CERN Council Open Symposium on the Update of European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

(UHE) Cosmic Ray Physics

B7 – neutrino physics (cosmic messengers)

Plan of the talk:

- UHECR Cosmic Ray Physics
- Multi-Messenger Astroparticle Physics
- Particle Physics Connection

#117: Auger #119: GRAND #014: NEVOD #084: APPEC

Andreas Haungs
Karlsruhe Institute of Technology
andreas.haungs@kit.edu

The puzzle of UHECR

Need accelerator of size of Mercury orbit to reach 10²⁰ eV with LHC technology

- Source of cosmic rays
- Acceleration mechanisms of cosmic rays
- Propagation processes of cosmic rays
- Interaction physics and cross-sections at $\sqrt{s_{pp}}$ > 100TeV

Ultra-High Energy Cosmic Rays

Ultra-High Energy Cosmic Rays

UHECR: >10¹⁵ eV; Air-Shower Measurements

+ multiparameter measurements EAS

Secondary interactions: Fix target experiments

+ multiparameter measurements EAS

EAS measurement and reconstruction:

- energy ?
- mass ?
- arrival directions?
- interaction mechanism?

Galactic Cosmic Rays: standard picture (charge dependent knees)

KASCADE: energy spectra of single mass groups

Searched:

E and **A** of the Cosmic Ray Particles **Given**:

 N_e and N_u for each single event

→ solve the inverse problem

$$\frac{dJ}{d\lg N_e \; d\lg N_\mu^{tr}} = \sum_A \int_{-\infty}^{+\infty} \frac{dJ_A}{d\lg E} \left(p_A(\lg N_e, \lg N_\mu^{tr} | \lg E) \right) d\lg E$$

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

KASCADE collaboration, Astroparticle Physics 24 (2005) 1-25

KASCADE-Grande: transition to extragalactic origin

- steepening (knee) due to heavy primaries (3.5σ)
 charge dependent knees
- hardening (ankle) in light spectrum (5.8σ) →
 onset of extragalactic CR?

Phys.Rev.Lett. 107 (2011) 171104 Phys.Rev.D (R) 87 (2013) 081101

Dependence on Hadronic Interaction Models

KASCADE-Grande

Protons: $E_{lab} = 8 \times 10^{18} \text{ eV}$

- Spectra of heavy primary induced events based on different interaction models
- relative abundances different for different high-energy hadronic interaction models

- Simulated pseudorapidity distributions for pp interactions
- Significant differences in models

Advances in Space Research 53 (2014) 1456

European Strategy

D'Enterria, Pierog, JHEP 08 (2016) 170

Main Experiments 10¹⁶-10¹⁸eV

Cosmic Rays

- Structures of all-particle spectra similar (in the level of 15%)
- composition results are still uncertain

Light and Heavy Knees, Ankles, and Transition

Most probable rigidity dependent knees (A component)

(galactic) B-component needed to explain all-particle spectrum

Highest energy extragalactic (Auger)

(mass dependent) Anisotropies in arrival direction?

→ One has to understand the transition region to understand the UHECR

Strategy:

Multi-component analyses = Combine data of various experiment to

- Validate \ improve hadronic interaction models
- Validate astrophysical models

Extragalactic Cosmic Rays

$$p + \gamma_{2.7K} \to \Delta^{+}(1232)$$

$$\to p + \pi^{0} \to p\gamma\gamma$$

$$\to n + \pi^{+} \to pe^{+}v$$

GZK-Cutoff

$$p+\gamma_{CMB}$$
 -> $p+\pi^0$ (>50EeV)

γ3K (400 cm⁻³)

Acceleration mechanism is unknown (strong extragalactic processes which happens very close are necessary)

UHECR: Energy Spectrum

R. Alves Batista et al., MIAPP 2019, 1903.06714

- ankle feature with very high precision
- flux suppression
- very rare events above 10²⁰ eV
- at highest energies difference in hemispheres?

UHECR: Energy Spectrum Interpretation

- A) p-dominated "dip" scenario
- B) sources accelerate to maximum rigidity ("tired" sources)
- C) (mostly) photo-disintegration, energies shifted down
 - **→** Composition needed!

Composition: mean depth and rms of shower maximum

19

18.5

Ig(E/eV)

19.5

J. Bellido,

ICRC 2017

20.5

Auger,

20

- applicable up to 50 EeV due to statistics
- Absolut composition scale model dependent

0

17.5

0.4

0.2

Arrival Distribution: Anisotropies at different scales

Pierre Auger and TA Collaborations, ApJ 794 (2014) 2, 172

- Indications for anisotropy
- Correlation with catalogues: best for Starburst-Galaxies

Pierre Auger Collab., Astrophys.J. 853 (2018) L29

Arrival Distribution: Dipole at E > 8 EeV

Dipole above 8 EeV with 5.2σ and an amplitude of 7%

→ Particles are indeed of extragalactic origin

Science 357 (2017) 1266

European Strategy

Deflection of UHECR in magnetic fields:

$$\delta \simeq 3^{\circ} \frac{B}{3 \,\mu G} \frac{L}{kpc} \frac{6 \times 10^{19} eV}{E/Z}$$

Arrival directions follow mass distribution of near-by galaxies (2MASS Redshift Survey)

Anisotropy at highest energies ($E > 6 \cdot 10^{19} \text{ eV}$)

Huchra, et al, ApJ, (2012)
Dots: 2MASS catalog Heliocentric velocity <3000 km/s (D<~45MpC)

Ogio et al. ISVHECRI 2018

- Hotspots found
- Distribution not directly correlated with matter distribution in close Universe
- Deflection in magnetic fields?

Strategy: source identification by arrival distribution

Assumption of sources

European Strategy

- Simulation of propagation
- Galactic magnetic field as spectrometer to fit GMF models M. Unger & G. Farrar et al. 2017 & 2019
 - → composition and magnetic fields have to be known

(for composition determination the interactionphysics have to be known)

Next: AugerPrime

Radio antennas for inclined showers

- Scintillators (3.8 m²) and radio antenna on top of each array detector
- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers
 - Installation finished 2021
 - Operation AugerPrime until 2030
 - **→** Composition!

(AugerPrime design report 1604.03637)

Next: Telescope Array x 4

- 500 new SDs with 2.08 km spacing and TA SDs cover 4×TA SD detection area (~3000 km²)
- 2 new Fluorescence Detector (FD) stations (4+8 HiRes Telescopes)
- First light was observed by north FD station
- Construction of south FD station is ongoing
- → Statistics!!

Next: GRAND

European Strategy

#119: GRAND

- 200.000 km² arranged in ~10 independent arrays across the globe
- Strong support form China; prototype until 2021 in China
- Sensitive to Neutrinos and UHECR
 - → Statistics!! + EHE Neutrinos

SEMM → Statistics!! + EHE Neutrinos

EUSO-SPB2

GCOS = Global COSmic ray observatory

Auger TAx4 GRAND POEMMA

p-astronomy with sources

- Global, few sites, N+S
- ca. 90,000 km² (x30 Auger)
- Optimal detector for composition sensitivity

UHECR: Exposure

....higher statistics!!! (we cannot change the luminosity...)

Multi-Messenger Astroparticle Physics

The multi-messenger era:

- Cosmic rays, detected in 1912
- Gammy rays, detected in ~1950
- High-energy neutrinos, detected in 2013
- Gravitational waves, detected in 2015

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

OPEN ACCESS

Multi-messenger Observations of a Binary Neutron Star Merger*

LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-HXMT Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech-NRAO, TTU-NRAO, and NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT (See the end matter for the full list of authors.)

Received 2017 October 3; revised 2017 October 6; accepted 2017 October 6; published 2017 October 16

Abstract

On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The

3000 authors / 70 observatories Astrophys.J. 848 (2017) 2, L12

→ Learn more about the High-Energy Universe by combining information from the different tracers

see talk Marek Kowalski

CR observatories are also Neutrino Detectors

the first EeV-neutrino should be 'just around the corner'

AugerPrime 1604.03637

The Dawn of Multi-Messenger Astroparticle Physics

Multi-Messenger Astroparticle Physics

Particle flux multiplied by E²

$$E^2 \frac{\mathrm{d}N}{\mathrm{d}E} = E \frac{\mathrm{d}N}{\mathrm{d}\ln E}$$

Energy density per decade

$$\rho_{\text{decade}} = \int_{\text{decade}} E \frac{dN}{d \ln E} d \ln E$$

Energy density per decade similar in all three messenger particles

- Study the high-energy Universe
- Explore the correlation / connection between various tracers

Multi-Messenger Astroparticle Physics

Strategy:

- long-term operational observatories for 'Shower-Measurements'
- synergies in detection technologies
- synergies in simulation and reconstruction of showers (Big Data Analytics)
- for MM-analyses common data format and access (Research Data Management)
- for Open Data common platforms (Data Curation)

Particle Physics

- Validity of hadronic interaction models
- Measuring cross sections
- Search for BSM physics

CORSIKA: world-leading tool for air shower modeling CORSIKA 8: global community effort to

- improve software
- improve shower simulations & hadronic event generators see talk Tanguy Pierog
- improve computational efficiency
- provide more flexibility for future experiments
- increase stability: debugging, testing facilities, automation

LHC measurements for Cosmic Ray

After exploiting pp collisions up to 13TeV it remains to study physics effects most relevant in EAS:

Nuclear effects of light ions:

Oxygen-proton, oxygen-oxygen collisions

Extrapolation from pp and PbPb systems to light ions is non-trivial and remains one of the large uncertainties in EAS simulations.

Planned in Run 3, see arXiv:1812.06772 [hep-ph]

Pions (mesons) as projectile particles:

By far most collisions in EAS are meson-air, the description of pion-air based on LHC pp data is the largest source of uncertainty in EAS simulations.

Tagging charge-exchange reactions where a O(0.1TeV) pion collides with a proton will be the most significant remaining help for CR physics.

pp and PbPb data well described, but XeXe not!

Ralf Ulrich

Muon Deficit in Air Shower Simulations

Beyond Standard Model

....of Acceleration

Most models of UHECR from exotic sources are ruled out:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces
- HE neutrinos create Z-bursts in resonant interactions

•

....of Particle Physics e.g., Monopoles

The particle showers produced by an ultrarelativistic monopole with similar energy deposit than UHECR, but different profile.

→ Fluorescence measurements

Auger, PRED 94, 082002 (2016)

Hot topic: Plasma Wakefield Acceleration in the Lab and in the Universe?

Cross-section

(Ulrich, Auger, ICRC 2017)

Connection Cosmic Ray – Particle Physics

Interaction physics:

- → higher energies, forward direction
- → validation of models
- → beyond standard model physics
- → (proton-proton) cross-sections

Technology:

- → detector developments
- → readout electronics
- → Monte-Carlo software
- → handling large infrastructures
- → computing models
- → Big Data Analytics

Society:

- → ,FAIR' data life cycle
- → outreach
- → education / training
- → Sources of UHECR
- → Understanding the high-energy Universe
- → UHE particle physics

see talk Teresa Montaruli

45

#084: APPEC