Feebly interacting particles: theory landscape

Gilad Perez

Weizmann Inst.

13-16 May 2019 - Granada, Spain

1

Outline

- Generic motivation, why new feebly interacting particles (FIPs)?
- FIPs & the log crisis/opportunity, where & how to look for them?
- Why accelerators & colliders are important for FIP-searches?
- Practical compromise FIPs benchmarks (results shown in following talk).
- Conclusions

Generic motivation, the feeble-front

- The standard model (SM) consists of weakly interacting & long-lived particles.
- Many SM extensions => ultra weakly (feebly) interacting particles (FIPs).

SM spectrum

- LLP = "long lived particle"
- Travels a macroscopic distance before decaying $(\gtrsim 0.01 \text{ mm})$

Generic motivation, the feeble-front

- The standard model (SM) consists of weakly interacting & long-lived particles.
- Many SM extensions => ultra weakly (feebly) interacting particles (FIPs).

Generic motivation, the feeble-front

- Heavy FIPs are hard to observe, possibly in energy frontier.
- Light FIPs can be copiously produced & probed across frontiers, relevant to this study: energy, luminosity, precision => our mandate - focus on this case.
- Are such light particles motivated by basic principles? Absolutely: pseudo-scalars (Goldstones, axion-like=ALP),
 - scalars (SUSY, dilatons, Goldstones+CP violation),
 - fermions (axial sym'),
 - vectors (gauge sym') ...

Axion's log crisis

It is hard to predict FIPs properties => log crisis;

log crisis: requires cross-frontier search over decades of energy <=> opportunity.

• Well known for axion like particle (ALP) or dark photon models.

(see talks by: Agrawal, Dine, Lindner, Irastorza ...)

1000+]

See eg: A European Strategy Towards Finding Axions and Other WISPs

Desch, Döbrich, Irastorza, Jaeckel, Lindner, Majorovits & Ringwald

Naturalness @ 21st century => FIPS & new crisis

Not common for naturalness-based models; the anchor for energy frontier which conventionally satisfies the equation:

Talks by: Rattazzi, Weiler, Wulzer ...

• New ideas cast doubt on this "equation".

eg: "Cosmic attractors", "dynamical relaxation", "N-naturalness", "relating the weak-scale to the CC" & "inflating the Weak scale".

New scalar-FIPs common to all of above: consider for ex. the relaxion. Graham, Kaplan & Rajendran (15)

Relaxion models can be described via a scalar that mixes with the Higgs:

Flacke, Frugiuele, Fuchs, Gupta & GP; Choi & Im (16)

The relaxion (Higgs portal) Log crisis

Overview plot: the relaxion 30-decade-open parameter space

What makes accelerator FIP-searches special?

(i) Case for (thermal) dark matter (DM) & its portal

(*ii*) Case for ALP & its quality problem

(iii) Case for relaxion/scalar-portal & its natural parameter space

Case (*i*): The thermal dark-matter-sector target

• Among the attractive solutions to DM problem is to make it boundary condition indep' $\leq >$ thermal relic, acquires abundance via thermal int' if $m_{\text{DM}} > \text{keV}$: See talks by Frugiuele, Mccullough, Murayama, Rossi, Stapnes ...

Furthermore, light DM typically => light mediator, see for instance dark-photon:

 $\begin{array}{c} \chi \\ \hline \chi \\ \hline \chi \\ m_{\chi} < m_{A'} \end{array} \overset{e^{-}}{e^{+}} \qquad \langle \sigma v \rangle \propto m_{\chi}^{-2} \left(\frac{m_{\chi}}{m_{A}'} \right)^{4} \quad \text{See talk by Frugiuele} \end{array}$

Case (*ii*): ALP/axion quality problem

Barr & Seckel; Kamionkowski & March-Russell (92); see also talk by Dine ...

Planck suppressed operators typically destroy the axion potential.

$$\Delta V_{\rm P\!/\!Q} = \lambda_\Delta \frac{\Phi^\Delta}{\Lambda_{\rm UV}^{\Delta-4}} + {\rm h.c.} \qquad \qquad V_a \simeq -\Lambda_{\rm QCD}^4 \cos \frac{Na}{f} + \frac{1}{2^{\frac{\Delta}{2}-1}} \frac{|\lambda_\Delta| f^\Delta}{\Lambda_{\rm UV}^{\Delta-4}} \cos \left(\alpha_\Delta + \Delta \frac{a}{f}\right)$$

where with $\Delta < 12$ operators, strong CP problem is not solve!

• Can be addressed if the axion has additional contribution to its mass (lowering *f*):

Fukuda, Harigaya, Ibe & Yanagida (15); Alves & Weiner (17) ...

Case (*iii*): Penetrating the relaxion physical region

• As effective relaxion models can be described via a Higgs portal they suffer from their own naturalness problem which can be summarised as follows:

$$L_S \in m_S^2 SS + \mu SH^{\dagger}H + \lambda S^2 H^{\dagger}H$$
, with $S =$ light scalar & $H =$ SM Higgs.

Naturalness implies:
$$\sin \theta \simeq \mu / \langle H \rangle \lesssim \frac{m_S}{\langle H \rangle} \& \lambda \lesssim \frac{m_S^2}{\langle H \rangle^2}.$$

• As you see in following plot it is very hard to probe the natural region:

Accelerators: 1 among only 3 probes of physical models

Naturalness in the Z_2 limit ($S \rightarrow -S$, $sin\theta \rightarrow 0$)

Natural region for
$$H^{\dagger}HS^2$$
 term : $\lambda \lesssim \frac{m_S^2}{\langle H \rangle^2} \sim 10^{-5} \times \left(\frac{m_s}{\text{GeV}}\right)^2$

14

Naturalness, Z₂ limit: sizeable BR only for large masses

Natural region for
$$\lambda \lesssim \frac{m_S^2}{\langle H \rangle^2} \sim 10^{-5} \times \left(\frac{m_s}{\text{GeV}}\right)^2 \implies \text{BR}(H \to SS)_{\text{inv}} \lesssim 10^{-6} \times \left(\frac{m_s}{\text{GeV}}\right)^4$$

*Z*² <=> heavy masses: mostly relevant for colliders + parasites

Natural region for
$$\lambda \lesssim \frac{m_S^2}{\langle H \rangle^2} \sim 10^{-5} \times \left(\frac{m_s}{\text{GeV}}\right)^2 \implies \text{BR}(H \to SS)_{\text{inv}} \lesssim 10^{-6} \times \left(\frac{m_s}{\text{GeV}}\right)^4$$

Future colliders probe this Z₂ in a strong manner via *H*->invisible

Natural region for
$$\lambda \lesssim \frac{m_S^2}{\langle H \rangle^2} \sim 10^{-5} \times \left(\frac{m_s}{\text{GeV}}\right)^2 \implies \text{BR}(H \to SS)_{\text{inv}} \lesssim 10^{-6} \times \left(\frac{m_s}{\text{GeV}}\right)^4$$

Numbers from:

Higgs Boson studies at future particle colliders

1905.03764v1 (prelim ver.)

17

3/4 summary

Zoo of microscopic models giving FIPs+ long lived particles (LLPs)

Motivation	Top-down Theory	IR LLP Scenario	<u>1806.0739</u>
Naturalness	RPV SUSY GMSB mini-split SUSY Stealth SUSY Axinos Sgoldstinos UV theory Neutral Naturalness Composite Higgs Relaxion	BSM=/→LLP (direct production of BSM state at LHC that is or decays to LLP) Hidden Valley confining sectors	
Dark Matter	Asymmetric DM Freeze-In DM SIMP/ELDER Co-Decay Co-Annihilation Dynamical DM	ALP	
Baryogenesis	WIMP Baryogenesis Exotic Baryon Oscillations Leptogenesis	decays exotic Higgs	
Neutrino Masses	Minimal RH Neutrino with U(1) _{B-L} Z' with SU(2) _R W _R long-lived scalars with Higgs portal from ERS depends on production mode Discrete Symmetries	HNL decays exotic Hadron decays	19

Experimental facts

Theoretical

Dark Matter:

candidates $\ w \ mass \ from \ 10^{-22} \ eV$ (light feeble scalars) to $10^{20} \ GeV$ (black holes).

Neutrino masses and oscillations

explanation: (feeble) RH neutrinos from 10⁻² eV to 10¹⁵ GeV.

Matter-antimatter asymmetry:

hard to associate scale, solutions of many orders of mag'.

Fine tuning:

```
Sym' based solutions => TeV partners;
relaxion => light feeble goldstone (ALPs).
```

Strong CP problem:

axion = goldstone mass ~ 10⁻⁵ eV; spont' CP, Nelson-Barr = heavy states. **Fermion masses hierarchy** light feeble familons=ALPS or vector bosons; or heavy states (extra dim' geography) **Etc** ...

- BSM at colliders (B5):

- 160 HE-LHC
- 152 HL-LHC
- 145 CLIC
- 135 FCC-int
- 101 FCC-ee
- 94 FASER
- 75 MATHUSLA
- 29 CEPC
- Dark Matter and Dark Sector (B8)
- 1 Sterile Neutrinos at CERN (NA62/SHiP) Albert Shrock
- 9 NA64
- 11 Belle II
- 12 SHiP
- 34 Diversification (Israeli input)
- 36 Dark Sector Physics with primary electron beam (eSPS)
- 42 Physics Beyond Colliders
- 50 Particle Physics with AWAKE
- Flavor (B2):
- 11 Belle-II experiment at super KEK-B
- 28 REDTOP
- 153 KLEVER

How to search for such broad class of models?

- Following PBC: Simplified models (some tweaks).
- How to compare frontiers? Experiments?
- Use benchmarks.

Dark Sectors and New, Light, Weakly-Coupled Particles Conveners: Rouven Essig,^{1,*} John A. Jaros,^{2,†} William Wester,

Simplified models: relevant/marginal portals

PBC: Beacham, et al., CERN-PBC-REPORT-2018-007, 1901.09966

Portal	Coupling
Dark Photon, A_{μ}	$-rac{\epsilon}{2\cos heta_W}F'_{\mu u}B^{\mu u}$
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$
Axion, a	$rac{a}{f_a}F_{\mu u} ilde{F}^{\mu u}$
Sterile Neutrino, N	$y_N LHN$

Allowing CP violation => axion acquires scalar couplings (not included).

Conclusions

- Feebly interacting particles (FIPs) are generically motivated.
- FIPs bring with them log crisis/opportunity calls for experimental diversity.
- Accelerator provided a unique opportunity to look for well motivated FIPs.
- Practical compromise FIPs benchmarks.
- Results & sensitivity plots shown in following talk by Gaia Lanfranchi .

Interplay

