Plan of the talk:
• UHECR Cosmic Ray Physics
• Multi-Messenger Astroparticle Physics
• Particle Physics Connection
The puzzle of UHECR

Need accelerator of size of Mercury orbit to reach 10^{20} eV with LHC technology

- Source of cosmic rays
- Acceleration mechanisms of cosmic rays
- Propagation processes of cosmic rays
- Interaction physics and cross-sections at $\sqrt{s_{pp}} > 100$ TeV

Hillas plot (1984)
Ultra-High Energy Cosmic Rays

Equivalent c.m. energy $\sqrt{s_{pp}}$ (GeV)

Scaled flux $E^{2.5} J(E)$ (m2 s$^{-1}$ sr$^{-1}$ eV$^{1.5}$)

- HERA (γ-p)
- RHIC (p-p)
- Tevatron (p-p)
- 7 TeV LHC (p-p)
- 13 TeV LHC (p-p)
- 100 TeV FCC (p-p)

R. Engel et al., ARNPS 61, 2011, 467
Ultra-High Energy Cosmic Rays

R. Engel et al., ARNPS 61, 2011, 467
UHECR: \(>10^{15} \text{ eV} \); Air-Shower Measurements

First, high energy interaction: LHC
+ multiparameter measurements EAS

Secondary interactions: Fix target experiments
+ multiparameter measurements EAS

EAS measurement and reconstruction:
• energy ?
• mass ?
• arrival directions ?
• interaction mechanism ?
Measurement Techniques of Air Showers

- First interaction (usually several 10 km high)
- Air shower evolves (particles are created and most of them later stop or decay)
- Some of the particles reach the ground
- Measurement of Cherenkov light with telescopes or wide angle pmts
- Measurement with scintillation counters
- Measurement of low energy muons with scintillation or tracking detectors
- Measurement of high energy muons deep underground
- Measurement of fluorescence light
Galactic Cosmic Rays: standard picture (charge dependent knees)

Acceleration of cosmic rays in supernova remnants

Propagation through galaxy $(B \approx 3 \mu G?)$

Direct or indirect measurement

Affirmation by H.E.S.S. Nature 531, 476 (2016)
KASCADE: energy spectra of single mass groups

Searched:
E and A of the Cosmic Ray Particles

Given:
N_e and N_μ for each single event

⇒ solve the inverse problem

\[
\frac{dJ}{d \lg N_e \, d \lg N_\mu} = \sum_A \int_{-\infty}^{+\infty} \frac{dJ_A}{d \lg E} \, p_A(\lg N_e, \lg N_\mu \mid \lg E) \, d \lg E
\]

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25
KASCADE-Grande: transition to extragalactic origin

- steepening (knee) due to heavy primaries (3.5σ) ➔ charge dependent knees
- hardening (ankle) in light spectrum (5.8σ) ➔ onset of extragalactic CR?

Phys.Rev.D (R) 87 (2013) 081101
Dependence on Hadronic Interaction Models

- Spectra of heavy primary induced events based on different interaction models
- Relative abundances different for different high-energy hadronic interaction models

Protons: $E_{\text{lab}} = 8 \times 10^{18}$ eV

- Simulated pseudorapidity distributions for pp interactions
- Significant differences in models

Advances in Space Research 53 (2014) 1456

D‘Enterria, Pierog, JHEP 08 (2016) 170
Main Experiments 10^{16}-10^{18}eV

KASCADE-Grande

IceTop (IceCube)

HEAT

TALE

Tunka
Measurement Techniques of Air Showers

KASCADE-Grande
IceTop
Tunka
HEAT/TALE

First interaction (usually several 10 km high)

Air shower evolves (particles are created and most of them later stop or decay)

Some of the particles reach the ground

Measurement of Cherenkov light with telescopes or wide angle pmts

Measurement with scintillation counters

Measurement of fluorescence light

Measurement of low energy muons with scintillation or tracking detectors

Measurement of high energy muons deep underground

Measurement of particles with tracking detectors or calorimeters
- Structures of all-particle spectra similar (in the level of 15%)
- composition results are still uncertain
Light and Heavy Knees, Ankles, and Transition

Most probable rigidity dependent knees (A component)

(galactic) B-component needed to explain all-particle spectrum

Highest energy extragalactic (Auger) (mass dependent) Anisotropies in arrival direction?

⇒ One has to understand the transition region to understand the UHECR

Strategy:

Multi-component analyses = Combine data of various experiment to
• Validate \ improve hadronic interaction models
• Validate astrophysical models
Extragalactic Cosmic Rays

\[p + \gamma_{2.7K} \rightarrow \Delta^+(1232) \]
\[\rightarrow p + \pi^0 \rightarrow p\gamma\gamma \]
\[\rightarrow n + \pi^+ \rightarrow pe^+\nu \]

GZK-Cutoff
\[p + \gamma_{\text{CMB}} \rightarrow p + \pi^0 \ (>50\text{EeV}) \]
\[\gamma_{3\text{K}} (400 \text{ cm}^{-3}) \]

Acceleration mechanism is unknown (strong extragalactic processes which happen very close are necessary)
Pierre Auger Observatory

Photo: Steven Saffi
Hybrid Events

$E \sim 2 \times 10^{19} \text{eV}$

$\theta = 63^\circ$
Telescope Array
UHECR: Energy Spectrum

- ankle feature with very high precision
- flux suppression
- very rare events above 10^{20} eV
- at highest energies difference in hemispheres?

R. Alves Batista et al., MIAPP 2019, 1903.06714
UHECR: Energy Spectrum Interpretation

A) p-dominated “dip” scenario

B) sources accelerate to maximum rigidity (“tired” sources)

C) (mostly) photo-disintegration, energies shifted down

⇒ Composition needed!
Composition: mean depth and rms of shower maximum

- Composition is getting heavier with energy
- Measurements only applicable up to 50 EeV due to statistics
- Absolut composition scale model dependent
Arrival Distribution: Anisotropies at different scales

- Indications for anisotropy
- Correlation with catalogues: best for Starburst-Galaxies

Dipole above 8 EeV with 5.2σ and an amplitude of 7%

⇒ Particles are indeed of extragalactic origin

Arrival Distribution: Dipole at E > 8 EeV

Deflection of UHECR in magnetic fields:

\[\delta \approx 3^\circ \frac{B}{3 \mu G} \frac{L}{kpc} \frac{6 \times 10^{19} eV}{E/Z} \]

Arrival directions follow mass distribution of near-by galaxies (2MASS Redshift Survey)
Anisotropy at highest energies ($E > 6 \cdot 10^{19} \text{ eV}$)

- Hotspots found
- Distribution not directly correlated with matter distribution in close Universe
- Deflection in magnetic fields?

\[E > 6 \times 10^{19} \text{ eV} \]

UHECR world data set

\[\text{UHECR world data set} \]

- Virgo Cluster ($D=20\text{Mpc}$)
- Ursa Major Cluster ($D=20\text{Mpc}$)
- Perseus-Pisces Supercluster ($D=70\text{Mpc}$)
- Centaurus Supercluster ($D=60\text{Mpc}$)
- Eridanus Cluster ($D=30\text{Mpc}$)
- Fornax Cluster

Dots: 2MASS catalog Heliocentric velocity $<3000 \text{ km/s} \ (D<\sim 45\text{Mpc})$

Ogio et al. ISVHECRI 2018
Strategy: source identification by arrival distribution

- Assumption of sources
- Simulation of propagation
- Galactic magnetic field as spectrometer to fit GMF models

\[\delta \approx 3^\circ \frac{B}{3 \mu G} \frac{L}{kpc} \frac{6 \times 10^{19} eV}{E/Z} \]

\(\Rightarrow \) composition and magnetic fields have to be known
(for composition determination the interaction physics have to be known)
Next: AugerPrime

- Scintillators (3.8 m²) and radio antenna on top of each array detector
- Composition measurement up to 10^{20} eV
- Composition selected anisotropy
- Particle physics with air showers

• Installation finished 2021
• Operation AugerPrime until 2030

⇒ Composition!

(AugerPrime design report 1604.03637)
• 500 new SDs with 2.08 km spacing and TA SDs cover 4×TA SD detection area (~3000 km²)
• 2 new Fluorescence Detector (FD) stations (4+8 HiRes Telescopes)
• First light was observed by north FD station
• Construction of south FD station is ongoing

• ➔ Statistics!!
200,000 km² arranged in ~10 independent arrays across the globe

Strong support from China; prototype until 2021 in China

Sensitive to Neutrinos and UHECR

→ Statistics!! + EHE Neutrinos
JEM-EUSO

International Space Station (ISS)

UV photon

Extensive Air Shower (EAS)

#Particles
EUSO-SPB2

→ Statistics!! + EHE Neutrinos
GCOS = Global COSmic ray observatory

p-astronomy with sources

- Global, few sites, N+S
- ca. 90,000 km² (x30 Auger)
- Optimal detector for composition sensitivity
UHECR: Exposure

.....higher statistics!!! (we cannot change the luminosity...)

R. Alves Batista et al., MIAPP 2019, 1903.06714
Multi-Messenger Astroparticle Physics

The multi-messenger era:
- Cosmic rays, detected in 1912
- Gamma rays, detected in ~1950
- High-energy neutrinos, detected in 2013
- Gravitational waves, detected in 2015

Learn more about the High-Energy Universe by combining information from the different tracers

3000 authors / 70 observatories
Astrophys.J. 848 (2017) 2, L12
CR observatories are also Neutrino Detectors

the first EeV-neutrino should be ‘just around the corner’
The Dawn of Multi-Messenger Astroparticle Physics

Astrophys.J. 848 (2017) 2, L12
Multi-Messenger Astroparticle Physics

- Study the high-energy Universe
- Explore the correlation / connection between various tracers
Strategy:
● long-term operational observatories for ‘Shower-Measurements’
● synergies in detection technologies
● synergies in simulation and reconstruction of showers (Big Data Analytics)
● for MM-analyses common data format and access (Research Data Management)
● for Open Data common platforms (Data Curation)
Particle Physics

- Validity of hadronic interaction models
- Measuring cross sections
- Search for BSM physics

CORSIKA

CORSIKA: world-leading tool for air shower modeling
CORSIKA 8: global community effort to
- improve software
- improve shower simulations & hadronic event generators see talk Tanguy Pierog
- improve computational efficiency
- provide more flexibility for future experiments
- increase stability: debugging, testing facilities, automation
After exploiting pp collisions up to 13TeV it remains to study physics effects most relevant in EAS:

Nuclear effects of light ions:
Oxygen-proton, oxygen-oxygen collisions

Extrapolation from pp and PbPb systems to light ions is non-trivial and remains one of the large uncertainties in EAS simulations.

Planned in Run 3, see arXiv:1812.06772 [hep-ph]

Pions (mesons) as projectile particles:

By far most collisions in EAS are meson-air, the description of pion-air based on LHC pp data is the largest source of uncertainty in EAS simulations.

Tagging charge-exchange reactions where a O(0.1TeV) pion collides with a proton will be the most significant remaining help for CR physics.

Ralf Ulrich
Muon Deficit in Air Shower Simulations

\[z = \frac{\ln(N_{\mu}^{\text{det}}) - \ln(N_{\mu p}^{\text{det}})}{\ln(N_{\mu \text{Fe}}^{\text{det}}) - \ln(N_{\mu p}^{\text{det}})} \]

- **AMIGA [Preliminary]**
- **IceCube [Preliminary]**
- **NEVOD-DECOR**
- **Pierre Auger**
- **SUGAR**
- **Yakutsk [Preliminary]**
- **EAS-MSU\(^a\)**
- **KASCADE-Grande\(^a\)**
- **Expected from \(X_{\text{max}}\)**
- **GSF**

\(^a\) not energy-scale corrected

Dembinski et al., arXiv:1902.08124
Nevod / Decor

< \Sigma_N_{ph.e.} / D > \times 10^{-3} \text{ph.e.m}^2

\eta = 55 - 65^\circ

60 \text{events}
Beyond Standard Model

....of Acceleration

Most models of UHECR from exotic sources are ruled out:
- topological defects
- monopoles
- cosmic strings
- cosmic necklaces
- HE neutrinos create Z-bursts in resonant interactions
- ...

The particle showers produced by an ultrarelativistic monopole with similar energy deposit than UHECR, but different profile.

Fluorescence measurements

Auger, PRED 94, 082002 (2016)

Hot topic: Plasma Wakefield Acceleration in the Lab and in the Universe?
Cross-section

Glauber model (multiple scattering approximation)

(Ulrich, Auger, ICRC 2017)
Interaction physics:
→ higher energies, forward direction
→ validation of models
→ beyond standard model physics
→ (proton-proton) cross-sections

Technology:
→ detector developments
→ readout electronics
→ Monte-Carlo software
→ handling large infrastructures
→ computing models
→ Big Data Analytics

Society:
→ ‘FAIR’ data life cycle
→ outreach
→ education / training

→ Sources of UHECR
→ Understanding the high-energy Universe
→ UHE particle physics