

東京大学国際高等研究所 THE UNIVERSITY OF TOKYO INSTITUTES FOR ADVANCED STUDY

Dark Sectors and DM Models: from ultralight to ultra heavy

PMU INSTITUTE FOR INE PRISON

Hitoshi Murayama (Berkeley, Kavli IPMU) European Strategy Update for Particle Physics Granada, May 13, 2019

Many submissions

- SHiP
- Darkside
- Darwin
- NA64
- WISP with pulsed magnetic field
- LDMX@eSPS
- IAXO
- MAGIS atom interferometer
- and all the colliders!

galactic rotation curves

cluster of galaxies

Abell 2218 2.1B lyrs

cosmological scales

A THUR BORN

- a random density fluctuations $\sim O(10^{-5})$ more-or-less scale invariant $P(k) \propto k^{ns-1}$
- starts acoustic oscillation, amplified by gravitational attraction
- "knows" about everything between 0<z<1300
- $\Omega_{DM} = 0.25 \gg \Omega_{b} = 0.05$

Dark Matter is our Mom

without dark matter

with dark matter

Dark Matter is our Mom

without dark matter

with dark matter

World's largest 3D map of dark matter

She is our Mom, indeed!

Dim Stars? Black Search for MACHOs Holes (Massive Compact Halo Objects)

Dim Stars? Black Search for MACHOs HOLSE (Massive Compact Halo Objects)

Dim Stars? Black Search for MACHOs HOLLS (Massive Compact Halo Objects)

Not enough of them!

Dim Stars? Black

Search for MACHOs (Massive Compact Halo Objects)

Large Magellanic Cloud

Not enough of them!

Best limit on Black Hole dark matter

Niikura, Takada et al., to submit soon started from conversation between astronomers and particle physicists

A dense cadence HSC obs. of M31 to search for microlensing due to PBHs (just one night in Nov, 2015)

No detection \Rightarrow more stringent upper bound, than 2yr Kepler data (Griest et al.) Found many variable stars

 $M_{\rm PBH}$ [g]

Best limit on Black Hole dark matter

Niikura, Takada et al., to submit soon started from conversation between astronomers and particle physicists

A dense cadence HSC obs. of M31 to search for microlensing due to PBHs (just one night in Nov, 2015)

No detection \Rightarrow more stringent upper bound, than 2yr Kepler data (Griest et al.) Found many variable stars

 $M_{\rm PBH}$ [g]

Mass Limits "Uncertainty Principle"

- Clumps to form structure
- imagine $V = G_N \frac{Mm}{r}$ "Bohr radius": $r_B = \frac{\hbar^2}{G_N Mm^2}$
- too small $m \Rightarrow$ won't "fit" in a galaxy!
- m >10⁻²² eV "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

• We used to think

- We used to think
 - need to solve problems with the SM

- We used to think
 - need to solve problems with the SM
 - hierarchy problem, strong CP, etc

- We used to think
 - need to solve problems with the SM
 - hierarchy problem, strong CP, etc
 - it is great if a solution also gives dark matter candidate as an option

- We used to think
 - need to solve problems with the SM
 - hierarchy problem, strong CP, etc
 - it is great if a solution also gives dark matter candidate as an option
 - big ideas: supersymmetry, extra dim

- We used to think
 - need to solve problems with the SM
 - hierarchy problem, strong CP, etc
 - it is great if a solution also gives dark matter candidate as an option
 - big ideas: supersymmetry, extra dim
 - probably because dark matter problem was not so established in 80's

QCD axion

Can't do justice to many many ideas in the literature!

$\frac{n_{\rm DM}}{s} = 4.4 \times 10^{10} \text{ M}_{\rm DM}$ WIMP Miracle

$\frac{n_{\rm DM}}{2} = 4.4 \times 1$ WIMP Miracle $m_{ m DM}$

 $\langle \sigma_{2 \to 2} v \rangle \approx \frac{\alpha^2}{m^2}$ $\alpha \approx 10^{-2}$ $m \approx 300 \,\,\mathrm{GeV}$

correct abundance "weak" mass scale

DM

"weak" coupling "weak" mass scale

indirect detection

$\frac{n_{\rm DM}}{s} = 4.4 \times$ $\frac{s}{s}$ collider

 $m_{
m DM}$

"weak" coupling "weak" mass scale

• WIMP should be explored at least down to the neutrino floor

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV
- dark matter definitely exists

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV
- dark matter definitely exists
 - naturalness problem may be optional?

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV
- dark matter definitely exists
 - naturalness problem may be optional?
- need to explain dark matter on its own

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV
- dark matter definitely exists
 - naturalness problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV
- dark matter definitely exists
 - naturalness problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ 3TeV
- dark matter definitely exists
 - naturalness problem may be optional?
- need to explain dark matter on its own
- perhaps we should decouple these two
- do we really need big ideas like SUSY?
- perhaps not necessarily heavier but rather lighter and weaker coupling?

QCD axion

 $a \times B \rightarrow \gamma$ Use the effective coupling $\mathcal{L}_{eff} \sim \frac{e^2}{4\pi^2} \frac{a}{f_a} \vec{E} \cdot \vec{B}$

A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-Field Ring Apparatus

nstitute of Technology, LNS Special Seminar, October 30, 2018

- Start with a toroidal magnet with a fixed magnetic field B₀
- ADM generates an oscillating effective current around the ring (MQS approx: λ»R)
- … this generates an oscillating magnetic field through the center of the toroid
- Insert a pickup loop in the center and measure the induced current in the loop read out by a SQUID based readout

$$\Phi(t) = g_{a\gamma\gamma} B_{\max} \sqrt{2\rho_{\rm DM}} \cos(m_a t) \mathcal{G}_V V$$

Jonathan Ouellet

Phys. Rev. Lett. 117, 141801 (2016)

Ultralight scalar dark matter

DM coupling causes time-varying atomic energy levels:

DM coupling causes time-varying atomic energy levels:

Search for ALPS

After Inflation

1,000,000,001

matter

fraction of second later

matter anti-matter turned a billionth of anti-matter to matter

Universe Now

matter anti-matter This must be how we survived the Big Bang!

Universe Now

2 • us

> Gelmini, Hall, Lin (1987) Kaplan, Luty, Zurek, 0901.4117

dark matter dark anti-matter This must be how we survived the Big Bang!

Universe Now $m_{\rm DM} = \frac{n_b}{n_{\rm DM}} \frac{\Omega_{\rm DM}}{\Omega_b} m_p \approx 6 \text{ GeV} \times \frac{\eta_b}{\eta_{\rm DM}}$

2 • us

> Gelmini, Hall, Lin (1987) Kaplan, Luty, Zurek, 0901.4117

dark matter dark anti-matter This must be how we survived the Big Bang!

- motivation for I–I0 GeV dark matter
- signal depends on portal; new medium

Gelmini, Hall, Lin (1987) Kaplan, Luty, Zurek, 0901.4117

dark matter dark anti-matter This must be how we survived the Big Bang!

Zenith angle dependence (Multi-GeV) Up-going Down-going 100 Data (a) FC e-like χ^2 (shape) Number of Events 80 =2.8/4 dof 60 40 $O_{\rm P} = 0.93$ +0.13 -0.12 Down 20 +MC stat $\chi^2(shape)$ (b) FC µ-like + PC Number of Events 120 100 20 = 30/4 dof 79442 256 Down 50 139 (**6.2 J** 0 0 ωs₿ * Up/Down syst. error for *m*-like Prediction (flux calculation \$1%) 1.8% Energy calib. for 1 0.7% Data 2.1% Non V Background< 2%
neutrino mass too light for dark matter

1998 a half of expected

2. Production Mechanisms

2. Production Mechanisms

 $=4.4 \times$

 $m_{
m DM}$

 $n_{\rm DM}$

 \boldsymbol{S}

 $m \approx 300 \text{ GeV}$ WIMP miracle!

DM

DM

 $m_{
m DM}$

DM

DM

 $m \approx 300 \mathrm{MeV}$

 $m_{
m DM}$

SIMP miracle!

 m_{DM}

SIMPle

- Most gauge theories, $SU(N_c)$, $SO(N_c)$, $Sp(N_c)$ lead to Wess-Zumino term if $N_f \ge 2,3$
- $\mathcal{L}_{WZ} = \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^a \partial_{\mu} \pi^b \partial_{\nu} \pi^c \partial_{\rho} \pi^d \partial_{\sigma} \pi^e$
- 3to2 interaction automatically there
- strongly-coupled theory
- rich with resonances

DDO 154 dwarf galaxy

DDO 154 dwarf galaxy

can be explained if dark matter scatters against itself Need $\sigma/m \sim 1b$ / GeV

only astrophysical information beyond gravity

velocity dependence?

- cluster data prefer smaller σ ?
- near constant $\langle \sigma v \rangle$?
- Sommerfeld effect (S.Tulin, H.-B.Yu, and K.M. Zurek, arXiv:1302.3898)
 - requires light mediator
- near-threshold resonance can "fit" the data
- *i.e.*, $\pi\pi \rightarrow \sigma \rightarrow \pi\pi$
 - (Xiaoyong Chu, Camilo Garcia-Cely, Yonit Hochberg, Eric Kuik, HM)

M. Kaplinghat, S. Tulin, and H.-B. Yu, arXiv:1508.03339.

velocity dependence?

- cluster data prefer smaller σ ?
- near constant $\langle \sigma v \rangle$?
- Sommerfeld effect (S.Tulin, H.-B.Yu, and K.M. Zurek, arXiv:1302.3898)
 - requires light mediator
- near-threshold resonance can "fit" the data
- *i.e.*, $\pi\pi \rightarrow \sigma \rightarrow \pi\pi$
 - (Xiaoyong Chu, Camilo Garcia-Cely, Yonit Hochberg, Eric Kuik, HM)

 $\mathcal{L} = m_R g R D M^2$.

M. Kaplinghat, S. Tulin, and H.-B. Yu, arXiv:1508.03339.

vector portal

$$\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$$

high-lumi e⁺e⁻

high-lumi e⁺e⁻

high-lumi e⁺e⁻

portals

vector portal $\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$ collider, beam dump scalar portal $\mu SH^{\dagger}H, S^2H^{\dagger}H$ $H \rightarrow$ invisible, couplings neutrino portal $\bar{L}NH$ neutrino exp, dump

• Dark Matter exists, awaiting for discovery

- Dark Matter exists, awaiting for discovery
- In general, Dark Sector may exist, too

- Dark Matter exists, awaiting for discovery
- In general, Dark Sector may exist, too
- Very little clue on mass scales now

- Dark Matter exists, awaiting for discovery
- In general, Dark Sector may exist, too
- Very little clue on mass scales now
- WIMP still main paradigm, reach v floor

- Dark Matter exists, awaiting for discovery
- In general, Dark Sector may exist, too
- Very little clue on mass scales now
- WIMP still main paradigm, reach v floor
- many new ideas on lighter dark matter

- Dark Matter exists, awaiting for discovery
- In general, Dark Sector may exist, too
- Very little clue on mass scales now
- WIMP still main paradigm, reach v floor
- many new ideas on lighter dark matter
- colliders, beam dump, underground, cosmic rays, cavity, new technologies

- Dark Matter exists, awaiting for discovery
- In general, Dark Sector may exist, too
- Very little clue on mass scales now
- WIMP still main paradigm, reach v floor
- many new ideas on lighter dark matter
- colliders, beam dump, underground, cosmic rays, cavity, new technologies
- vibrant area and need more data!

• Emphasize again HL-LHC as 1st priority

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step
 - Higgs as a tool for new discoveries

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step
 - Higgs as a tool for new discoveries
 - too early to decide on option because of political uncertainties and resource issues

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step
 - Higgs as a tool for new discoveries
 - too early to decide on option because of political uncertainties and resource issues
 - maintain effort FCCee, CEPC, ILC, CLIC

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step
 - Higgs as a tool for new discoveries
 - too early to decide on option because of political uncertainties and resource issues
 - maintain effort FCCee, CEPC, ILC, CLIC
- Embrace dark matter as important science

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step
 - Higgs as a tool for new discoveries
 - too early to decide on option because of political uncertainties and resource issues
 - maintain effort FCCee, CEPC, ILC, CLIC
- Embrace dark matter as important science
 - recommend CERN to explore noncollider options

- Emphasize again HL-LHC as 1st priority
- Continue effort on neutrino
- Precision Higgs@e⁺e⁻ as the next step
 - Higgs as a tool for new discoveries
 - too early to decide on option because of political uncertainties and resource issues
 - maintain effort FCCee, CEPC, ILC, CLIC
- Embrace dark matter as important science
 - recommend CERN to explore noncollider options
- R&D on magnets, LC, future technologies

