Lepton Beams: LDMX@eSPS (NA64++, AWAKE++)

Thanks to colleagues from all three collaborations for input and feedback on the slides!

Open Symposium on EPPSU Granada, May 2019 Ruth Pöttgen

Introduction

thermal origin of Dark Matter —> production mechanism at accelerators!

can profit greatly from opportunities and accelerator R&D at CERN!

$$\rightarrow$$
 NA64++(e, μ), AWAKE++, LDMX@eSPS

this talk: mostly LDMX@eSPS, invisible signature (missing energy/momentum)

BUT: experiments have sensitivity to broad range of new phenomena, both visible and invisible

Missing Something

two approaches here:

missing energy

higher signal yield/EoT (thicker target) greater signal acceptance

no e-γ particle ID

missing momentum

includes missing energy p_T as discriminator & signal identifier

e-γ particle ID

Kinematics

very different from SM bremsstrahlung (main background)

measurement of p_T : strong discriminator AND information about (missing) mass!

Light Dark Matter eXperiment

individually measure up to 10¹⁶ electrons on target (EoT), missing energy & missing (transverse) momentum

small-scale experiment

extremely rare signal

—> need large statistics

goal: 10¹⁴ - 10¹⁶ EoT in few years

extremely rare signal

—> need large statistics

goal: 10^{14} - 10^{16} EoT in few years

beam requirements:

low current, high duty-cycle


```
extremely rare signal

--> need large statistics

goal: 10¹⁴ - 10¹⁶ EoT in few years

beam requirements:

• low current, high duty-cycle

primary, multi-GeV e-beam
```

design paper on arxiv arxiv:1808.05219

```
extremely rare signal
—> need large statistics
goal: 10^{14} - 10^{16} EoT in few years
 beam requirements:

    low current, high duty-cycle

             primary, multi-GeV e-beam
```

- detector requirements:
 - high-rate capabilities
 - radiation hard
 - high-granularity

leverage techniques from existing/planned experiments

design paper on arxiv arxiv:1808.05219

extremely rare signal

--> need large statistics

goal: 10¹⁴ - 10¹⁶ EoT in few years

beam requirements:

• low current, high duty-cycle

primary, multi-GeV e-beam

detector requirements:

- high-rate capabilities
- radiation hard
- high-granularity

leverage techniques from existing/planned experiments

design paper on arxiv arxiv:1808.05219

-> need large statistics

goal: 10¹⁴ - 10¹⁶ EoT in few years

beam requirements:

low current, high duty-cycle

primary, multi-GeV e-beam

detector requirements:

- high-rate capabilities
- radiation hard
- high-granularity

leverage techniques from existing/planned experiments

ECal: draw on design of *CMS* SiW HGCal

- 32 layers with 7 modules each, 40 X₀
- fast, radiation hard, dense
- high granularity (MIP 'tracking')

simplified copy of Silicon Vertex **Tracker** of *HPS@JLab* (visible Dark Photon search)

design paper on arxiv arxiv:1808.05219

extremely rare signal
 -> need large statistics
 goal: 10¹⁴ - 10¹⁶ EoT in few years
 beam requirements:

low current, high duty-cycle

primary, multi-GeV e-beam

detector requirements:

- high-rate capabilities
- radiation hard
- high-granularity

leverage techniques from existing/planned experiments

ECal: draw on design of *CMS* SiW HGCal

- 32 layers with 7 modules each, 40 X₀
- fast, radiation hard, dense
- high granularity (MIP 'tracking')

simplified copy of Silicon Vertex **Tracker** of *HPS*@JLab (visible Dark Photon search)

HCal inspired by Minos/Mu2e

- plastic scintillator with steel absorber
- readout via WLS fibres
- optimise for neutral hadron rejection

Beam

options (neither approved yet)

- dedicated transfer line at LCLS-II at SLAC
 - 4 GeV or maximum 8 GeV, parasitic
- eSPS at CERN see Mike Lamont's talk for details
 - get e- back in CERN accelerators, next step for Xband linac developed for CLIC, accelerator R&D
 - 3.5 16 GeV, flexible beam parameters
 - optimal catering

Expression of interest to SPSC in October 2018 https://cds.cern.ch/record/2640784

Input to Strategy Update (#36)

ideally: 2 experimental setups with reach beyond thermal targets
(full LDMX Collaboration involved in both)

Why higher energy?

increased in signal yield

improved background rejection possibilities

Preliminary Analysis Strategy

trigger on missing energy

- + combine ECal features into a BDT
- + veto on activity in HCal
- + additional vetoes on activity in trackers/ECal front layer

at 4 GeV: close to 0-background based on simulation studies

important:

several handles not exploited yet, in particular p_T !

HCal optimisation ongoing

things get easier at higher energy!

with data:

redundancy in vetoes —> data control samples, verify rejection comprehensive kinematic information —> establish signal-likeness

arxiv:1808.05219

planned upgrades to detector/DAQ to circumvent pile-up limitations

in addition: extend Dark Photon search to muon beams (g-2, Dark Sector) <u>CERN-SPSC-2018-024</u>; <u>SPSC-P-348-ADD-3</u>

successful demonstration of AWAKE principle ~1 year ago https://www.nature.com/articles/s41586-018-0485-4

goal after LS2: demonstrate scalability of AWAKE concept by acceleration of e-beam to 5-10 GeV

potential application of the concept: NA64-like experiment

visible configuration —> can use high number of e-/bunch

energy of O(50) GeV, 5×10^9 e/bunch, 10^{16} EoT integrated luminosity in 12 weeks (TeV energies with LHC as driver)

Benchmark Sensitivities (Examples)

further sensitivity estimates in backup (and other talks, PBC report)

Summary

lepton-beam fixed-target experiments explore important new parameter space

great opportunities possible at CERN within the next <10 years

LDMX benefits significantly from a beam as could be provided by eSPS

in particular in high mass range

extends reach in (coupling, mass)-plane far beyond other e-beam experiments

potential for NA64 to considerably extend its reach for invisible signatures

additional coverage in appearance mode with AWAKE++

Additional Material

Timelines/Costs

LDMX

detector: ≤ 10M CHF (excluding computing)

NA64++

https://cds.cern.ch/record/2300189

upgrade of NA64e: 671k CHF

NA64µ: 1.1M CHF

AWAKE++

installation during LS3 the earliest

Possible eSPS Timeline

eSPS

- ~70 m long X-band based linac (CLIC technology) in TT4-5 accelerates e- to 3.5 GeV
- SPS filled in 1 to 2 s via TT60
- Acceleration to 16 GeV in the SPS
- Slow resonant extraction down the TT10 transfer line in ~10 s
- Beam delivered via the existing TT10 line to the Meyrin site
- A new, short beamline would branch from TT10 to the experimental hall (LDMX)

eSPS: Feasibility

- Feasibility following initial study looks good
 - Additional RF in SPS to be studied (old LEP or FCC-ee cavities)
- Maximal use of existing structures, small foot print, and thus relatively inexpensive.
- SPS cycle sharing implications
 - ~12 s cycle, 10 s slow extraction giving 1e8 1e9 EOT/s
- Material cost: ~80 MCHF

Well developed proposal:

"Dark Sector Physics with a Primary Electron Beam Facility at CERN" presented as EoI to SPSC

eSPS: Motivation

- Electrons back in the complex good given CERN's apparent long term options
- Staged deployment of X-band return on the significant investment
- Possible deployment of FCC-ee RF cavities and high-efficiency power generation
- Strong case made for accelerator based R&D and other studies at the linac R&D facility
- Physics case unique LDM search reach

Preparing for future - staged deployment of FCC-ee/CLIC technology while preparing the long term strategic vision; at the same time performing a competitive LDM search - a game changer in the case of positive result and naturally important input to future plans.

Background Overview

Background Challenges

particularly challenging:

photo-nuclear reactions producing neutral final states (relative rate: ~10-9)

—> most design work currently on HCal to optimise rejection power, seeking funding for R&D/prototype (testbeam 2020)

Preliminary Analysis Strategy

What if an excess was observed?

additional kinematic information (wrt missing energy only) to investigate signal-likeness

test veto efficiency in control samples (e.g. higher E_e or 'almost missed' by one detector)

exploit different composition of energy bins at different beam energies

White Paper

major milestone last year: comprehensive summary of design status <u>arxiv:1808.05219</u>

- detailed simulation studies of relevant background processes and their rejection
 - expect <1 background events for 4 x 10¹⁴ EOT (4 GeV beam energy)

Sensitivities to thermal targets

Various Future Projections

Tracking System

simplified copy of Silicon Vertex Tracker (SVT) of HPS experiment@JLab (visible Dark Photon search)

- fast (2ns hit time resolution)
- radiation hard
- technology well understood

tagging tracker

- in 1.5T dipole field
- measure incoming electron
 - momentum filter
 - impact point on target

recoil tracker

- in fringe field
- measure recoil electron

target

- $\sim 0.1 0.3 X_0$ tungsten
- balance signal rate & momentum smearing

Electromagnetic Calorimeter

ECal

- draw on design of CMS forward SiW calorimeter upgrade
 - 32 layers with 7 modules each, 40 X₀
 - fast, radiation hard, dense
 - high granularity (MIP 'tracking')
 - potentially increase granularity in central module

Hadronic Calorimeter

HCal

- need highly efficient veto for low- and high-energy neutrons
- plastic scintillator with steel absorber
- surround ECal as much as possible (back and side)

preliminary simulation studies show potential to get close to 0 background in phase 1, while retaining decent energy resolution

