

EPPSU Open Symposium, Granada, May 13-16, 2019

Claude Vallée CPPM Marseille

DARK SECTOR SEARCHES WITH BEAM DUMPS Experimental Perspective

Based mainly on the Physics Beyond Colliders study (input #42) PBC BSM Working Group Report: arXiv:1901.09966 PBC Summary Report: arXiv:1902.00260

+ credit to the Collaborations for many plots shown here

C. Vallée, EP

beam energy & intensity, decay length, signatures, background ...

MAIN PRODUCTION MODES

 D_s

Primakov/Bremstrahlung:

Mass reach mainly in sub-GeV domain, weakly dependent on beam energy

Meson decays:

N23

Mass reach in multi-GeV domain dependent on accessible meson mass thresholds (K,D,B)

EXPERIMENTAL SIGNATURES

Models	Final states
HNL, SUSY neutralino	$l^+\pi^-$, l^+K^- , $l^+\rho^- \rho^+ \rightarrow \pi^+\pi^0$
Vector, scalar, axion portals, SUSY sgoldstino	<i>l</i> + <i>l</i> ⁻
HNL, SUSY neutralino, axino	<i>l</i> + <i>l</i> -v
Axion portal, SUSY sgoldstino	γγ

+ recoil particles or missing energy for rescattering / missing energy methods

REACH OF FIXED-TARGET BEAMDUMPS IN GLOBAL LANDSCAPE

MAIN PAST BEAM DUMP PROJECTS

DP = Dark Photon DS = Dark Scalar HNL = Heavy Neutral Lepton ALP = Axion-Like Particle

EXPERIMENT	PERIOD	BEAM	PARTICLES ON TARGET	SIGNATURE	MODELS	
E137 @SLAC	80's	e 20 GeV	2 10 ²⁰	recoil e	DP, ALPs	
E141 @SLAC	80's	e 9 GeV	2 10 ¹⁵	visible e⁺e⁻	DP, ALPs	
E774 @FNAL	80's	e 275 GeV	5.2 10 ⁹	visible e⁺e⁻	DP	
NuTeV @FNAL	90's	p 800 GeV	2 10 ¹⁸	visible µ	HNL	
NUCAL @Serpukhov	80's	p 70 GeV	1.7 10 ¹⁸	visible $\gamma\gamma$, e ⁺ e ⁻ , $\mu^+\mu^-$	DP, DS, ALPs	
PS191 @CERN	80's	p 19 GeV	0.8 10 ¹⁹	visible	HNL	
CHARM @CERN	80's	p 400 GeV	2.4 10 ¹⁸	visible $\gamma\gamma$, e ⁺ e ⁻ , $\mu^+\mu^-$	DP, DS, HNL	

NB: most past beam dumps were "cheap" by-products of other experiments

MAIN CURRENT BEAM DUMP PROJECTS OUTSIDE CERN

DP = Dark Photon DS = Dark Scalar HNL = Heavy Neutral Lepton ALP = Axion-Like Particle

EXPERIMENT	PERIOD	BEAM	PARTICLES ON TARGET	SIGNATURE	MODELS	
HPS @JLAB	2016-20	e 2-6 GeV	~10 ²⁰	~10 ²⁰ visible e^+e^-		
APEX @JLAB	2018-19	e 1-4.5 GeV	~10 ²⁰	visible e⁺e⁻	DP, ALPs	
BDX @JLAB	~2022	e 12 GeV	~10 ²²	recoil e	DP, ALPs	
LDMX @SLAC	> 2022	e 4-8 GeV	2 10 ¹⁶	invisible	DP, ALPs	
MiniBooNe @FNAL	2013-14	p 8 GeV	1.8 10 ²⁰	recoil e, N	DP	
SBND @FNAL	>2020	p 8 GeV	6 10 ²⁰	recoil Ar	DP	
SEAQUEST @FNAL	2021-30	p 120 GeV	$10^{18} ightarrow 10^{20}$	visible e⁺e⁻	DP, DS, HNL	
LBND @FNAL	>2025	p 120 GeV	~10 ²¹	recoil e, N	DP, DS, HNL	

Recent dedicated experiments demonstrate a regain of interest for beam dumps Flavour factories (BELLE II, ...) have also some sensitivity from exotic decays

BEAM DUMP PROJECTS AT CERN

DP = Dark Photon DS = Dark Scalar HNL = Heavy Neutral Lepton ALP = Axion-Like Particle

EXPERIMENT	PERIOD	BEAM	PARTICLES ON TARGET	SIGNATURE	MODELS	
NA64++(e)	2015-24	e 100 GeV	~5 1012	invisible & visible e ⁺ e ⁻	DP, ALPs	
eSPS/LDMX	> 2026	e 16 GeV	1016	invisible	DP, ALPs	
AWAKE++	> 2026	e ~50 GeV	~10 ¹⁵	visible e⁺e⁻	DP, ALPs	
NA62++	> 2022	p 400 GeV	1018	visible	DP, DS, HNL, ALPs	
SHiP	> 2026	p 400 GeV	2 10 ²⁰	recoil & visible	DP, DS, HNL, ALPs	
ΝΑ64++(μ)	> 2022	μ 160 GeV	5 10 ¹³	invisible	DZ_{μ} , ALPs	

NB: CERN offers unique opportunities with both lepton and hadron beams LHCb and LHC-LLP dedicated projects (FASER, milliQan, CODEX-b, MATHUSLA) have also sensitivity in similar mass range

Wish also to extend the method to μ / hadron beams:

- Few months of μ beam would test a (g-2)_μ interpretation
- Few years of µ beam would improve limits on millicharged particles

<u>Main issue</u>: competition with COMPASS on μ beam

COMPASS BMS

% resolution

Muon beam 100 - 160 GeV MM.GEM

Target

DESY

table 🏓

1m

VHcal

MS2-1

Hcal1. 0-2

Straw

Hcal2, 0-3

GEM, MM S,

1.5 m

MS2-2

1.0 m

R&D for electron acceleration with a plasma cell excited by proton bunches

First accelerated e seen in 2018 (~2 GeV) - Phase 2 (~10 GeV) in preparation for run3

Could provide ~10¹⁵ ~50 GeV pulsed e's/year in the post-LS3 era for e⁺e⁻ visible searches by an experiment located in the CNGS decay tunnel

NA62 BEAM DUMP

Reminder: main NA62 goal is ultra-rare decay $K^+ \rightarrow \pi^+ \nu \nu$ Successful data taking since 2016, more needed after LS2 to reach goal

Some data taking in beam dump mode under consideration during run 3 Achieved by closing the TAX collimator 1 year would correspond to ~10¹⁸ PoT

Instrumentation of NA62 decay vessel well adapted to searches in visible mode

of ~100 events

BEAM DUMP FACILITY & SHIP

BDF: (see Mike Lamont's talk)

Comprehensive Design Study done: critical points under control (slow extraction losses/target complex/µ shielding)

A state-of-the-art dual spectrometer for hidden sector searches in a beam dump

SHiP

(see Elena Graverini's talk)

LHC-LLP DEDICATED PROJECTS

MilliQan, MATHUSLA, FASER, Codex-b @ the LHC IPs

NB: all "small scale" projects except MATHUSLA

C. Vallée, EPPSU Granada WS, May 2019

Beam Dumps experimental perspective

PBC BENCHMARK MODELS FOR HIDDEN SECTOR

defined to compare reach of projects under same assumptions

Warning:

the sensitivity estimations have different levels of maturity among projects

Project	Background	Efficiency	Inputs	
NA62++	0-BG assumed	partly included	10 ¹⁶ PoT run in BD mode	
KLEVER	partly included	included	fast simulation	
REDTOP	included	included	full simulation	
NA64++(e)	included	included	real data	
NA64++(μ)	0-BG assumed	100 % assumed	M2 μ beamtest	
eSPS/LDMX	included	included	full simulation at 4 GeV	
AWAKE++	0-BG assumed	100~% assumed	toy model	
SHiP	0-BG assumed	included	full simulation	
CODEX-b	0-BG assumed	included	full simulation	
FASER	0-BG assumed	100~% assumed	BG simulations & in situ measurements	
MATHUSLA200	0-BG assumed	100 % assumed	cosmic & LHC BG fluxes	
milliQan	included	included	full simulation	

Dark Photon visible mode

- Most studied in the past
- Current limits still dominated by old projects
- Strong revived worldwide competition to NA62++, AWAKE++ and FASER for this channel
 Unique reach of SHiP at high mass/low coupling

Dark Photon invisible mode

LHC

 10^{-4}

10-6

 10^{-7}

10-5 LEP

Unique NA64++(e) short term opportunity to explore the relevant DM parameter space

Thermal Relic Targets & Current Constraints

LDMX Phase I @ 4 GeV

0.1-0.3 X0 target

LDMX@SLAC O. Moreno (AWLC17)

MiniBooNE

Significantly higher reach of LDMX@eSPS, to be put in regard with a possible faster&cheaper implementation of LDMX at SLAC (pending approval of LCLS-II beam extraction)

 10^{2}

 10^{3}

m_v (MeV)

BC2

A short term few-months run could still be of interest for $(g-2)_{\mu}$ Mass reach fixed by meson masses

DARK FERMIONS (HNL's)

CMS

BC7

FCC-ee

m_N[GeV

Unique short term opportunity to explore a significant parameter space with NA62 Beam Dump and FASER

Belle

CHARM

Muon coupling dominance: U_{α}^{2} : U_{μ}^{2} : $U_{\tau}^{2} = 0.1:0$

FASER, 150 13-1

NUTEV

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-10}

 10^{-11}

 10^{-12}

 10^{-1}

ELBNE

SHiP has the highest reach on the long term

EWPD

CODEX-b, 300 fb⁻¹

10

SHiP,2x10²⁰ pot

- solid: without B_c

- dotted: with B_c (upper limit)

DELPHI

FASER2, 3 ab⁻¹

MATHUSLA200, 3 ab

- B.D mesons

... W,Z

see Saw

ALPS IN BEAMDUMPS

Similar reach as for visible A' (similar signatures $\gamma\gamma$ and e^+e^-)

beam dump potential (LHC/FCC) → no real breakthrough: SPS seems to offer a quite optimal energy-intensity mix in the present context

SUMMARY & OUTLOOK

Recent regain of interest in beam dumps worldwide

Unique short term windows of opportunity at CERN for Dark Photons with NA64++ and for HNLs with a NA62 Beam Dump option

> SPS offers close to optimal parameters for a state-of-the-art Beam Dump Facility with a unique reach in the long term

New high-intensity e-beams @ CERN should be considered in regard of existing opportunities elsewhere JLAB / SLAC LCLS-II / DESY XFEL

ADDITIONAL SLIDE

LEVEL OF READINESS OF THE CERN BEAM DUMP PROJECTS

	А	ready	ready	adequate	<10 M€	Run 3
Quote:	В	need upgrade	under design	to strengthen	10-50 M€	Run 4
	С	to be built	need R&D	to be built	>50 M€	Run 5
Project	Physics	Beam	Detector	Collaboration	Cost	Earliest
- 20	highlight	requirement	maturity		beam+det	operation
NA61++	QGP Charm	В	В	Α	Α	Α
COMPASS+	R_p & QCD	А	В	А	А	А
COMPASS++	QCD	В	В	В	В	В
MUonE	$HVP(g-2)_{\mu}$	Α	В	В	Α	Α
LHC-FT	QCD	А	В	В	А	А
LHC-FT++	spin/MM/EDM	А	С	В	А	В
NA60++	QGP phase	С	В	С	В	В
DIRAC++	chiral QCD	С	В	С	В	В
NA62++	dark sector	В	А	А	А	А
KLEVER	$K^0 o \pi^0 u ar u$	В	С	В	В	В
NA64++	dark photon	А	В	А	А	А
SHiP	dark sector & ν_{τ}	С	В	А	С	В
TauFV	$ au ightarrow 3\mu$	С	С	В	С	С
REDTOP	η decays	В	С	В	В	В
EDM ring	p EDM	С	С	В	С	С
eSPS	dark photon	С	В	В	С	В
AWAKE++	dark photon	С	В	А	В	В
nuSTORM	$\sigma(u)$	С	С	В	С	В
$_{\cup}$ _ γ -Factory	high rate γ	С	С	С	-	С