DFM Concept Proposal v0.2

Y. Leclercq, A. Kolehmainen, DFH-DFM meetings members 8th DFH-DFM meeting: 3 Apr. 2019

DFM environment

- Location: 45m non IP side of SCLinks inlet shaft
- Interface with:
 - DSHm (cables & cryogenics volume)
 - D2 (cables & cryo piping)
 - QXL (cryo piping)
 - Integration (tunnel, Collimators, Crab Cryomodules)
- Radiation: Dose ≈ 1 MGy, Neutron f. $\approx > 1.10^{15}$ cm⁻², up to 25 mSv/h

DFM concept

- Concept v0.2 key features:
 - Same Interlink & cryo concept
 - Inclined concept
 - DDFX principle: Ghe mass flow created in a separated reservoir
 - "Fountain" design to gain vertical height
 - SCLink interface as for DFX:
 - MgB2-NbTi splices protected in perforated cylinder
 - Only NbTi leads accessible

Basic concept

- 1. Lhe injection in splice volume
- 2. Level flows in side reservoir by gravity
- 3. Heater vaporises liquid (based on DFHm needs)
- 4. Level gauge control LHE inlet to ensure level

Fill reservoir MgB2-NbTi Splices 10 litres 10 min @ 2g.s⁻¹ Heaters volume

Nominal configuration

Electrical:

- MgB₂-NbTi Splices protected
- NbTi-NbTi splices on either side of plug

Cryogenics:

- Superfluid in interlink
- Splices immersed in LHE
- Fountain principle
- 10 min buffer at nominal conditions

Insulation vacuum

Interfaces

SCLink configuration for transport Weldable He flange MbTi leads MgB₂-NbTi splices Protected sleeve

• SCLink:

- As for DFX
- Independent inner and outer flexibles
- MgB2-NbTi protected
- Insulation vacuum on DFM side

• Cryogenics:

- Jumper on reservoir side
 - 1 x LHE In + 1 x GHE out + 1 x TS_{Interlink} + 2 x 4-6 Heat Ex.
- Location : close to today's jumper proposal (work on going)

EDMS1750118

Integration on going work

- DFM located above D2
 - Distant enough to allow independent assemblies
- Longitudinal position in discussion
 - Not relevant for concept within ≈1-2m
- Cryo interface:
 - 1 dedicated jumper (Details TBD)
- SCLink interface:
 - As for DFX concept
- Interlink interface:
 - Plug at DFM level (interlink work on going)
- Maintenance:
 - Pumps, safety devices, V-taps and instru accessi
 - Cryo maintenance access TBD
- Integration proposal: (TBD)
 - Roof support
 - Independent assembly D2-DFM
 - Compatible with QXL maintenance?

Assembly preliminary sequence

- 1. Initial conditions:
 - D2 present
 - Interlink installed until plug

- 2. DFM installed rotated of 10 deg
- 3. SCLink insertion with limited angle

- 4. DFM rotation to nominal
- 5. Weld jumper interfaces
- 6. NbTi-NbTi splices
- 7. He and Vacuum vessels closure

Next Steps

- Interlink integration and access for maintenance to QXL
- Interface with Cryolines
- Interface with integration / tunnel / D2
- Assembly sequence detailed
- IFS design

Spare slides

SCLink He jacket welding to DFM helium vessel

SCLink NbTi leads soldering to Plug NbTi leads

Nominal configuration

7

View from tunnel

DFM environment (not today's key topic)

Busy area (radiation, QXL, D2, SCLink)

On going discussions to study feasibility

Sequence:

- DFM concept
- DFM integration
- Iterations WP15

DFM concept

- 4th DFH-DFM meeting actions:
 - Reduce distance between outer and inner SCLink flanges
 - Study supporting options

