies based on technology development
- More cross-field communication is important
Micro Pattern Gas Detectors

- Very active field. Good coordination through RD51
- Future directions:
 - Resistive materials and architectures
 - Fast and precise timing
 - New materials and technologies
 - Hybrid detectors
- Challenges
 - Granularity
 - Time resolution
 - Large area, Large volume
- Reliability of industrial production still to be optimized for large surfaces
- Many applications, for instance treatment plans
Tracking with Silicon

- Great successes of silicon sensors
- Main challenges:
 - Granularity
 - Speed
 - Reduced material
 - Radiation resistance
- Large effort in many directions
- Smart detectors → measure direction
- CMOS MAPS most active development
 - Interesting for applications like proton radiography
 - Can be thinned to become flexible
 - Can be stitched to cover large area

Wafer-scale stitched imaging sensor with an active area of 140x140 mm [N. Guerrini, RAL].
Calorimetry

• Many techniques, depending on application
 • Crystal - Ultimate resolution, especially for low energy
 • Scintillator (sampling)
 • Liquid Noble Gas - Intrinsic rad hardness
 • Particle flow calorimetry
 • Silicon-tungsten 5D measurement

• Challenges:
 • Photon detection
 • High granularity
 • Large volumes and mass
 • Possibility of dual readout
Particle Identification

- Crucial element for flavour physics
- RICH, Focusing Aerogel RICH
- Time of Propagation Counter, TORCH (timing)

- Challenges
 - Timing resolution
 - Quartz polishing
 - Mechanical system

Example of Cherenkov-photon paths for 2 GeV/c π^\pm and K^\pm.
Timing

- Fast development of precise timing sensors
 - Reconstruction in calorimeter
 - Time of flight and time of propagation (PID applications)
 - Pileup rejection in HL-LHC
- Low Gain Avalanche Device:
 - 30 ps possible
- Challenges:
 - Radiation hardness
 - System aspects of timing

Low Gain Avalanche Detectors (LGADs)
- n-on-p planar silicon layer with additional p-layer for moderate gain (10-50)
- Time resolution < 30 ps before irradiation
- Thin (base line 50 μm) => small rise μR
- R&D program to provide sensors with equivalent time resolution, radiation hardness and fine segmentation
- New doping materials, substrates and geometries
- Prototypes tested from CNM, HPK, BNL, FBK
- >1000 single pad sensors tested
- Several 5x5 and 15x15 sensors tested. Very uniform leakage current and breakdown voltage

Radiation damage on LGADs
Electronics

- Crucial role in all systems
 - ASIC – engineering bottleneck
 - FPGAs – COTS or custom boards
 - Firmware – pervasive and often critical
 - High speed links and optoelectronics

- Challenges:
 - Industry-driven technology
 - Expertise critical mass required
 - Cross-experiment collaboration mandatory
 - Huge cost of engineering runs

- Comments:
 - Scaling is not stopping any time soon
 - No longer your dad’s transistors, maybe other uses
 - Interconnect and Through Silicon Vias next frontier
Trigger and DAQ

- Critical for high luminosity accelerators
- Delicate compromise between physics and bandwidth

Challenges
- Best use of technology evolution
- Use special feature of detector and hardware acceleration (AM, FPGA, GPUs)
- How to handle non standard physics
 - Long lived particles
 - Magnetic monopoles
 -

Minimize data flow bandwidth by using multiple trigger levels and regional readout (RoI)

Allow large data flow bandwidth. Invest in scalable commercial network and processing systems

Real time align&calib
Expand physics program by not saving the raw data.
Radiation

- Radiation resistance considerations are omni-present in detectors
- Huge progress in identifying materials and design techniques
- Next accelerators might increase the radiation level by more than a factor 10-100
 - FCC
 - Muon collider
- Solutions are not in hand today
Detector systems

Many challenges

• Mechanical support
 • Material reduction, Advanced materials
 • Non conventional uses of materials
 • Mechanical stability

• Cooling
 • Dual phase, microchannels

• Cables and power distribution
 • Energy efficiency, Serial powering
 • Cable plant and material
 • Wireless transmission

• Experiment magnets
 • New Superconductive materials
 • What if we can have higher fields?

• Project management, engineering support
Neutrinos

- Near, far, and reactor detectors
- Water vs scintillator vs Liquid gas
- Challenges: large mass, radio purity, photomultipliers / photodetectors
- Example the technological breakthrough from industry
 - Insulation technique from naval industry

HyperK
- 260 kton ultrapure water
- 190 kton fiducial mass: 10×SK

DUNE
- 40 kton Liquid Argon Time Projection Chamber (LArTPC)

JUNO
- Acrylic sphere: $D=35.4\,\text{m}$
- Stainless steel latticed shell: $D=40.1\,\text{m}$
- Water pool: $43.5\,\text{m}$

ProtoDUNE
- Single phase
- Double phase

May 13, 2019
F. Forti, Technological Challenges
Dark Matter and known unknowns

- Large mass total adsorption.
- Challenges
 - Active Shielding for Background rejection
 - Mass, Radio purity,
 - Photo detectors

- Large cryogenic infrastructure
- Large mass of LAr (depleted) / Lxe
- Dual phase operation

DARWIN: Dual phase Lxe TPC

- Cryogenics & purification, DAQ
- LAr-TCP (40 t)
- 165 K
- Cathode bottom PMTs
- Top PMTs
- Cryostat

LAr Veto (DUNE-Like)

DarkSide-20k
Photon detectors

- Photon detection is key to many detection systems
- PMT, APD, SiPM, LAPPD, VacuumSiPMTube

Challenges:
- Quantum efficiency
- Spectral response
- Speed
- Noise

Large Area Picosecond Photo Detectors

- Use Atomic Layer Deposition (ALD) Coating to Convert Glass Capillary Arrays into MCPs

Fused silica window with photocathode on inside surface
20 cm x 20 cm MCPs, spacers
Strip line anode and signal readout
Voltage tab
Gravitational Waves

- Observation of GW opens new challenging field
 - Ten binary black holes and a binary neutron star coalescences so far
 - Huge coordination effort for multi-messenger astronomy
- Einstein telescope is the next ambitious project to increase sensitivity
- Strong synergies with HEP
 - Underground facilities
 - Vacuum technology
 - Cryogenics
 - Controls and automation
 - Electronics and DAQ
 - Computing
 - Governance of world-wide efforts
Quantum mechanics

- Use of quantum coherence effect in sensors is becoming reality
 - Go beyond fundamental limits in sensitivity → Axions, Dark Matter
 - Exploration of unknown unknowns
- Connection with condensed matter physics
- Technology from HEP can be helpful to quantum physics
 - Hi Q in RF cavities to improve coherence time of QUbits

- Also: quantum dots for 0ν2β

- Quantum non demolition measurement can do much better in counting photons
 - Excite cavity with axion and then count photons with QND

Quantum non demolition (QND) can do much better than SQL amplifiers to measure photon number

Number operator commutes with Hamiltonian, but...

Proposed for axion search:
Lamoreaux, Lehnert, et al., 2013,
Zheng, Lehnert, et al., 2016

D. Schuster et al., 2007

\[
\psi = \cos \frac{\theta}{2} |0\rangle + \sin \frac{\theta}{2} e^{i\phi} |1\rangle
\]

Phase space area is still 1/2 but is squeezed in radial (amplitude) direction. Phase of wave is randomized.

A. Romanenko - Fermilab

Environmental impact

- More attention to environmental impact of HEP experiments and activities is needed
- Alternative gases with reduced GWP
- Radioactive waste control and reduction
- Energy efficiency and carbon footprint of operation
 - Including buildings, meetings and travel

Guida@VCI2019
Detector type

Very large detector volume

GHG consumption (a.u.)

<table>
<thead>
<tr>
<th>Gas</th>
<th>GWP - 100 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_2$H$_2$F$_4$</td>
<td>1430</td>
</tr>
<tr>
<td>CF$_4$</td>
<td>7390</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>22800</td>
</tr>
</tbody>
</table>

Very Large detector volume

Input to the European Strategy Update: Ensuring the Future of Particle Physics in a More Sustainable World

We live... proposals, and should expect to see evidence that energy consumption has been properly estimated and minimized.

May 13, 2019
F.Forti, Technological Challenges
The importance of simulation

• Simulation is essential for the detector design process
 • Indispensable for detector and system optimization.
 • Can avoid costly mistakes and save huge amounts of money.

• Simulations are also used to deconvolve detector response from actual measurement to access the underlining physics
 • Done in many different ways, more or less explicitly
 • Accuracy is of paramount importance
 • Artifact creation and interpretation mistakes can be very damaging

Example from image processing
Summary and take away message

• Tool-driven revolutions: detector are our tools
• 70-20-10 model: need to support also blue sky R&D. It’s a long process.
• git model: distributed, but with strong coordination
• We are only human and need to eat: jobs in detector R&D.
• Directions: there are many promising developments.
• Grow stronger bi-directional connections with industry and society.
• Invest in the people and in the murky future
Some references

• A.Marchioro – CERN Seminar May 3, 2019
• ESPPU submissions (#)
• VCI2019 - The 15th Vienna Conference on Instrumentation
• ICHEP 2018: Internation Conference on High Energy Physics (especially D.Bortoletto’s talk)
• PM2018 - 14th Pisa Meeting on Advanced Detectors
• EPSHEP-2017 – EPS Conference on HEP 2017