Extended Higgs sectors and high-energy flavour dynamics: what we can expect from experiments

Philipp Roloff (CERN) 14/05/2019 Granada Conference Center

CERN Council Open Symposium on the Update of

European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

Physics Preparatory Group

Halina Abramowicz (Chair) Shoji Asai Bea Stan Bentvelsen Xino Caterina Biscari Krzy Marcela Carena Leo Jorgen D'Hondt Pari Keith Ellis Brig Belen Gavela Mar Gian Giurdice Antr

hair) Beate Heinemann Xinchou Lou Krzysztof Redlich Leonid Rivkin Paris Sphicas Brigitte Vachon Marco Zito Antonio Zoccoli

Francisco del Águila Antonio Bueno (Chair) Alberto Casas Nicanor Colino Javier Cuevas Elvira Gámiz María José García Borge Igor García Irastorza

Eugeni Graugés

Local Organizing Committee

Juan José Hernández Mario Martínez Carlos Salgado Benjamín Sánchez Gimeno José Santiago

https://cafpe.ugr.es/eppsu2019/ eppsu2019@pcgr.org

Topics of this presentation

This talk: prospects of future collider facilities in the following areas

Extended Higgs sectors:

- <u>Standard Model + real scalar singlet</u>: can lead to a strong 1st order EW phase transition
- <u>Two-Higgs doublet models:</u> heavy MSSM Higgs bosons as example
- <u>Doubly-charged Higg bosons:</u> exist in type-II seesaw models
- \rightarrow connection to neutrino masses

High-energy flavour dynamics:

- <u>FCNC effects in top-quarks physics</u>: decays and EFT analysis of high-energy processes
- <u>Leptoquarks</u>: renewed interest triggered by flavour anomalies

\rightarrow see the next talk by Veronica Sanz for the theoretical context

A few caveats

• The topics listed on the previous slide were chosen to well represent the input provided to the strategy process by the various future collider communities

 Results shown in the following are based on very different levels of sophistication: from generator-level estimates up to full detector simulations
 → differences will be mentioned if relevant

In some cases projections were not available from all collider options

 → physics capabilities typically most dependent on centre-of-mass energy
 and integrated luminosity (especially for lepton colliders)

- Unless stated explicitly, HL-LHC projections are for one experiment (3 ab⁻¹)
- Invisible and exotic Higgs decays (e.g. to new scalars), flavour physics at the Z pole covered in other presentations

Reminder: collider parameters

Collider	Туре	\sqrt{s}	𝒫 [%]	N(Det.)	\mathcal{L}_{inst}	\mathcal{L}	Time	
			$\begin{bmatrix} e & e^+ \end{bmatrix}$		$[10^{-7}]$ cm ⁻² s ⁻¹	[ab]	[years]	
HL-LHC	pp	14 TeV	-	2	5	6.0	12	
HE-LHC	pp	27 TeV	-	2	16	15.0	20	pp colliders
FCC-hh	pp	100 TeV	-	2	30	30.0	25	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	
		$2M_W$	0/0	2	25	10	1-2	
		240 GeV	0/0	2	7	5	3	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5	
		-					(+1)	
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1	ata- collida
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5	
							(+1)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	
		$2M_W$	0/0	2	10	2.6	1	
		240 GeV	0/0	2	3	5.6	7	
CLIC	ee	380 GeV	±80/0	1	1.5	1.0	8	
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8	
							(+4)	
LHeC	ер	1.3 TeV	-	1	0.8	1.0	15	
HE-LHeC	ep	2.6 TeV	-	1	1.5	2.0	20	ep colliders
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	

rs

'32 '40 240 GeV Ζ W CEPC 250 GeV ILC 500 GeV & 350 GeV Ζ 240 GeV 350-365 GeV FCC-ee W CLIC 380 GeV 1.5 TeV 3 TeV 1.3 TeV LHeC FCC-eh/hh 20/ab per exp. in 25 years HE-LHC 10/ab per exp. in 20 years 3/ab HL-LHC

arXiv:1905.03764

14/05/2019

Philipp Roloff

Standard Model + real scalar singlet

Potential for SM Higgs and a single real scalar:

$$V_0 = -\mu^2 |H|^2 + \lambda |H|^4 - \frac{1}{2} \mu_s^2 S^2 + \frac{1}{4} \lambda_s S^4 + \lambda_{HS} |H|^2 S^2$$

Higgs-singlet mixing:

 $h = h_0 \cos \gamma + S \sin \gamma$ $\phi = S \cos \gamma - h_0 \sin \gamma$

Indirect sensitivity: EFT fit by ECFA WG on Higgs at future colliders

Equivalence theorem: BR($\phi \rightarrow hh$) = BR($\phi \rightarrow ZZ$) = 25%

arXiv:1905.03764

Philipp Roloff

Extended Higgs & high-energy flavour

14/05/2019

Standard Model + real scalar singlet

Potential for SM Higgs and a single real scalar

$$V_{0} = -\mu^{2}|H|^{2} + \lambda|H|^{4} - \frac{1}{2}\mu_{s}^{2}S^{2} + \frac{1}{4}\lambda_{s}S^{4} + \lambda_{HS}|H|^{2}S^{2}$$

Higgs-singlet mixing: $h = h_0 \cos \gamma + S \sin \gamma$

 $\phi = S \cos \gamma - h_0 \sin \gamma$

Sensitivity from Higgs couplings:

c_H is overall scaling of the Higgs couplings (using sensitivity for this individual operator)

Sensitivity from EW precision observables:

S and T parameters derived from from $c_{\phi WB}$ and c_T (simultaneous fit of both operators)

Equivalence theorem: BR($\phi \rightarrow hh$) = BR($\phi \rightarrow ZZ$) = 25%

Facility	95% C.L. lumit on $sin^2\gamma$					
HL-LHC	0.034					
LHeC	0.013					
HE-LHC	0.018					
ILC 250 GeV	0.0073					
ILC 500 GeV	0.0050					
CLIC 380 GeV	0.0093					
CLIC 1.5 TeV	0.0048					
CLIC 3 TeV	0.0033					
CEPC	0.0046					
FCC-ee 240 GeV	0.0053					
FCC-ee	0.0046					
FCC-ee/-eh/-hh	0.0034					

SM + singlet: direct searches

Lepton colliders:

• CLIC study of $e^+e^- \rightarrow vv\phi$ (Delphes) at 1.5 and 3 TeV: $\phi \rightarrow hh \rightarrow b\overline{b}b\overline{b}$ most powerful channel

• $\mu^+\mu^- \rightarrow vv\phi; \phi \rightarrow hh$ studied on generator level for 5 $ab^{-1}at \sqrt{s} = 6$ and 20 $ab^{-1}at 14$ TeV (also valid for an e^+e^- collider based on novel accelerator techniques) Sec. 4.2 of CERN-2018-009-M JHEP 11,144 (2018)

Hadron colliders:

• Current LHC sensitivity dominated by $\phi \rightarrow ZZ$ search (36 ab⁻¹ at 13 TeV) JHEP 06, 127 (2018)

• Extrapolation using quark parton luminosities to HL-LHC (3 ab⁻¹ at 14 TeV), HE-LHC (15 ab⁻¹ at 27 TeV), FCC-hh (30 ab⁻¹ at 100 TeV) Sec. 6.1.4 of CERN-LPCC-2018-005 JHEP 11,144 (2018)

SM + singlet: precision Higgs

 e⁺e⁻ colliders provide significant improvement compared to hadron colliders NB: The lines for FCC-ee and CEPC are identical

SM + singlet: S and T

• Higgs couplings are better than S and T for all collider options NB: The EPWO curves for HL-LHC and LHeC are identical

SM + singlet: direct

• At HL-LHC, HE-LHC and CLIC direct and indirect searches provide complementary information NB: FCC-hh and the muon colldier will follow on the next slide

SM + singlet: high-mass region

Direct reach at FCC-hh better than precision Higgs couplings below 12 TeV

No mixing limit

Potential for SM Higgs and a single real scalar:

$$V_0 = -\mu^2 |H|^2 + \lambda |H|^4 - \frac{1}{2} \mu_s^2 S^2 + \frac{1}{4} \lambda_s S^4 + \lambda_{HS} |H|^2 S^2$$

Unbroken Z₂ symmetry:

no Higgs-singlet mixing \rightarrow new scalar escapes undetected

Sensitivity from Higgs couplings: limit on λ_{HS} from c_{H}

Direct sensitivity:

<u>Hadron colliders:</u> FCC-hh study of $pp \rightarrow \phi \phi j j$ using VBF jets (Delphes)

<u>Lepton colliders:</u> No projection for $e^+e^- \rightarrow \phi \phi e^+e^-$ or $\mu^+\mu^- \rightarrow \phi \phi \mu^+\mu^-$ avaiable yet JHEP 11, 127 (2014) Sec. 11 of CERN-ACC-2018-0056

No mixing: direct vs. indirect

NB: The lines for FCC-ee and CEPC are identical

Scalar searches using recoil method

• A lepton collider could search for new scalars with a small (but non-vanishing) coupling to the Z boson using the recoil technique:

$$M_{recoil}^2 = (\sqrt{s} - E_z)^2 - |\vec{p}_z|^2$$

 Studied for ILC at 250 and 500 GeV, but also possible at CEPC, FCC-ee and 380 GeV CLIC

 Less powerful at high energy (lower cross section, detector resolution, ISR & linear collider luminosity spectra) $2000 \text{ fb}^{-1} @ 250 \text{ GeV ILC}$ $30000 \xrightarrow{\text{O}} 0 \xrightarrow$

 $sin^{2}(\theta)$: cross section limit normalised to the cross section for a SM Higgs of the same mass

arXiv:1903.01629

Philipp Roloff

Heavy MSSM Higgs bosons

<u>Lepton colliders:</u> mass reach generally close to \sqrt{s} / 2 independent on tan β , e.g. using $e^+e^- \rightarrow H^+H^-$ or $e^+e^- \rightarrow AH$

<u>Hadron colliders:</u> access to the highest possible masses, benchmarks discussed in the following:

- A/H $\rightarrow \tau^+\tau^-$ at HL-LHC
- pp \rightarrow A \rightarrow ZH at HL-/HE-LHC
- MSSM Higgs bosons at FCC-hh

A/H $\rightarrow \tau^+ \tau^-$ at HL-LHC

Sec. 9.5 of CERN-LPCC-2018-04

14/05/2019

Higgs-to-Higgs decays at HL-/HE-LHC

Sec. 9.4 of CERN-LPCC-2018-04

"gg": gluon fusion "bb": bb-associated production

Benchmark points:

• Type-I and Type-II 2HDM in the alignment limit (lighter CP-even Higgs h has SM couplings) • $m_A - m_H = 100$ GeV and 200 GeV

Extrapolation of $A \rightarrow ZH$; $Z \rightarrow \ell^+ \ell^-$; $H \rightarrow b\overline{b}$ search from ATLAS Phys. Lett. B 783, 392 (2018)

For Type-II 2HDM the region of low β and and large m_H could be covered by: $A \rightarrow ZH; Z \rightarrow \ell^+ \ell^-; H \rightarrow t\bar{t}$

- ••••• HE-LHC sensitivity bb (27 TeV, 3 ab^{-1})
- - HL-LHC sensitivity bb (14 TeV, 3 ab^{-1})
- ••••• HE-LHC sensitivity gg (27 TeV, 3 ab^{-1})
- - HL-LHC sensitivity gg (14 TeV, 3 ab^{-1})
- ATLAS limit gg (13 TeV, 36.1 fb $^{-1}$)
- ATLAS limit bb (13 TeV, 36.1 fb^{-1})

14/05/2019

Philipp Roloff

MSSM Higgs bosons at FCC-hh

18

Doubly-charged Higgs bosons

- Type II seesaw: hadron colliders
- Type II seesaw: lepton colliders

19

Type II seesaw: hadron colliders

- Type II seesaw: new scalar triplet couples to SM leptons to produce the light neutrino masses (no sterile neutrinos)
- Doubly charged Higgs production in hadron collisions: pp $\to Z^*\!/\!\gamma^* \to H^{*+}H^{--}$ and pp $\to W^* \to H^{*+/-}H^{-/+}$
- Benchmark: $H^{++}H^{--} \rightarrow \tau_h \ell^{+/-} \ell^{-/+}; \tau^{\pm} \rightarrow \pi^{\pm} \nu$
- \rightarrow tau polarisation can help to discriminate between different heavy scalar mediated neutrino mass mechanisms

JHEP **09**, 079 (2018) Sec. 5.1 of CERN-LPCC-2018-005

 $M(H^{\pm\pm}) > 1930 \text{ GeV} / 2070 \text{ GeV}$ for NH / IH using 3 ab⁻¹ at 100 TeV (3 sigma)

14/05/2019

Philipp Roloff

Type II seesaw: lepton colliders

• Pair production cross section almost flat up to the kinematic limit: $e^+e^- \to H^{**}H^{--}$

Benchmark: triplet vev $v_{\Delta} = 10^{-2} \text{ GeV}$ $\rightarrow BR(H^{++} \rightarrow W^{+}W^{+}) = 100\%$ (cross section in VBF at LHC very small)

 CLIC study for 380 GeV and 3 TeV (Delphes) shows sensitivity almost up to the kinematic limit (also expected for other e⁺e⁻ colliders)

 \sqrt{s} = 380 GeV:

$e^+e^- \to H^{++}H^{} \to N_j \ge 7j$							
Mass (GeV)	n_s	$\mathcal{L}(\mathrm{fb}^{-1})$					
121	1.54	1054.14					
137	4.48	124.56					
159	10.48	22.76					
172	10.15	24.26					
184	2.69	345.48					

 \sqrt{s} = 3 TeV:

$e^+e^- \rightarrow H^{++}H^{} \rightarrow W^+W^+W^-W^- \rightarrow Nj_{\rm fat}$							
Masses (GeV)	$n_s (2, 3\text{-tagged } \mathcal{L} = 500 \mathrm{fb}^{-1}$)	$\mathcal{L}(\mathbf{fb}^{-1})$ (with 2,3-tagged)					
800	17.96(2-tag)	38.75					
1000	13.95(2-tag)	64.23					
1120	11.49(2-tag)	94.68					
1350	5.48(3-tag)	416.24					
1400	3.95(3-tag)	801.15					

 \rightarrow Luminosity for 5 σ discovery smaller than expectation at CLIC

NB: FCC-hh would be sensitive to $H^{++}H^{--} \rightarrow W^+W^+W^-W^$ below ~1.7 TeV for $v_{\Lambda} > 10^{-4}$ GeV JHEP 01, 101 (2019)

Phys. Rev. **D 98**, 015024 (2018) Sec. 7.1 of CERN-2018-009-M

14/05/2019

Philipp Roloff

High-energy flavour dynamics

- Top-quark FCNC: branching ratios
- Top-quark FCNC: Effective Field Theory
- Leptoquarks

Top-quark FCNC: t \rightarrow Hq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06 ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159 FCC-ee: Phys. Lett. **B755**, 25 (2017) FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056 FCC-eh and LHeC: BR(t \rightarrow Hu) from the process ep $\rightarrow v_e$ Hb; H \rightarrow bb

500 GeV ILC and 380 GeV CLIC:

A few million top decays near threshold, $H \rightarrow b\overline{b}$ decays used, best suited for decays with charm quarks

HL-LHC: Based on ATLAS studies using $H{\rightarrow}b\overline{b}$ and $H{\rightarrow}\gamma\gamma$

FCC-hh:

Large statistics allows usage of clean $H \rightarrow \gamma \gamma$ decays, combination of semi-leptonic and fully hadronic final states

14/05/2019

Philipp Roloff

Top-quark FCNC: t→Zq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06 ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159 FCC-ee: Phys. Lett. **B755**, 25 (2017) FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

FCC-ee:

BR(t \rightarrow Zq) from anomalous single top production: $e^+e^- \rightarrow Z^*/\gamma^* \rightarrow tq$ (tq) \rightarrow further improvement from combination of both energy stages possible

FCC-eh and LHeC:

 $BR(t{\rightarrow}Zq)$ from NC DIS production of single top quarks

HL-LHC: Based on ATLAS study for $t\bar{t} \rightarrow bWqZ \rightarrow b\ell vq\ell\ell$

FCC-hh: Estimate using HL-LHC projection

14/05/2019

Top-quark FCNC: t $\rightarrow \gamma q$ branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06 ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159 FCC-ee: Phys. Lett. **B755**, 25 (2017) FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

FCC-ee:

BR(t \rightarrow Zq) from anomalous single top production: $e^+e^- \rightarrow Z^*/\gamma^* \rightarrow t\overline{q}$ (tq)

FCC-eh and LHeC:

 $BR(t{\rightarrow}Zq)$ from NC DIS production of single top quarks

500 GeV ILC and 380 GeV CLIC:

A few million top decays near threshold, $H \rightarrow b\overline{b}$ decays used, best suited for decays with charm quarks

HL-LHC:

BR(t \rightarrow yu) and BR(t \rightarrow yu) from CMS study of single top production in association with a photon

FCC-hh:

Delphes study focussing on the boosted top regime ($p_{\tau} > 400 \text{ GeV}$)

14/05/2019

Philipp Roloff

Top-quark FCNC: t \rightarrow gq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06 ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159 FCC-ee: Phys. Lett. **B755**, 25 (2017) FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

Philipp Roloff

HL-LHC: BR(t→qu) a

BR(t \rightarrow gu) and BR(t \rightarrow gu) from CMS study of single top production

HE-LHC: BR(t \rightarrow gu) and BR(t \rightarrow gu) from CMS study of single top production

14/05/2019

Top-quark FCNC: t \rightarrow gq branching ratios

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06 ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159 FCC-ee: Phys. Lett. **B755**, 25 (2017) FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056 **HL-LHC:** BR(t \rightarrow gu) and BR(t \rightarrow gu) from CMS study of single top production

HE-LHC: BR(t \rightarrow gu) and BR(t \rightarrow gu) from CMS study of single top production

Conclusions:

• Complementary set of possible measurements in e⁺e⁻, ep and pp colliders

- Not all possibilities explored yet
- Generally improvements by 1-2 orders of magnitude compared to HL-LHC possible

14/05/2019 P

Philipp Roloff

Top-quark FCNC: EFT for HL-LHC

Sensitivity to top-quark FCNC effects can be studied using EFT

Input: limits on FCNC branching ratios, limits on $e^+e^- \rightarrow tj$ from LEP II

White marks: individual limits

Sec. 8.1 of CERN-LPCC-2018-06

14/05/2019 Phi

Philipp Roloff

Top-quark FCNC: $e^+e^- \rightarrow tj$ at CLIC

95% C.L. limits on top-quark FCNC operator coefficients

<u>Black arrows:</u> decays at CLIC (see slide X) <u>Red arrows:</u> current LHC <u>Magenta arrows:</u> HL-LHC projections <u>Dots:</u> CLIC without beam polarisation The high-energy runs significantly improve the sensitivity for "four-fermion" operators
e⁺e⁻ → tj much more powerful than the decays at high-energy lepton colliders

CERN-2018-009-M

14/05/2019 Philipp Roloff

Leptoquarks decaying to τ and b (1)

• CMS study of single and double leptoquark production (Delphes)

 5σ discovery significance for masses below 1.5 TeV (double production) and 1 TeV (single production)

CMS-PAS-FTR-18-028 Sec. 5.2.3 of CERN-LPCC-2018-005

14/05/2019

Philipp Roloff

Leptoquarks decaying to τ and b (2)

Sec. 3.3 of CERN-2018-009-M

NB: Background negligible in multi-TeV e⁺e⁻ collisions (2b2τ final states)

- $b \rightarrow c\tau v$ anomaly suggests rather light LQ that couples predominantly to the third generation fermions of the SM \rightarrow see talk by Veronica Sanz
- LQ pair production and pp $\rightarrow \tau^+ \tau^-$ complementary
- Small improvement in mass reach for S_3 at from CLIC

up to $g_3 \approx 1.5$

• HE-LHC improves the direct mass reach by more than a factor 2 compared to HL-LHC

Sec. 5.3.2 of CERN-LPCC-2018-005

14/05/2019

Philipp Roloff

More projections

HL-/HE-LHC, FCC-hh: gg $\rightarrow S_3S_3^* \rightarrow (\mu^-j)(\mu^+j)$ and Z' $\rightarrow \mu^+\mu^-$ motivated by anomaly in b $\rightarrow s\ell\ell$

Example: scalar LQ coupling to d-quark and electron

• If accessible, FCC-eh could measure the LQ properties (fermion number, spin, coupling, ...)

Sec. 15.3 of CERN-ACC-2018-0056

Sec. 5.2 of CERN-LPCC-2018-005 Sec. 14.3 of CERN-ACC-2018-0056

Philipp Roloff

Some observations

• Substantial improvement with respect to HL-LHC possible for all discussed physics topics

• Large amount of complementarity:

<u>Direct and indirect sensitivity</u>
 (e.g. SM + heavy singlet, heavy MSSM Higgs bosons)

- <u>Hadron and lepton collisions</u> (e.g. doubly charged Higgs)

- <u>Different energy stages of a lepton collider</u> (e.g. top-quark FCNC effects)

Thank you!

Backup slides

Lepton colliders

• Generally, mass reach close to \sqrt{s} / 2 for all values of tan β

• Beam polarisation and threshold scans might help to constrain the underlying theory

- **Example:** $e^+e^- \rightarrow HA$ at 3 TeV CLIC
- Combination of the bbbb, bbtt and tttt final states
- Similar reach for $e^+e^- \rightarrow H^+H^-$

FCNC top branching ratios: input

BR x 10⁵	HL-LHC	HE-LHC	ILC	CLIC	LHeC	FCC-ee	FCC-ee	FCC-hh	FCC-eh
95% C.L.	14 TeV	27 TeV	500 GeV	380 GeV	1.3 TeV	240 GeV	365 GeV	100 TeV	3.5 TeV
$t \rightarrow Hc$			≈ 3	15				1.6	
$t \rightarrow Hu$					150				22
$t \rightarrow Hq$	10							2.8	
$t \rightarrow Zq$	2.4 - 5.8				4	3	5	≈ 0.1	0.6
$t \rightarrow \gamma c$	7.4		≈ 1	2.6				0.024	
$t \rightarrow \gamma u$	0.86							0.018	
$t \rightarrow \gamma q$					1	3	3		0.085
$t \rightarrow gc$	3.2	0.19							
$t \rightarrow gu$	0.38	0.056							

Comments:

• q = u,c inclusive

• FCC-ee numbers for 240 GeV and 365 GeV will be combined in the future

HL-/HE-LHC: Sec. 8.1 of CERN-LPCC-2018-06 ILC: Sec. 10.3 of arXiv:1903.01629 CLIC: Sec. 10 of arXiv:1807.02441 LHeC: EPPSU submisson #159 FCC-ee: Phys. Lett. **B755**, 25 (2017) FCC-hh/-eh: Sec. 6 of CERN-ACC-2018-0056

14/05/2019

Strong first-order EW phase transition

- 4τ and $b\overline{b}\gamma\gamma$ final states (generator level)
- Benchmark points minimising and maximising the cross section

CERN-ACC-2018-0056 Phys. Rev. D 94, 035022 (2016) Comments: • The e⁺e⁻ numbers in this

plot are outdated

$$h_1 = h \cos\theta + s \sin\theta$$

 $h_2 = -h \sin\theta + s \cos\theta$

14/05/2019 Philipp Roloff

Direct vs. indirect constraints

• Doubly-charged scalar which is a singlet under the SU(2) weak symmetry of the SM

Sec. 7.3 of CERN-2018-009-M

$W' \rightarrow \tau v at HL-LHC$

14/05/2019

Philipp Roloff

CMS-PAS-FTR-18-030

LQ search strategy

JHEP 05, 126 (2018)