Dark Sector searches with proton beams

E. Graverini for the SHiP collaboration

European Strategy for Particle Physics Update, Granada, May 2019
New Physics hunt in beam dump

➤ LHC runs I+II heritage: need to probe much weaker couplings
➤ giving existing facilities and reliable technologies a new challenge: **intensity**
➤ long tradition of beam dump searches with far (CHARM, NuTeV) and near detectors (PS191)

The **SPS** provides a unique **high-intensity beam** of 400 GeV protons: ideal setting for a CERN-based **Beam Dump Facility** (BDF)

[**CERN-PBC-REPORT-2018-001**, see M. Lamont’s talk]

5 years of BDF @ SPS (2×10^{20} **pot**):
- 10^{18} charm mesons
- 10^{14} beauty mesons
- 10^{16} τ leptons

North Area beam lines

Beam Dump Facility and SHiP experiment
a discovery machine for weakly coupled LLPs, with a complementary detector for ν physics and LDM scattering signatures

- large geometrical acceptance: long volume close to dump
- zero background with spectrometry, PID and VETO taggers
Target and shielding

- heavy target to absorb πs before decay
- magnetized hadron stopper: immediately separate μ^{\pm}
- ideal muon shield configuration optimised with machine learning ➞ μ rate reduced to ~ 25 kHz

- μ spectrum validated with dedicated experiment in 2018
Decay Spectrometer

- surround tagger (liquid scintillator)
- straw spectrometer: $2\% X_0$, $(\frac{\sigma p}{p})^2 \approx (0.5\%)^2 + (0.02 \times p)^2$
- timing detector (scint. bars + large SiPMs, $\sigma_t \lesssim 80$ps)
- ECAL with tracking capability (SplitCal, $\sigma_\theta \approx$ few mrad)
- muon detector (scintillating tiles + SiPMs)

- 0 background \implies 2 candidates are a discovery
- mass, charge, flavour information available at observation \implies narrow down physics models
Scattering and Neutrino Detector

- distinguish ν_e, ν_μ, ν_τ and hadrons
 - measure charge
- ν_f cross sections measurements relevant for flavour anomalies
- first $\bar{\nu}_\tau$ observation
- Target (emulsion chambers + target tracker) + Downstream spectrometer + Muon filter

<table>
<thead>
<tr>
<th>\bar{E} [GeV]</th>
<th>CC DIS int.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>59</td>
</tr>
<tr>
<td>ν_μ</td>
<td>42</td>
</tr>
<tr>
<td>ν_τ</td>
<td>52</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>46</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$</td>
<td>36</td>
</tr>
<tr>
<td>$\bar{\nu}_\tau$</td>
<td>70</td>
</tr>
</tbody>
</table>

- ideal laboratory also for Light Dark Matter scattering signatures!
Detector and infrastructure development

▶ beam facility is being developed by the CERN BDF team (see M. Lamont’s talk)

▶ all detector subsystems have undergone:
 – simulation studies, requirements definition, R&D
 – phase 1 prototyping (small scale, single modules)
 – off and on-beam testing (2017–2018)

▶ phase 2 prototyping ongoing, beam tests planned for 2019-2021
Simulation and validation

- Simulation tuned on data (Pythia8 + Genie + Geant4)
- μ spectrum validated using data from Hyperon and NA62
- two dedicated measurements in July 2018:
 - μ flux, critical for dark sector searches: $\sim 6 \times 10^{11} \text{ pot}$
 - charm production cross-section, for dark sector and ν physics

- repeat χ_{cc} measurement after LS2, collecting $> 10^{7} \text{ pot}$
SHiP is a 0 background LLP experiment

- **Muon combinatorial:**
 - 10^{16} selection \rightarrow 10^9 timing \rightarrow 10^{-2} candidates in 5 years @ 90% CL
 - ML used to generate large sample of dangerous μ

- **Muon inelastic:**
 - 5 years of SHiP simulated
 - correlation between VETO and selection: $< 6 \times 10^{-4}$ @ 90% CL

- **ν interactions:**
 - 10 years of SHiP simulated, increasing to 100
 - ν-air: $< 10^{-2}$ with pressure \sim 1 mbar
 - ν-material: 5×10^5
 - $\frac{\text{cuts (fully reco)}}{\text{cuts (part. reco)}}$ \rightarrow 0, opening angle \rightarrow 0 @ 90% CL
Physics performance: invisible decays

- benchmark: $\gamma' \rightarrow \chi \chi$, $\chi e \rightarrow \chi e$ scattering in the emulsion target
- expect single EM shower w/o associated tracks
 - $\bar{\nu}_e N \rightarrow eX$ background reduced by tagging extra activity at the vertex
 - $\nu e \rightarrow \nu e$ slightly kinematically different
 - if excess is observed \Rightarrow can switch to bunched beam and use TOF
 - excess observed in real time using target tracker (R&D ongoing)

$\chi_2 \rightarrow \chi_1 \gamma' (\rightarrow \ell \ell)$ can be searched with the Decay Spectrometer
Physics performance: visible decays

- from top left: HNL (heavy meson decays), dark photon (decays + bremsstrahlung + QCD), scalar (K and B decays), ALPs coupled to fermions, ALPs coupled to photons
- event selection: high signal efficiency + redundant BG suppression
Physics performance: visible decays

▶ in case of discovery \Rightarrow full reconstruction and PID allows identifying models and measuring parameters
Conclusions

- scale of NP after LHC run II = ? ⇒ diversifying is key
- high intensity SPS beam allows probing couplings $\mathcal{O}(10^{-10})$
 - with minimal modifications to existing facilities
- BDF can fit other experiments after SHiP or at the same time
 - tauFV can run in parallel and could give a spin to flavour anomalies
- SHiP enters the game as a discovery experiment
 - with large acceptance, spectrometry, PID
 - with reliable zero-background expectations
 - and with a complementary neutrino physics / scattering programme
- Physics performance guaranteed by redundant VETO system and event selection
- project in very good shape, moving fast towards TDR
Spare slides
Cost and schedule

- all sub-detector’s phase 1 prototypes constructed and tested with beam, with nice results
 - schedule driven by SPS/LHC schedule: installation LS3
 - phase 2 prototyping ongoing
 - 3 years for TDRs
 - construction of BDF ~ 5 years (see M. Lamont’s talk)
 - detector production, installation, commissioning $\sim 6-7$ years (in parallel to BDF construction)
 - aiming for operation in Run 4 (as early as possible)
 - project mature and no showstoppers

- $+10-30\%$ cost estimate produced for the Technical Proposal

- $-10-20\%$

- major design changes since TP, but cost stable
 - revised costing together with updated project plan is being prepared for the detector Comprehensive Design Study (November 2019)
Comparison with previous beam dump experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>PS191</th>
<th>NuTeV</th>
<th>CHARM</th>
<th>SHiP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton energy (GeV)</td>
<td>19.2</td>
<td>800</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Protons on target ($\times 10^{19}$)</td>
<td>0.86</td>
<td>0.25</td>
<td>0.24</td>
<td>20</td>
</tr>
<tr>
<td>Decay volume (m3)</td>
<td>360</td>
<td>1100</td>
<td>315</td>
<td>1780</td>
</tr>
<tr>
<td>Decay volume pressure (bar)</td>
<td>1 (He)</td>
<td>1 (He)</td>
<td>1 (air)</td>
<td>10^{-6} (air)</td>
</tr>
<tr>
<td>Distance to target (m)</td>
<td>128</td>
<td>1400</td>
<td>480</td>
<td>80-90</td>
</tr>
<tr>
<td>Off beam axis (mrad)</td>
<td>40</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Comparison of the experimental conditions for HNL search experiments [SHiP Tech. Prop. 1504.04956].
HNL production and decay B’s revised

cascade production of charm and beauty

flavour-independent sensitivity matrix including B_c contribution

HNL identification and discovery reach close to seesaw limit

great sensitivity also in U^2_{τ}-enhanced scenario
Physics performance: HNL

- HNL production and decay B’s revised [JHEP11(2018)032]
- cascade production of charm and beauty [SHiP-NOTE-2015-009]
- flavour-independent sensitivity matrix including B_c contribution
- HNL identification and discovery reach close to seesaw limit
- great sensitivity also in U_{τ}^2-enhanced scenario
Physics performance: HNL

- HNL production and decay B’s revised
- cascade production of charm and beauty
- flavour-independent sensitivity matrix including B_c contribution
- HNL identification and discovery reach close to seesaw limit
- great sensitivity also in U_T^2-enhanced scenario
Benchmark models for visible decays

- Dark photon:
 - meson decays, proton bremsstrahlung, $qq \to \gamma'$
 - expect improvements at low mass from:
 - cascade production
 - EM showers

- Dark scalar:
 - couple to Higgs in FCNC K and B decays

- Axion-like particles:
 - couple to fermions and to photons
 - SplitCal developed for $ALP \to \gamma\gamma$
Benchmark models for visible decays

► Dark photon:
 – meson decays, proton bremsstrahlung, \(qq \rightarrow \gamma'\)
 – expect improvements at low mass from:
 ● cascade production
 ● EM showers

► Dark scalar:
 – couple to Higgs in FCNC \(K\) and \(B\) decays

► Axion-like particles:
 – couple to fermions and to photons
 – SplitCal developed for \(ALP \rightarrow \gamma\gamma\)
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Scattering Spectrometer: status

- CES tested at CERN PS in 2017
- μ-RWELL or SciFi for tracking, both tested on beam (2018)
- μ ID system: RPC tested in CERN H4 in summer 2018
Decay Spectrometer: status

SBT Several improvements *w.r.t.* TP. Tested on beam Oct. 2018

SST Straw \varnothing increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu$m

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80$ps. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54$ps

ECAL SplitCal with 3 high-res layers for $ALP \rightarrow \gamma\gamma$ ($\sigma_\theta \sim$ few mrad)
- measure barycentre at 3 depths with MPGDs; > 1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200$ps
Decay Spectrometer: status

SBT Several improvements *w.r.t.* TP. Tested on beam Oct. 2018

SST Straw ϕ increased to 20mm. Tested on beam: $\sigma_{hit} \approx 120 \mu m$

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80$ps. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54$ps

ECAL SplitCal with 3 high-res layers for $ALP \rightarrow \gamma \gamma$ ($\sigma_{\theta} \sim$ few mrad)
 - measure barycentre at 3 depths with MPGDs; > 1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200$ps
Decay Spectrometer: status

SBT Several improvements w.r.t. TP. Tested on beam Oct. 2018

SST Straw \varnothing increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu m$

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80ps$. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54ps$

ECAL SplitCal with 3 high-res layers for $ALP \rightarrow \gamma\gamma$ ($\sigma_\theta \sim$ few mrad)
 - measure barycentre at 3 depths with MPGDs; > 1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200ps$
Decay Spectrometer: status

SBT Several improvements \(w.r.t.\) TP. Tested on beam Oct. 2018

SST Straw \(\varphi\) increased to 20mm. Tested on beam: \(\sigma_{\text{hit}} \approx 120\mu\text{m}\)

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields \(\sigma_t \approx 80\text{ps}\). RPC alternative tested Oct. 2018 with \(\sigma_t \approx 54\text{ps}\)

ECAL SplitCal with 3 high-res layers for \(ALP \rightarrow \gamma\gamma\) \((\sigma_\theta \sim \text{few mrad})\)
 - measure barycentre at 3 depths with MPGDs; > 1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at \(\sigma_t < 200\text{ps}\)
Decay Spectrometer: status

SBT Several improvements \textit{w.r.t.} TP. Tested on beam Oct. 2018

SST Straw \varnothing increased to 20mm. Tested on beam: $\sigma_{\text{hit}} \approx 120\mu\text{m}$

TD Plastic scint + large-area SiPMs feasible, large-scale prototype yields $\sigma_t \approx 80\text{ps}$. RPC alternative tested Oct. 2018 with $\sigma_t \approx 54\text{ps}$

ECAL SplitCal with 3 high-res layers for $ALP \rightarrow \gamma\gamma$ ($\sigma_\theta \sim$ few mrad)
 - measure barycentre at 3 depths with MPGDs; >1 m lever arm

MUON move to scintillating tiles with SiPM readout. Beam test Oct. 2018, aim at $\sigma_t < 200\text{ps}$
Hidden sector: physics performance

- setup ideally suited for *any* weakly interacting LLP

<table>
<thead>
<tr>
<th>Cut</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track momentum</td>
<td>$> 1.0\text{GeV/c}$</td>
</tr>
<tr>
<td>Children distance of closest approach</td>
<td>$< 1 \text{ cm}$</td>
</tr>
<tr>
<td>Decay vertex position</td>
<td>($> 5 \text{ cm from inner wall}$)</td>
</tr>
<tr>
<td>IP w.r.t. target (fully reconstructed)</td>
<td>$< 10 \text{ cm}$</td>
</tr>
<tr>
<td>IP w.r.t. target (partially reconstructed)</td>
<td>$< 250 \text{ cm}$</td>
</tr>
</tbody>
</table>

- event selection: high signal efficiency + redundant BG suppression
- common selection (model independent search)
- redundancy cuts:
 - associated activity in VETO systems
 - PID cuts
 - time coincidence (suppress combinatorial background)
 - opening angle (reject events from γ conversions in the material)
Hidden sector: backgrounds

▸ **Muon combinatorial:**
 - $10^{16} \xrightarrow{\text{selection}} 10^9 \xrightarrow{\Delta t < 340 \text{ps}} 10^{-2}$ candidates in 5 years @ 90%CL
 - ML used to generate large sample of dangerous μ

▸ **Muon inelastic:**
 - 5 years of SHiP operation simulated
 - correlation between VETO and selection: $< 6 \times 10^{-4}$ @ 90%CL

▸ **ν interactions:**
 - 10 years of SHiP simulated, increasing to 100
 - ν-air: $< 10^{-2}$ in 5 years with pressure ~ 1 mbar
 - ν-material: $5 \times 10^5\left\{\begin{array}{ccc} \text{cuts (fully reco)} & \rightarrow & 0 \\ \text{cuts (part. reco)} & \rightarrow & 2 \\ \text{opening angle} & \rightarrow & 0 \end{array}\right\}$ @ 90%CL
Hidden sector: backgrounds

► Muon combinatorial:
 - 10^{16} selection \rightarrow 10^{9}
 - ML used to generate large sample of dangerous muons

► Muon inelastic:
 - 5 years of SHiP operation simulated
 - Correlation between VETO and selection: $< 6 \times 10^{-4}$ @ 90% CL

► ν interactions:
 - 10 years of SHiP simulated, increasing to 100
 - ν-air: $< 10^{-2}$ in 5 years with pressure ~ 1 mbar
 - ν-material: 5×10^5 cuts (fully reco) \rightarrow 0 cuts (part. reco) \rightarrow 2 opening angle \rightarrow 0 @ 90% CL
Hidden sector: backgrounds

▶ Muon combinatorial:
 - 10^{16} selection \rightarrow 10^9 Δ
 - ML used to generate large sample of dangerous μ

▶ Muon inelastic:
 - 5 years of SHiP operation simulated
 - correlation between VETO and selection: $< 6 \times 10^{-4} @ 90\% CL$

▶ ν interactions:
 - 10 years of SHiP simulated, increasing to 100
 - ν-air: $< 10^{-2}$ in 5 years with pressure $\sim 1 \text{ mbar}$
 - ν-material: 5×10^5
 \[
 \begin{align*}
 \text{cuts (fully reco)} & \rightarrow 0 \\
 \text{cuts (part. reco)} & \rightarrow 2 \quad \text{opening angle} \rightarrow 0 \\
 \end{align*}
 @ 90\% CL
Hidden sector: backgrounds

Muon combinatorial:
- $10^{16} \xrightarrow{\text{selection}} 10^9 \xrightarrow{\Delta t<340\text{ps}} 10^{-2}$ candidates in 5 years @ 90%CL
- ML used to generate large sample of dangerous μ

Muon inelastic:
- 5 years of SHiP operation simulated
- correlation between VETO and selection: $< 6 \times 10^{-4}$ @ 90%CL

ν interactions:
- 10 years of SHiP simulated, increasing to 100
- ν-air: $< 10^{-2}$ in 5 years with pressure ~ 1 mbar
- ν-material: $5 \times 10^5 \begin{cases} \text{cuts (fully reco)} \rightarrow 0 \\ \text{cuts (part. reco)} \rightarrow 2 \text{ opening angle} \rightarrow 0 \end{cases}$ @ 90%CL
SHiP simulation / validation

- based on FairRoot, uses:
 - Pythia8 for p-on-target collisions, tuned to include production of c, b mesons from secondaries
 - Geant4 for propagation through the target and detector material. $V^0 \rightarrow \mu\mu$, $\gamma \rightarrow \mu\mu$, $ee \rightarrow \mu\mu$ activated and boosted
 - Genie for neutrino interactions

- several HS models added/extended (HNL, γ', S, RPV $\tilde{\chi}^0$...)
- $1.8 \times 10^9 / 6.5 \times 10^{10}$ pot simulated with $E_{th} = 1 / 10$ GeV
- μ MS and catastrophic energy loss validated with existing data

Data from HYPERON

NA62 LKr
Charm / μ flux measurements (July 2018)

- replica of BDF target + drift tube spectrometer + RPC μ tagger
- $\sim 6 \times 10^{11}$ pot recorded, analysis ongoing

- measure of charm production essential for HS and ν_τ studies
- lead target + emulsions. 1.6×10^6 pot + 10× run after LS2