

Electroweak production of vector bosons and jets at the CMS experiment

Riccardo Bellan

Università di Torino and INFN

On behalf of the CMS Collaboration

VBSCan Annual Meeting

Istanbul, Turkey, 3 – 4 July, 2019

Targetting the observation of the **Electroweak production** of dibosons in associations with at least two jets:

- $pp \rightarrow ZZjj \rightarrow 4\ell jj$ Phys. Lett. B 774 (2017) 682
- $pp \rightarrow W^{\pm}W^{\pm}jj \rightarrow 2\ell^{\pm}2\nu jj$ Phys. Rev. Lett. 120, 081801 (2018)
- $pp \rightarrow WZjj \rightarrow 3\ell \nu jj$ arXiv:1901.04060 sub to PLB

Targetting strong limits on **anomalous quartic gauge couplings**:

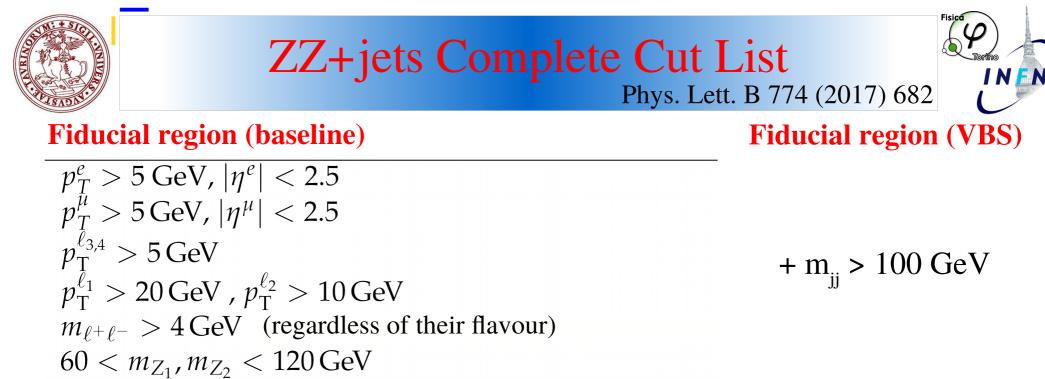
• pp $\rightarrow ZVjj \rightarrow 2\ell jjjj$ and pp $\rightarrow WVjj \rightarrow \ell \nu jjjj$ arXiv:1905.07445 sub to PLB

In all cases, $\ell = e, \mu$, and $\mathscr{L} = 35.9 \text{ fb}^{-1}$ (2016 data only).

Pros

Cons

ZZ+jets analysis Phys. Lett. B 774 (2017) 682


Search for two <u>on-shell</u> ($60 < m_{\ell\ell} < 120 \text{ GeV}$) Z bosons decaying into

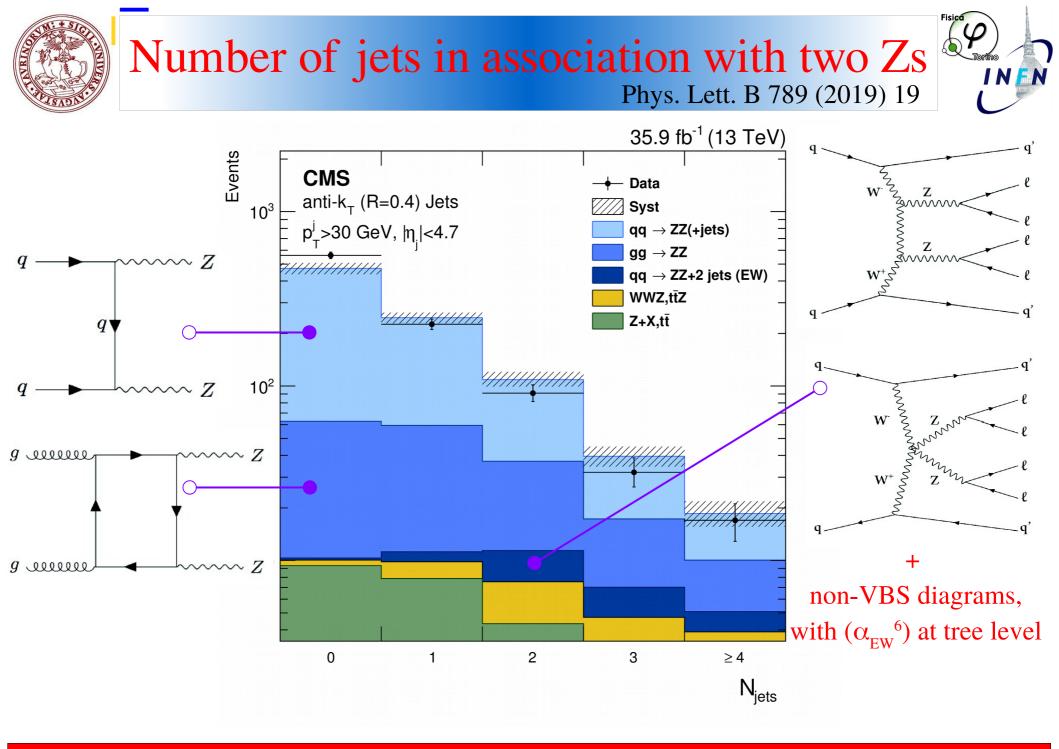
electrons or **muons** pairs, consider jets if their p_T is > 30 GeV

- Final state can be **fully reconstructed**
 - \rightarrow all kinematic variables are accessible
- Very clean final state
 - \rightarrow low reducible background
- Low σxBR compared to other channels

 \rightarrow maximize the selection efficiency (minimal cuts on lepton mainly driven by trigger thresholds, detector acceptance)

- **ZZ + QCD-induced jets** (irreducible background) **highly dominant** compared to pure EW production
 - \rightarrow understanding of the irreducible background is paramount

Search region (baseline)


Search region (VBS)

- $|\eta_e| < 2.5 p_T^e > 7 \text{ GeV}, |\eta_{\mu}| < 2.4 p_T^{\mu} > 5 \text{ GeV}, \text{ relative isolation } < 0.35$ in a cone of $\Delta R = 0.3$, CMS tight ID and SIP= $|IP/\sigma_{IP}| < 4$
- At least a lepton with $p_T > 20$ GeV and a $\mu(e)$ with $p_T > 10(12)$ GeV + $m_{ii} > 100$ GeV
- $60 < m_Z < 120 \text{ GeV}$ (On shell), $m_{\text{ll crossed(opposite sign)}} > 4 \text{ GeV}$
- Loosely ID jets, reco with anti- $k_T 0.4$; $|\eta_{jet}| < 4.7$ and $p_T > 30$ GeV

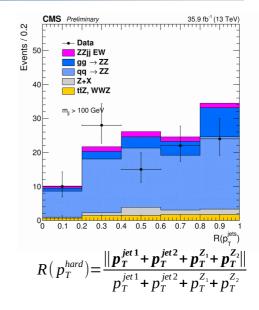
- **Signal**: MadGraph_aMC@NLO v2.3.3
 - Cross checked with Phantom v1.2.8
- ZZ + QCD-induced jets (0,1 at born level @NLO): MadGraph_aMC@NLO
 - Jets merged with FxFx scheme
- Loop-induced ZZ production (gg \rightarrow ZZ): MCFM v7.0.1
 - Cross checked with MadGrap_aMC@NLO
- In all cases, **PYTHIA v8.212** is used for parton showering, hadronization and underlying event simulation (**CUETP8M1** tune), while we used the **NNPDF3.0** PDF set.

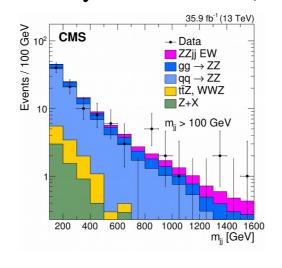
R.Bellan

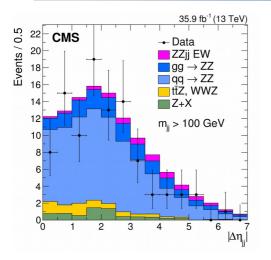
Number of jets $(\eta_j < 4.7)$	Cross section [fb]	Theoretical cross section [fb]
0	28.3 ± 1.3 (stat) ^{+1.7} _{-1.5} (syst) ± 0.7 (lumi)	$23.6^{+0.8}_{-0.9}$
1	8.0 ± 0.8 (stat) ^{+0.7} _{-0.8} (syst) ± 0.2 (lumi)	$9.7^{+0.5}_{-0.5}$
2	$3.0 \pm 0.5 (\text{stat})^{+0.3}_{-0.4} (\text{syst}) \pm 0.1 (\text{lumi})$	$4.0^{+0.3}_{-0.3}$
<u>≥3</u>	$1.3 \pm 0.4 (\text{stat})^{+0.2}_{-0.2} (\text{syst})$	$1.7^{+0.1}_{-0.1}$

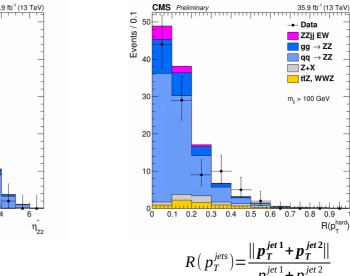
Cross section of ZZ + \ge 2 jets = (4.3 ± 0.8) fb [(5.7 ± 0.3) fb theo]

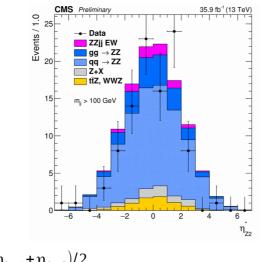
Applying a further selection on VBS-enanching variables, namely

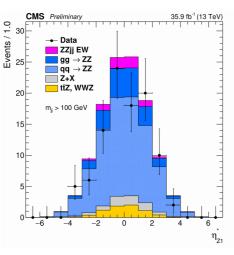

$m_{ii} > 400 \text{ GeV}$ and $|\Delta \eta| > 2.4$, what we obtain is

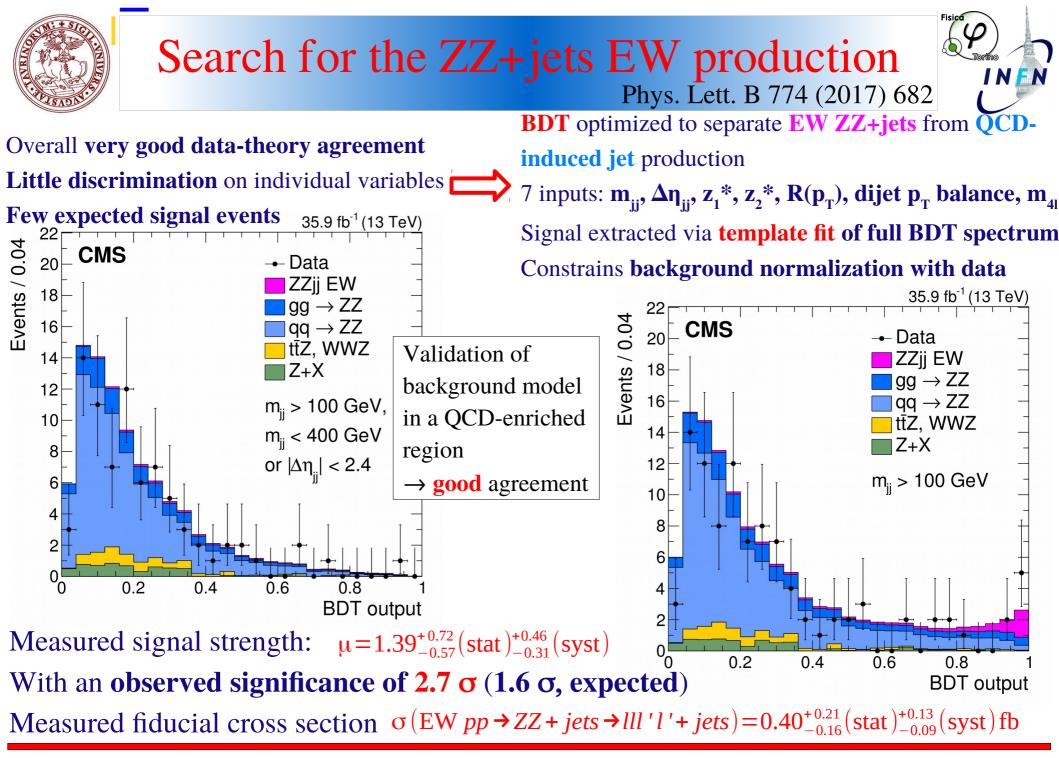

Selection	$\ensuremath{t\bar{t}Z}\xspace$ and WWZ	QCD ZZjj	Z + X	Total bkg.	EW ZZjj	Total expected	Data
ZZjj VBS signal-enriched	$\begin{array}{c} 7.1 \pm 0.8 \\ 0.9 \pm 0.2 \end{array}$	$\begin{array}{c} 97\pm14\\ 19\pm4 \end{array}$	$\begin{array}{c} 6.6 \pm 2.5 \\ 0.7 \pm 0.3 \end{array}$	$\begin{array}{c} 111\pm14\\ 20\pm4 \end{array}$	$\begin{array}{c} 6.2\pm0.7\\ 4\pm0.5\end{array}$	$\begin{array}{c} 117\pm14\\ 25\pm4 \end{array}$	99 19


Celarly not enough to target for an evidence \rightarrow move to a BDT-based analysis


R.Bellan


ZZ+jets MVA input variables Phys. Lett. B 774 (2017) 682 and SMP-16-019

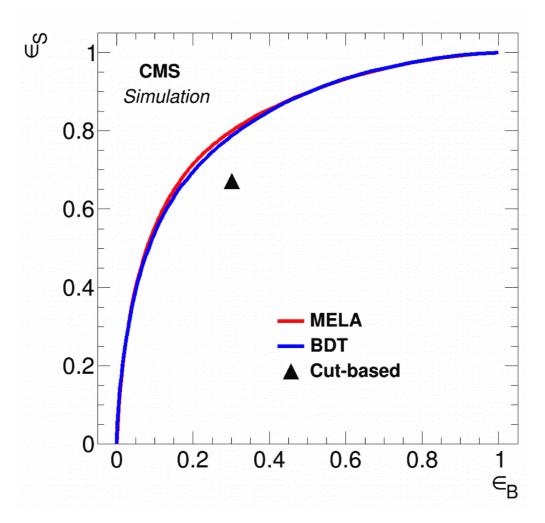




 $Z_{i}^{*} = \eta_{Z_{i}} - (\eta_{jet,1} + \eta_{jet,2})/2$

R.Bellan

3rd July 2019 – EW VV+jets at CMS


IN EN

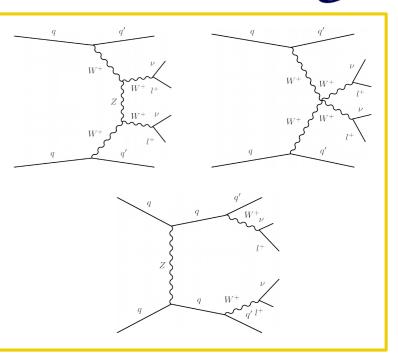
R.Bellan

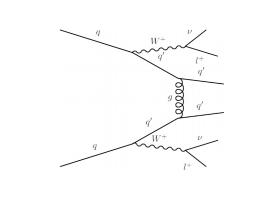
ZZ+jets: ROC Curve

R.Bellan

3rd July 2019 – EW VV+jets at CMS

Fisica


SMP-16-019


IN EN

$EW pp \rightarrow W^{\pm}W^{\pm}jj \rightarrow l^{\pm}l^{\pm}vvjj production$ Phys. Rev. Lett. 120, 081801 (2018)

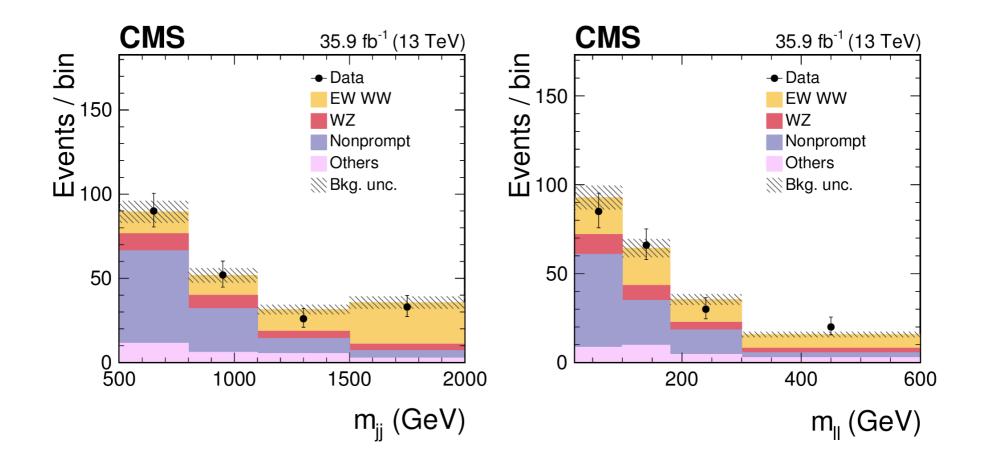
- Search for a **pair of same charge lepton** (μ , e) with $p_{T,1(2)} > 25$ (20) GeV $m_{11} > 20$ GeV, **vetoing additional leptons** (including τ 's) in the event
- **Two jets** with $p_T > 30$ GeV, leading jets taken as tagging jets, $m_{ij} > 500$ GeV, $|\Delta \eta_{ij}| > 2.5$, max $(z_1^*) < 0.75$
- Low background contamination compared to other VBS search channels, because processes with two true high-p_T same-sign lepton are pretty rare → # signal events ~ half of all background events
- Background from W[±]W[±]+jets induced by QCD *very small*compared to the signal. Main background from multi nonprompt leptons in the event and WZ → 3lv where a
 charged lepton is lost
 - To suppress $DY \rightarrow E_T^{\text{miss}} > 40 \text{ GeV} \text{ and } Z \rightarrow e^+e^- \text{ veto}$
 - To reduce top background: anti b-tagging, $m_{\parallel} > 20 \text{ GeV}$

Search region

- Two same charge lepton (μ , e) with $p_{T,1(2)} > 25$ (20) GeV, $|\eta| < 2.4$ (2.5), $m_{II} > 20$ GeV
- Veto events with additional leptons if p_T of a 3rd loosely ID lepton is > 10 GeV or the p_T of an identified τ (to hadrons) is > 18 GeV
- **Two jets** (anti- $k_T 0.4$) with $p_T > 30$ GeV, $|\eta| < 5$ leading jets taken as tagging jets, $m_{jj} > 500$ GeV, $|\Delta \eta_{jj}| > 2.5$, max $(z_1^*) < 0.75$ $Z_i^* = |\eta_l (\eta_{jet,1} + \eta_{jet,2})/2|/|\Delta \eta_{jj}|$
- $E_T^{\text{miss}} > 40 \text{ GeV}, Z \rightarrow e^+e^- \text{ veto (requiring } |m_{11} m_Z| > 15 \text{ GeV}), \text{ anti b-tag, } m_{11} > 20 \text{ GeV}$

Fiducial region

- $p_T > 20 \text{ GeV}$, $|\eta| < 2.5$, for both leptons
- $p_T > 30 \text{ GeV}, |\eta| < 5 \text{ for the two leading jets and } m_{ii} > 500 \text{ GeV}, |\Delta \eta_{ij}| > 2.5$
- Taus decay into leptons are excluded from this definition



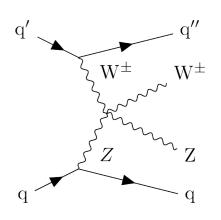
- Signal and irreducible background: MadGraph_aMC@NLO v2.3.3
 - Max $\mathcal{O}(\alpha_{QCD}^{2})$ and up to $\mathcal{O}(\alpha_{EW}^{6})$ diagrams
- **ZZ and WZ** are simulated at LO with MadGraph_aMC@NLO
- Tribosons are simulated at NLO with MadGraph_aMC@NLO
- In all cases, PYTHIA v8.205 is used for parton showering, hadronization and underlying event simulation (CUETP8M1 tune), while we used the NNPDF3.0 PDF set.

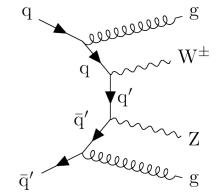
	e ⁺ e ⁺	$e^+\mu^+$	$\mu^+\mu^+$	e ⁻ e ⁻	e- <i>µ</i> -	$\mu^{-}\mu^{-}$	Total
Data	14	63	40	10	48	26	201
Signal + total bkg.	19.0 ± 1.9	67.6 ± 3.8	44.1 ± 3.4	11.8 ± 1.8	38.9 ± 3.3	23.9 ± 2.8	205 ± 13
Signal	6.2 ± 0.2	24.7 ± 0.4	18.3 ± 0.4	2.5 ± 0.1	8.7 ± 0.2	6.5 ± 0.2	66.9 ± 2.4
Total bkg.	12.8 ± 1.9	42.9 ± 3.8	25.7 ± 3.4	9.4 ± 1.8	30.2 ± 3.3	17.4 ± 2.8	138 ± 13
Nonprompt	5.6 ± 1.7	24.9 ± 3.6	18.4 ± 3.3	5.0 ± 1.6	19.9 ± 3.2	14.2 ± 2.8	88 ± 13
WZ	3.0 ± 0.2	8.5 ± 0.3	4.4 ± 0.2	1.9 ± 0.2	5.2 ± 0.3	2.2 ± 0.1	25.1 ± 1.1
QCD WW	0.6 ± 0.1	1.7 ± 0.1	1.3 ± 0.1	0.2 ± 0.1	0.6 ± 0.1	0.4 ± 0.1	4.8 ± 0.4
$\mathrm{W}\gamma$	1.4 ± 0.5	3.6 ± 0.9	0.2 ± 0.2	0.8 ± 0.4	2.3 ± 0.7		8.3 ± 1.6
Triboson	0.8 ± 0.2	2.2 ± 0.4	1.2 ± 0.3	0.3 ± 0.1	0.9 ± 0.3	0.5 ± 0.2	5.8 ± 0.8
Wrong sign	1.5 ± 0.6	1.4 ± 0.4		1.1 ± 0.5	1.2 ± 0.4		5.2 ± 1.1

- Signal event yield extracted using a **2D fit of m_{ii} and m_{ii}**
- EW production observed with a significance of **5.5** σ (expected **5.7** σ)

 $\sigma(EW pp \rightarrow W^{\pm} W^{\pm} + jets \rightarrow l^{\pm} l'^{\pm} \nu \nu + jets) = 3.83 \pm 0.66 (stat) \pm 0.35 (syst) fb$

 Analysis also used to constrain the σxBR for the production of doubly charged Higgs boson decaying into two same sign W, resulting in a limit at 95% CL well below 100 fb for a large range of the H^{±±} mass


arXiv:1901.04060 sub to PLB Affected by more background than W[±]W[±], but **cross section**


EW pp $\rightarrow W^{\pm}Zjj \rightarrow l^{\pm}\upsilon l^{\pm}l^{\mp}jj$ production

- Affected by more background than W[±]W[±], but cross section accessible with large dataset
- Search for **three charged leptons** (μ , e) in the final state, with $p_T(l_Z, 1) > 25 \text{ GeV}, p_T(l_Z, 2) > 15 \text{ GeV}$ and $p_T(l_W) > 20 \text{ GeV}$
- **Two jets** with $p_T > 50$ GeV, leading jets taken as tagging jets, $m_{jj} > 500$ GeV, $|\Delta \eta_{jj}| > 2.5$, $|\eta_{31} - (\eta_{j1} + \eta_{j2})/2| < 2.5$
- QCD production of WZ+jets is the dominant background

 \rightarrow Use **MC and data control regions** to predict it and all the other background with three prompt leptons

- Nonprompt lepton background estimated from data
- **Robust analysis** that uses only variable that are theoretically well understood for both QCD WZjj and EW WZjj processes

W[±]Z+jets complete set of cuts arXiv:1901.04060 sub to PLB

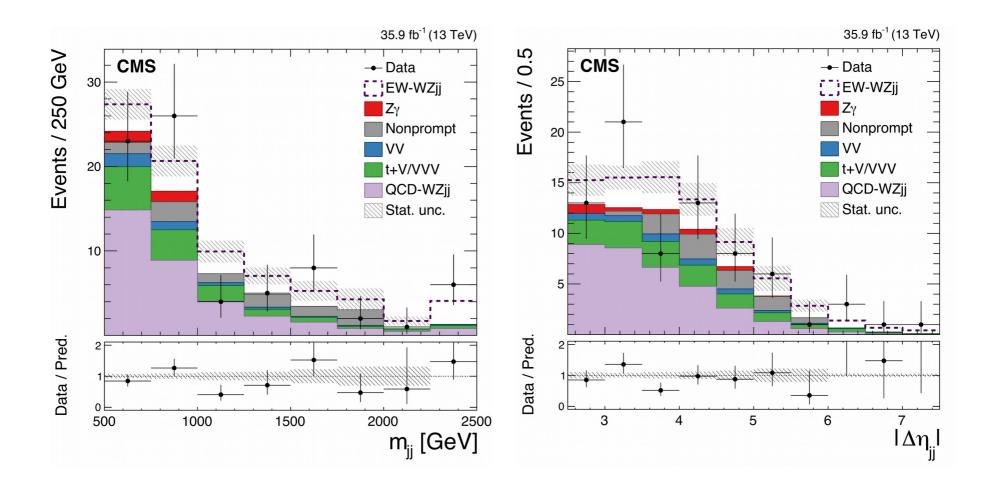
	EW signal	Higgs boson	Tight fiducial	Loose fiducial
$p_{\mathrm{T}}^{\ell_1'}$ [GeV]	>25	>25	>25	>20
$p_{\mathrm{T}}^{\ell_2'}$ [GeV]	>15	>15	>15	>20
$p_{\mathrm{T}}^{\hat{\ell}}$ [GeV]	>20	>20	>20	>20
$ \eta^{\mu} $	<2.4	$<\!\!2.4$	<2.5	<2.5
$ \eta^{\mathrm{e}} $	<2.5	<2.5	<2.5	<2.5
$ m_{\ell'\ell'} - m_Z $ [GeV]	<15	<15	<15	<15
$m_{3\ell}$ [GeV]	>100	>100	>100	>100
$m_{\ell\ell}$ [GeV]	>4	>4	>4	>4
$p_{\rm T}^{\rm miss}$ [GeV]	>30	>30	—	—
$ \eta^{j} $	< 4.7	$<\!\!4.7$	$<\!\!4.7$	$<\!\!4.7$
$p_{\mathrm{T}}^{\mathrm{j}}$ [GeV]	>50	>30	>50	>30
$ \Delta R(\mathbf{j}, \ell) $	> 0.4	> 0.4	> 0.4	> 0.4
nj	≥ 2	≥ 2	≥ 2	≥ 2
$p_{\rm T}^{\rm b}$ [GeV]	>30	>30		—
$ \eta^{\mathrm{b}} $	<2.4	$<\!2.4$	—	—
$n_{\rm b}$	=0	=0	—	—
$m_{ m jj}$	>500	>500	>500	>500
$ \Delta \eta_{ m jj} $	>2.5	>2.5	>2.5	>2.5
$ \eta^{3\ell} - (\eta^{j_1} + \eta^{j_2})/2 $	<2.5		<2.5	

R.Bellan

3rd July 2019 – EW VV+jets at CMS

Fisicó

IN EN


- **Signal**: MadGraph_aMC@NLO v2.4.2
 - Cross checked with VBFNLO 3.0, SHERPA v2.2.4, and MOCANLO+RECOLA (at fixed order)
- WZ + QCD-induced jets (0,1,2 at born level @LO): MadGraph_aMC@NLO, Jets merged with MLM scheme
 - Cross checked wth MadGrap_aMC@NLO v2.3.3 (0,1 at born level @NLO, FxFx scheme) and with inclusive NLO simulation from POWHEG
- Interference between EW-QCD WZjj evaluated with a dedicated MadGraph_aMC@NLO v2.6.0 sample $\mathcal{O}(\alpha_{QCD}\alpha_{EW}^{5})$
- **Z, ttV and triboson** are generated at NLO with MadGraph_aMC@NLO v2.3.3
- In all cases, **PYTHIA v8.212** is used for parton showering, hadronization and underlying event simulation (**CUETP8M1** tune), while we used the NNPDF3.0 PDF set
 - Signal cross checked with PS and hadronization made with SHERPA and HERWIG v7.1

- First, measure the WZjj (QCD+EW) cross section in the EW WZjj enhanced regions (tight, and loose) $\sigma^{fid}(pp \rightarrow WZ + jets \rightarrow l \nu l' l' + jets) = 3.18^{+0.57}_{-0.52}(stat)^{+0.43}_{-0.36}(syst) \text{ fb}$ $\sigma^{fid,loose}(pp \rightarrow WZ + jets \rightarrow l \nu l' l' + jets) = 4.39^{+0.78}_{-0.72}(stat)^{+0.60}_{-0.50}(syst) \text{ fb}$
- To extract the EW component (~38% of the tight fid xsection) simultaneously fit yield from background control region and 2D distribution of m_{ij} and $\Delta \eta_{ij}$

R.Bellan



• First, measure the WZjj (QCD+EW) cross section in the EW WZjj enhanced regions (tight, and loose) $\sigma^{fid}(pp \rightarrow WZ + jets \rightarrow l\nu l'l' + jets) = 3.18^{+0.57}_{-0.52}(stat)^{+0.43}_{-0.36}(syst) fb$

 $\sigma^{fid,loose}(pp \rightarrow WZ + jets \rightarrow l \nu l' l' + jets) = 4.39^{+0.78}_{-0.72}(stat)^{+0.60}_{-0.50}(syst) fb$

- To extract the EW component (~38% of the tight fid xsection) simultaneously fit yield from background control region and 2D distribution of m_{jj} and $\Delta \eta_{jj}$
- Measured signal strength: $\mu = 0.82^{+0.51}_{-0.43}$ with an expected **EW WZjj cross** section of $\sigma = 1.25^{+0.11}_{-0.09}(\text{scale}) \pm 0.15(\text{PDF})\text{fb}$ and an observed significance of **2.2** σ (**2.7** σ , expected)

Analysis also used to constrain the σxBR for the production of **charged Higgs boson**, resulting in a **limit at 95% CL** well **below 100 fb** for a large range of the H[±] mass

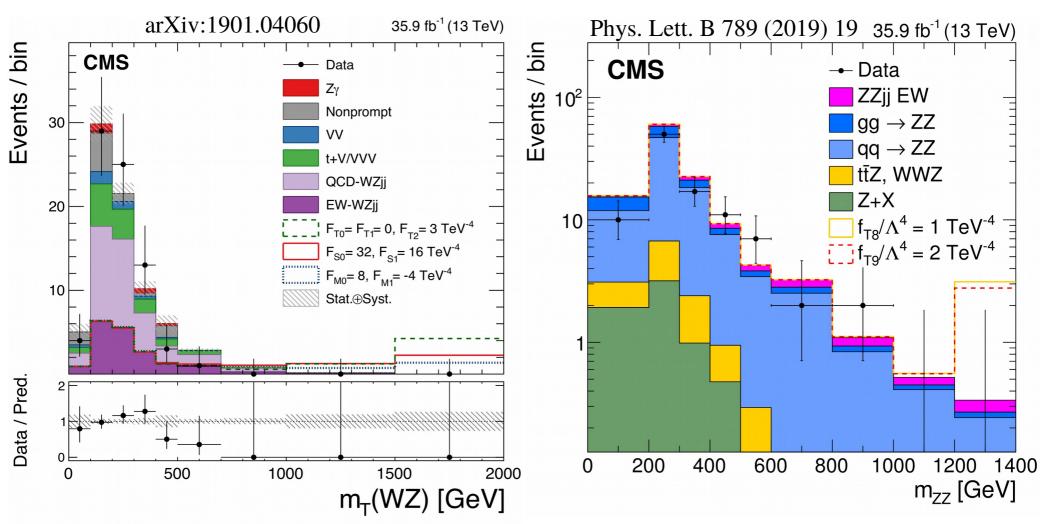
Post-fit yelds

Process	μμμ	μμe	eeµ	eee	Total yield
QCD WZ	13.5 ± 0.8	9.1 ± 0.5	6.8 ± 0.4	4.6 ± 0.3	34.1 ± 1.1
t+V/VVV	5.6 ± 0.4	3.1 ± 0.2	2.5 ± 0.2	1.7 ± 0.1	12.9 ± 0.5
Nonprompt	5.2 ± 2.0	2.4 ± 0.9	1.5 ± 0.6	0.7 ± 0.3	9.9 ± 2.3
VV	0.8 ± 0.1	1.6 ± 0.2	0.4 ± 0.0	0.7 ± 0.1	3.5 ± 0.2
$Z\gamma$	< 0.1	2.1 ± 0.8	< 0.1	< 0.1	2.1 ± 0.8
Pred. background	25.2 ± 2.1	18.3 ± 1.6	11.2 ± 0.8	7.7 ± 0.5	62.4 ± 2.8
EW WZ signal	6.0 ± 1.2	4.2 ± 0.8	2.9 ± 0.6	2.1 ± 0.4	15.1 ± 1.6
Data	38	15	12	10	75

March 2019

Cross sections summary

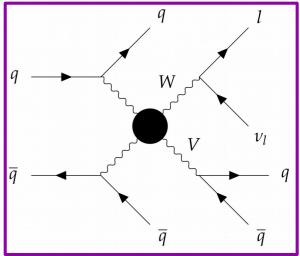
CMS Preliminary **2** 7 TeV CMS measurement ($L \le 5.0 \text{ fb}^{-1}$) B TeV CMS measurement (L ≤ 19.6 fb⁻¹) **13** TeV CMS measurement ($L \le 137$ fb⁻¹) - Theory prediction 🚣 🚣 CMS 95%CL limits at 7, 8 and 13 TeV ≥n jet(s) 10² 10^{-3} 10 $ggH_{qqH}^{VBFI}VHWH$ qqHTh. $\Delta\sigma_{H}$ in exp. $\Delta\sigma$ EW EW Yγγ→EW EW EW EW EW EW qqW qqZ WW qqWγssWWqqZγqqWZqqZ EW EW EW EW wwwvγ zγγ ttW tttt W 'Zγ Wγγ 'tZq 'Wγ WW'WZ'77 tt 'tW 'ttγ ttZ tγ 'tH All results at: http://cern.ch/go/pNj7

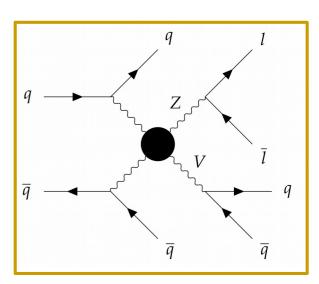

R.Bellan

- Search for **new physics** *while doing* **EW measurements**
- Look for deviations from SM in tail of distributions (**m**_{VV}, **m**_{II}, **m**_{II}, **p**_{T,V}, ...)
- Parametrize the new physics adding terms to the SM lagrangian
- Several possibilities, for the analyses presented here we made use of the Effective field theory approach [Phys. Rev. D 48(1993) 2182, Phys. Rev. D 74 (2006) 073005] to extract limits on anomalous quartic gauge couplings
- Parameters are varied *one-by-one*, with the exception of the WZjj analysis in which we varied two parameters at a time
- Designed an analysis (SMP-18-006) specifically to search for aQGC in WW/WZ/ZZ + jets production, in final states where the vector bosons have been decayed semileptonically

Main variables for the search of anomalous quartic gauge couplings \rightarrow no evidence found so far

R.Bellan

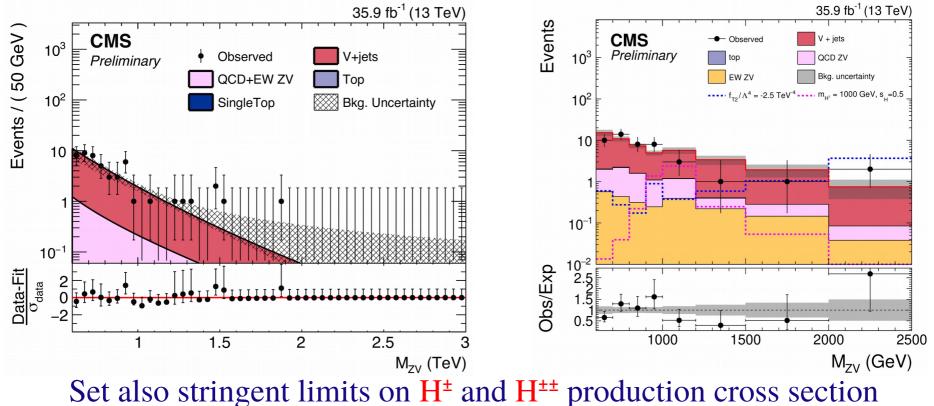

3rd July 2019 – EW VV+jets at CMS


NFN

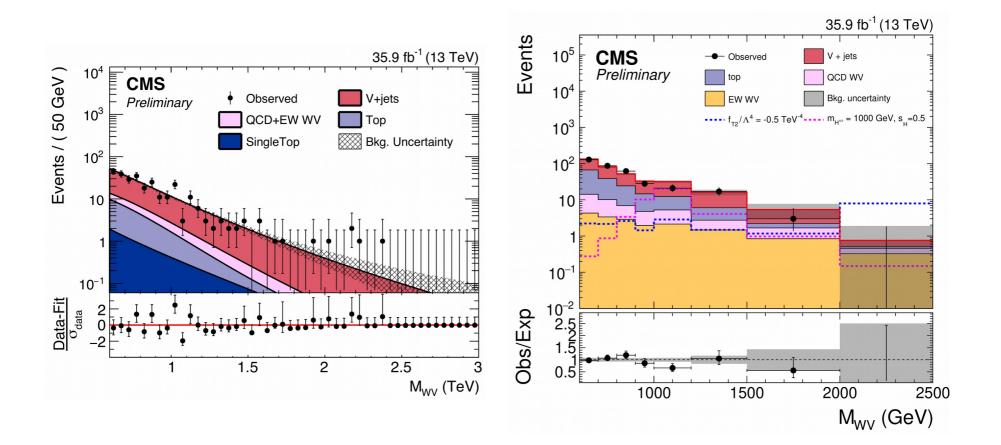
Search for anomalous EW production of WW/WZ/ZZ + jets sub to PLB

- Two final states: $pp \rightarrow WVjj \rightarrow lvjjjj$ and $pp \rightarrow ZVjj \rightarrow lljjjj$
- Select events with
 - One or two leptons with $p_T > 30 \text{ GeV}$
 - **WVjj**: $p_T^{\text{miss}} > 50 (80)$ GeV for final state with μ (e)
 - **ZVjj**: $|m_{11} m_{2}| < 15 \text{ GeV}$
- Hadronically decaying boson reconstructed in **boosted topology** (anti- $k_T w/R = 0.8$)
 - $p_{T,V} > 200 \text{ GeV}, 65 \text{ GeV} < m_V < 105 \text{ GeV}$
- **Stringent VBS requirements**:
 - **Two jets** with $p_T > 30$ GeV, $m_{ii} > 800$ GeV, $|\Delta \eta_{ij}| > 4$

- Requirement on **Zeppenfeld variables** (< 0.3) and **boson centrality** (> 1) for WVjj



- Select events with
 - One or two leptons with $p_T > 30$ GeV, $R_{iso} < 0.3$ (0.4) for e (μ)
 - **WVjj**: $p_T^{\text{miss}} > 50 (80)$ GeV for final state with μ (e)
 - **ZVjj**: $|m_{11} m_Z| < 15 \text{ GeV}$
 - No b-tagged jets
- Hadronically decaying boson reconstructed in **boosted topology** (anti- $k_T w/R = 0.8$)
 - $p_{T,V} > 200 \text{ GeV}, 65 \text{ GeV} < m_V < 105 \text{ GeV}, \tau_2/\tau_1 < 0.55$
- Stringent VBS requirements:
 - **Two jets** with $p_T > 30 \text{ GeV}$, $m_{jj} > 800 \text{ GeV}$, $|\Delta \eta_{jj}| > 4$
 - $Z_{V}^{*}, Z_{W}^{*}, Z_{Z}^{*} < 0.3, \text{ with } Z_{X}^{*} = |\eta_{X} (\eta_{jet, 1} + \eta_{jet, 2})/2|/|\Delta \eta_{jj}|$
 - $\theta = \min(\min(\eta_{W}, \eta_{V}) \min(\eta_{jet,1}, \eta_{jet,2}), \max(\eta_{jet,1}, \eta_{jet,2}) \max(\eta_{W}, \eta_{V})) > 1.0$


- Laegest bakground is V+jets \rightarrow estimated yield and shape from sidebands of the signal region (40 GeV < m_v < 65 GeV and 105 GeV < m_v < 150 GeV)
- Fit mass the distribution of the WV or ZV system in the signal region

R.Bellan

WW/WZ/ZZjj: WV analysis arXiv:1905.07445 sub to PLB

3rd July 2019 – EW VV+jets at CMS

Fisicó

IN EN

Final state	WV	ZV
Data	347	47
<i>V</i> +jets	187 ± 21	41.2 ± 6.1
top	120 ± 18	0.16 ± 0.04
SM QCD VV	28 ± 10	6.4 ± 2.2
SM EW VV	17 ± 2	2.4 ± 0.4
Total bkg.	352 ± 21	50.1 ± 5.9
$f_{T2}/\Lambda^4 = -0.5, -2.5 \text{ TeV}^{-4}$	22 ± 1	7.6 ± 0.6
$m_{H_5} = 500 { m GeV}$, ${ m s}_H = 0.5$	40 ± 1	4.3 ± 0.1

aQGC summary table

May 2019	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	ls 8 TeV
$f_{T,0} / \Lambda^4$		Ψγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
Τ,0 / Λ		Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Ζγγ WVγ	[-1.8e+01, 1.8e+01]	20.2 fb ⁻¹	8 TeV
	i H		[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
	Ĥ	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb⁻'	8 TeV
	H	Zγ	[-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV
	Ë	Ζγ Ζγ Ψγ	[-5.4e+00, 5.6e+00]	19.7 fb⁻¹	8 TeV
	H	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV 13 TeV
		ss WW	[-6.2e-01, 6.5e-01]	35.9 fb⁻¹	13 TeV
	H	WZ	[-7.5e-01, 8.1e-01]	35.9 fb ⁻¹ 35.9 fb ⁻¹	13 TeV
		ZZ	[-4.6e-01, 4.4e-01]	35.9 fb⁻'	13 TeV
		WV ZV	[-1.2e-01, 1.1e-01]	<u>35.9 fb⁻¹</u> 35.9 fb ⁻¹	13 TeV 13 TeV
$f_{T,1}/\Lambda^4$	н	WWW	[-3.3e+00, 3.3e+00]	35.9 fb ⁻]	13 TeV
'T,1'**	H	Zγ Wγ	[-4.4e+00, 4.4e+00]	19.7 fb⁻¹	8 TeV
	н	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb⁻¹	8 TeV
	н	ssWW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
		ss WW	[-2.8e-01, 3.1e-01]	35.9 fb⁻¹	13 TeV
		WZ	[-4.9e-01, 5.5e-01]	35.9 fb⁻¹	13 TeV
		ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻ 1	13 TeV
		WV ZV WWW	[-1.2e-01, 1.3e-01]	<u>35.9 fb⁻¹</u> 35.9 fb ⁻¹	13 TeV 13 TeV
$f_{T,2}/\Lambda^4$, Ĥ ,	<u>v</u> vvvv	[-2.7e+00, 2.6e+00]	35.9 fb⁻¦	13 TeV
1,2112		Zγ Wγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻ 1	8 TeV
		VVγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻ 1	8 TeV
		ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹ 35.9 fb ⁻¹	8 TeV
	<u>н</u>	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb⁻¦	13 TeV
	H H	WZ	[-1.5e+00, 1.9e+00]	35.9 fb ⁻¹	13 TeV
	ų.	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
		 WVγ	[-2.8e-01, 2.8e-01]	35.9 fb ⁻¹	13 TeV
$f_{T,5} / \Lambda^4$		vvvγ	[-2.0e+01, 2.1e+01]	20.2 fb ⁻¹	8 TeV
1,5	· · · ·	Ζγγ Wγ	[-9.3e+00, 9.1e+00]	20.3 fb^{-1}	8 TeV
	H	ννγ	[-3.8e+00, 3.8e+00]	<u>19.7 fb⁻¹</u>	8 TeV 8 TeV
$f_{T,6} / \Lambda^4$		WVγ	[-2.5e+01, 2.5e+01] [-2.8e+00, 3.0e+00]	20.2 fb ⁻¹	
1,0	н	$W\gamma$ $WV\gamma$	[-5.8e+01, 5.8e+01]	<u>19.7 fb⁻¹</u>	8 TeV
f_{T_7}/Λ^4	L1		[-7.3e+00, 7.7e+00]	20.2 fb ⁻¹	8 TeV
$ \frac{f_{T,7}/\Lambda^4}{f_{T,8}/\Lambda^4} $		<u> </u>	[-1.8e+00, 1.8e+00]	<u>19.7 fb⁻¹</u>	8 TeV 8 TeV
f _{T 8} /Λ [¬]			[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹ 20.2 fb ⁻¹	8 TeV
.,•		27	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
- - - - - - - - - -		7,00	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
$f_{T,9}/\Lambda^4$		$\overline{Z}_{\gamma}^{\gamma\gamma}$	[-4.0e+00, 4.0e+00]	20.3 fb 19.7 fb ⁻¹	8 TeV
.,-		$\frac{2}{7}$	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
	· · · · · · ·	Wγ Zγ Zγ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
I	0	10)()	200)
	0				4
		ac	GC Limits @9	55% U.L.	

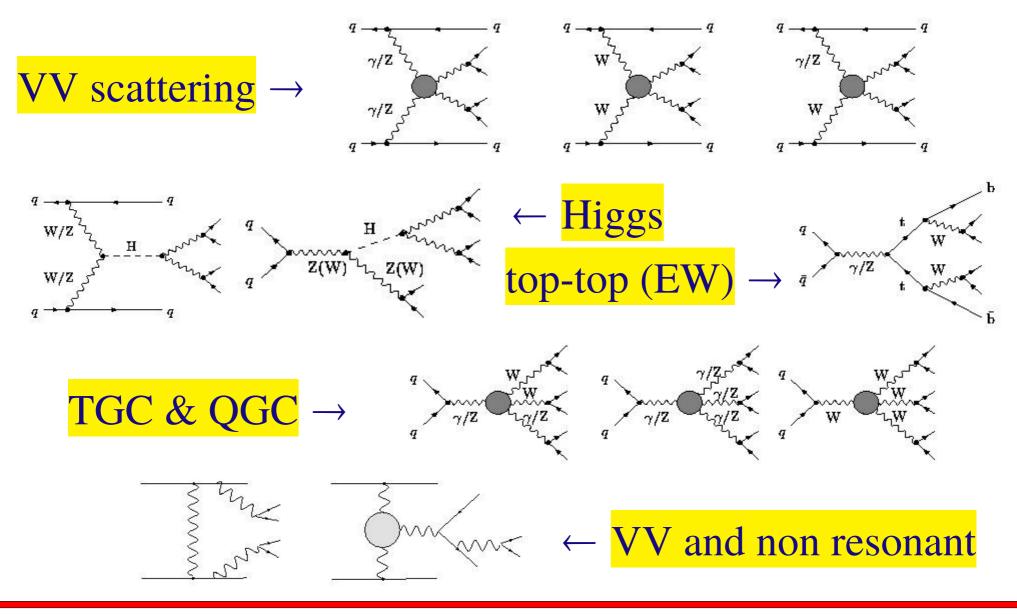
R.Bellan

- CMS explored several VBS-like final states, using 2016 data
- So far, we have Observation of Electroweak production of two same sign W and two jets and Hint (at CMS) of the production of ZZ+jets and WZ+jets through EW processes
- For VBS studies, CMS is pretty MadGraph_aMC@NLO and PYTHIA oriented
- VBS fiducial region are not homogeneous through the analyses. VBSCan community should give an advice on a standard fiducial region

 \rightarrow Could be an addition one to other fiducial regions already quoted by the experiments

Details on results can be found in the public pages of the CMS experiment: *http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html*

R.Bellan

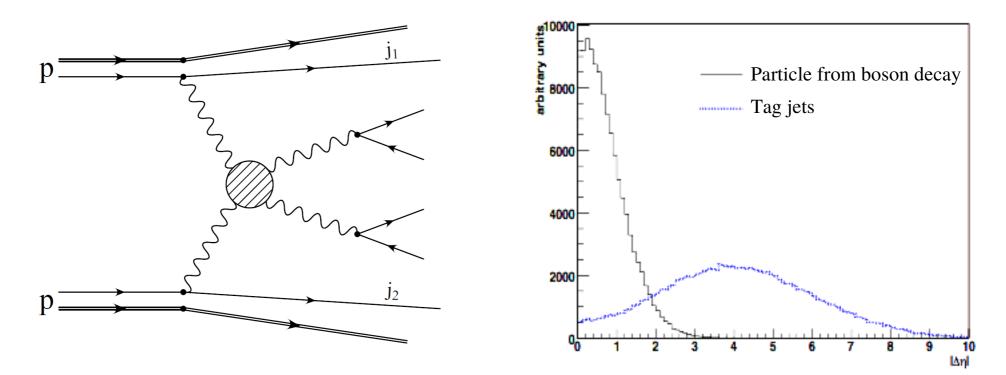


More Material

What is the electroweak production of vector bosons + jets?

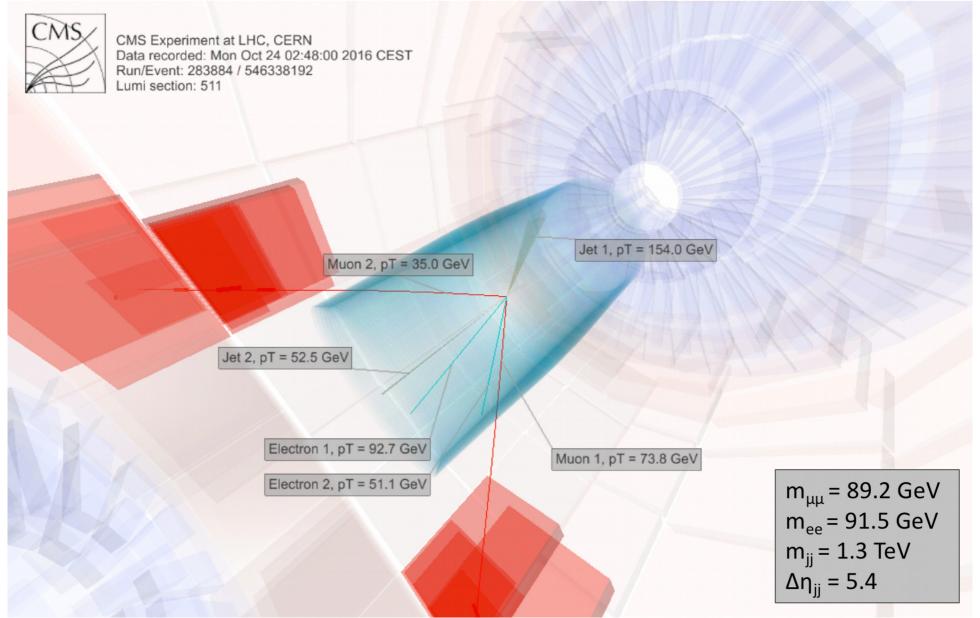
Six-fermions final state at leading order α^6 , or **four-fermions** and a photon at $\mathcal{O}(\alpha^5)$

R.Bellan


3rd July 2019 – EW VV+jets at CMS

INFN

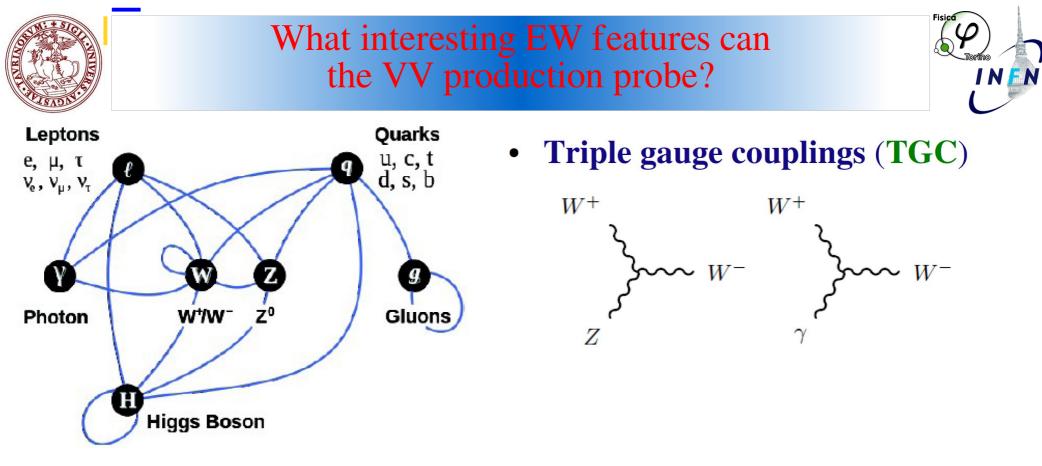
- ... which has a distinctive signature
- Two jets in the forward-background region \rightarrow Large pseudorapidity gap
- Decay products of the outgoing vector bosons tend to be **in-between the tag-jet pseudorapidity gap**



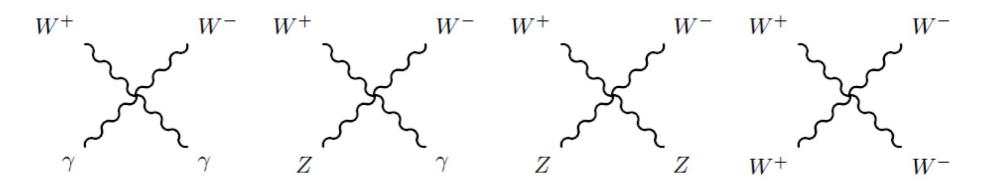
• Other key variables are: the **invariant mass of the dijet system** (\mathbf{m}_{jj}) and the **Zeppenfeld variable** (\mathbf{z}^*), usually defined as $Z_x^* = |\eta_x - (\eta_{jet,1} + \eta_{jet,2})|/2$ or $Z_x^* = |\eta_x - (\eta_{jet,1} + \eta_{jet,2})/2|/|\Delta \eta_{jj}|$

R.Bellan

VBS Candidate Event

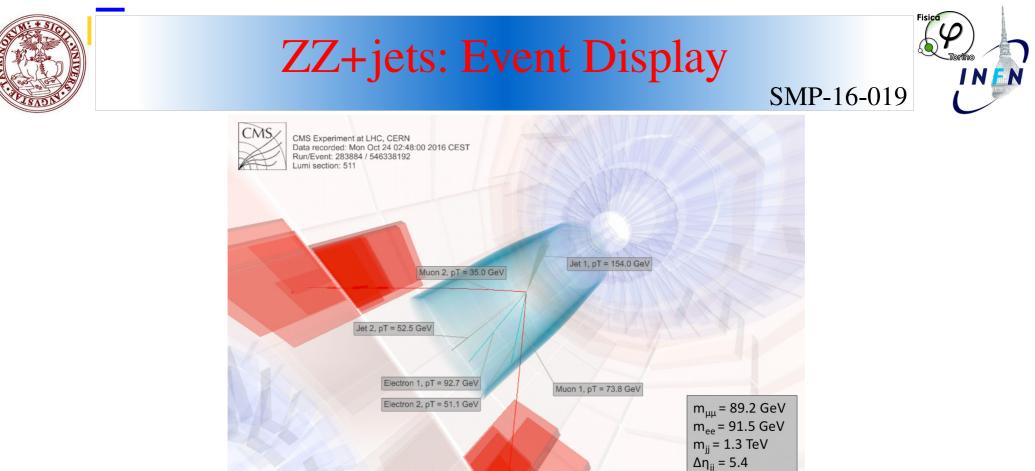


R.Bellan


3rd July 2019 – EW VV+jets at CMS

I N EN

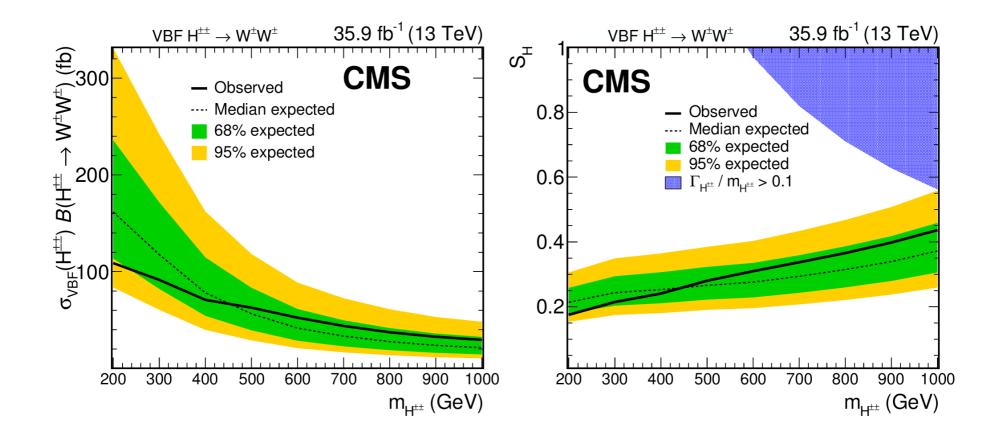

SMP-16-019


• Quartic gauge couplings (QGC)

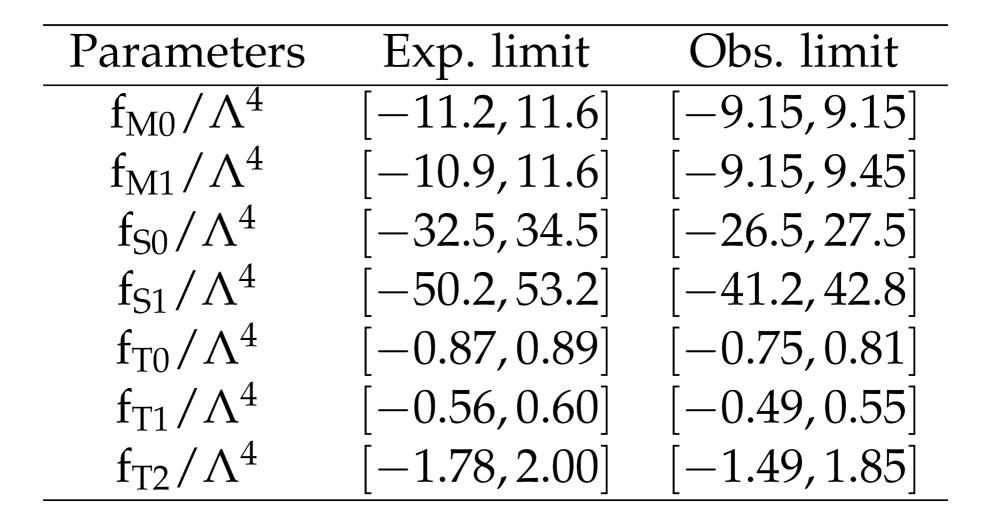
3rd July 2019 – EW VV+jets at CMS

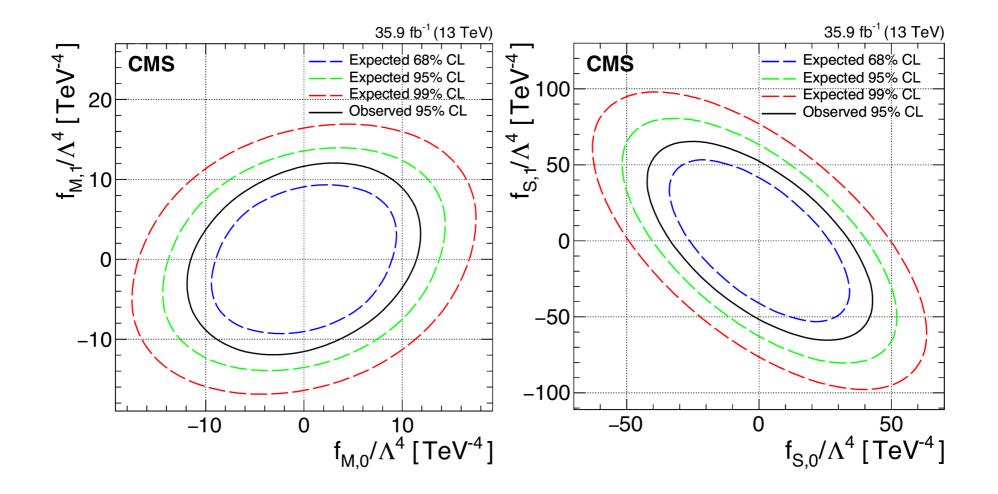
3rd July 2019 – EW VV+jets at CMS

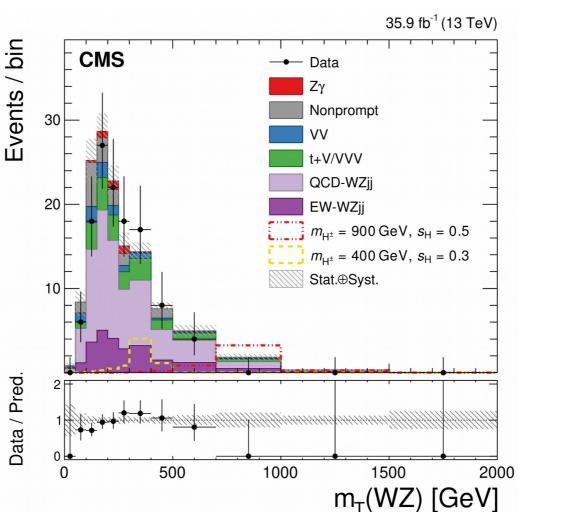
$m_{4\ell}$ [GeV]	<i>m</i> _{Z1} [GeV]	<i>m</i> _{Z2} [GeV]	<i>m_{jj}</i> [GeV]	$ \Delta\eta_{jj} $	$\eta^{\star}_{Z_1}$	$\eta^{\star}_{Z_2}$	BDT score
365.8	91.4	101.1	844.1	3.4	-0.7	0.0	0.97
325.1	93.1	96.3	1332.9	5.2	0.0	-1.8	0.98
263.8	91.9	88.0	829.7	2.2	-0.5	1.1	0.94
562.8	93.7	88.0	947.3	2.8	0.6	0.6	0.93
248.8	91.5	89.2	1340.9	5.4	-0.5	0.2	0.98
375.2	89.4	98.5	1052.5	3.8	0.7	-0.2	0.96
482.1	95.0	95.6	1543.1	4.8	-1.6	2.5	0.99


Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.53	0.51	-0.46	0.44	2.5
$f_{ m T1}/\Lambda^4$	-0.72	0.71	-0.61	0.61	2.3
$f_{\mathrm{T2}}/\Lambda^4$	-1.4	1.4	-1.2	1.2	2.4
$f_{\rm T8}/\Lambda^4$	-0.99	0.99	-0.84	0.84	2.8
$f_{\rm T9}/\Lambda^4$	-2.1	2.1	-1.8	1.8	2.9

	Observed limits	Expected limits	Previously observed limits
	(TeV^{-4})	(TeV ⁻⁴)	(TeV^{-4})
f_{S0}/Λ^4	[-7.7,7.7]	[-7.0, 7.2]	[-38, 40] , [11]
f_{S1}/Λ^4	[-21.6, 21.8]	[-19.9, 20.2]	[-118, 120] , $[11]$
${ m f_{M0}}/{\Lambda^4}$	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6, 4.6] , [36]
f_{M1}/Λ^4	[-8.7, 9.1]	[-7.9, 8.5]	[-17,17] ,[36]
${ m f_{M6}}/{\Lambda^4}$	[-11.9, 11.8]	[-11.1, 11.0]	[-65,63] ,[11]
${ m f_{M7}}/\Lambda^4$	[-13.3, 12.9]	[-12.4, 11.8]	[-70, 66] , [11]
f_{T0}/Λ^4	[-0.62, 0.65]	[-0.58, 0.61]	$\left[-0.46, 0.44 ight]$, $\left[37 ight]$
f_{T1}/Λ^4	[-0.28, 0.31]	[-0.26, 0.29]	$\left[-0.61, 0.61 ight]$, $\left[37 ight]$
f_{T2}/Λ^4	[-0.89, 1.02]	[-0.80, 0.95]	[-1.2, 1.2] , [37]

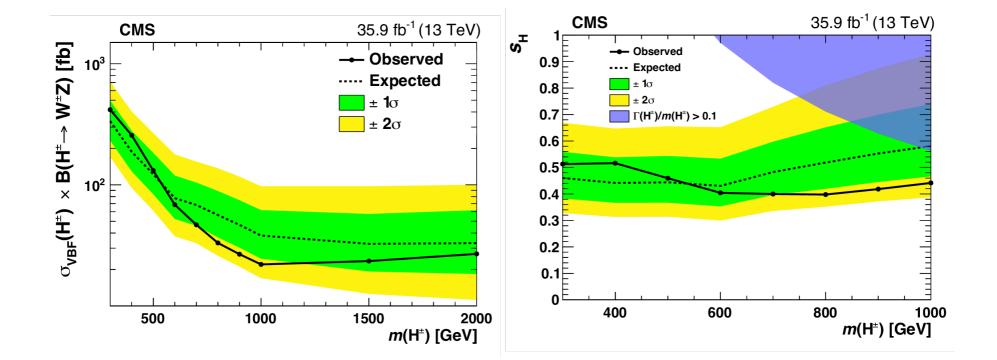



Source of syst. uncertainty	Relative unc	certainty [%]
	σ_{WZjj}	EW WZ sig.
Jet energy scale	+11 / -8.1	7.0
Jet energy resolution	+1.9 / -2.1	< 0.1
QCD WZ modeling		2.2
Other background theory	+2.2 / -2.2	0.3
Nonprompt normalization	$+2.5 \ / \ -2.5$	0.3
Nonprompt event count	+6.0 / -5.8	1.7
Lepton energy scale and eff.	+3.5 / -2.7	< 0.1
b tagging	+2.0 / -1.7	< 0.1
Integrated luminosity	+3.6 / - 3.0	< 0.1

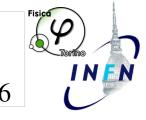


WZjj Charged Higgs search region arXiv:1901.04060 sub to PLB

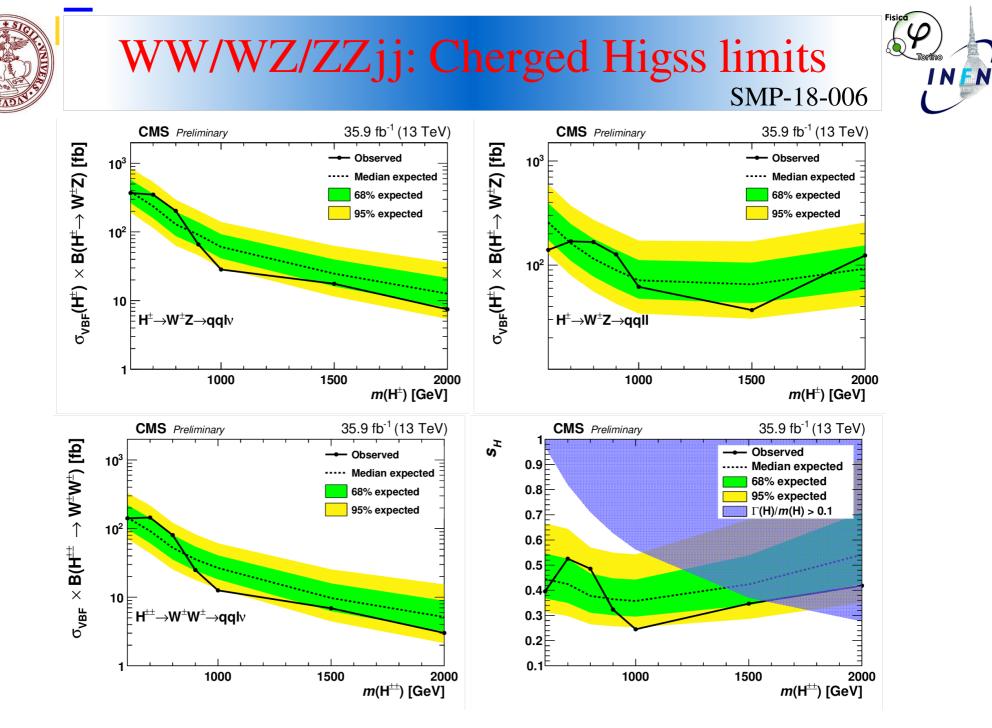
B


R.Bellan

3rd July 2019 – EW VV+jets at CMS

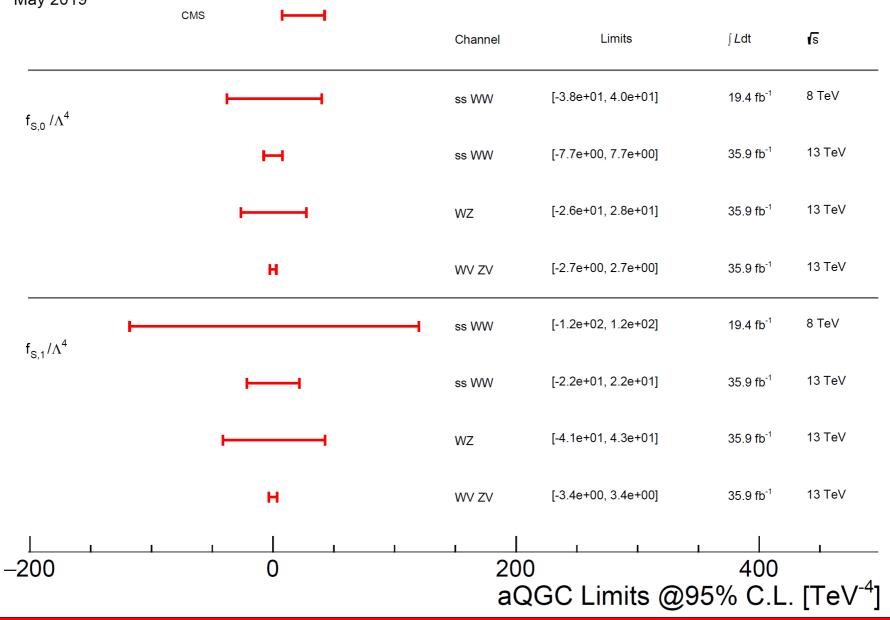

WZjj Cahrged Higgs limits arXiv:1901.04060 sub to PLB

WW/WZ/ZZjj: systematic uncertainty SMP-18-006



Source	Shape	Signal	V+jets	SM EW	SM QCD VV	top
QCD scale	\checkmark	9-20		12	30	
PDF unc.	\checkmark	15		10	10	
Jet momentum scale	\checkmark	1-9		1-9	3.0-15	5.0-7.0
V-jet selection		8.0		8.0	8.0	
GM model EW		7.0				
bkg. normalization			7-16			2.0
V+jets shape	\checkmark		shape		—	—
Integrated luminosity		2.5		2.5	2.5	
Lepton efficiency		1.0-2.0		1.0-2.0	1.0-2.0	
Lepton momentum scale	\checkmark	0.2-0.4		0.5	1.0-1.3	1.0
b-quark jet efficiency		2.0		2.0	2.0	3.0
Jet/MET resolution		4.0		3.0	2.0	
Pileup modeling		4.0		4.0	4.0	
Limited MC stat.	\checkmark	shape		shape	shape	shape

	Observed (WV)	Expected (WV)	Observed (ZV)	Expected (ZV)	Observed	Expected
	(TeV -4)	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
f_{S0}/Λ^4	[-2.6, 2.7]	[-4.0, 4.0]	[-37, 37]	[-29, 29]	[-2.6, 2.7]	[-4.0, 4.0]
f_{S1}/Λ^4	[-3.2, 3.3]	[-4.9, 4.9]	[-30, 30]	[-23, 23]	[-3.3, 3.3]	[-4.9, 4.9]
f_{M0}/Λ^4	[-0.66, 0.66]	[-0.95, 0.95]	[-6.9, 6.9]	[-5.1, 5.1]	[-0.66, 0.66]	[-0.95, 0.95]
f_{M1}/Λ^4	[-1.9, 2.0]	[-2.8, 2.8]	[-21, 21]	[-15, 15]	[-1.9, 2.0]	[-2.8, 2.8]
f_{M6}/Λ^4	[-1.3, 1.3]	[-1.9, 1.9]	[-14, 14]	[-10, 10]	[-1.3, 1.3]	[-1.9, 1.9]
f_{M7}/Λ^4	[-3.3, 3.2]	[-4.8, 4.8]	[-33, 33]	[-24, 24]	[-3.3, 3.3]	[-4.8, 4.8]
f_{T0}/Λ^4	[-0.11, 0.10]	[-0.16, 0.15]	[-1.3, 1.3]	[-0.95, 0.95]	[-0.12, 0.10]	[-0.16, 0.15]
f_{T1}/Λ^4	[-0.11, 0.12]	[-0.17, 0.17]	[-1.4, 1.4]	[-0.98, 0.99]	[-0.11, 0.12]	[-0.17, 0.17]
f_{T2}/Λ^4	[-0.27, 0.27]	[-0.38, 0.38]	[-3.1, 3.2]	[-2.3, 2.3]	[-0.27, 0.27]	[-0.38, 0.38]



3rd July 2019 – EW VV+jets at CMS

Limits on scalar aQGC operators

May 2019

R.Bellan

3rd July 2019 – EW VV+jets at CMS

Fisicó

I N / N

Limits on mixed aQGC operators

March 2019	CMS ATLAS	Observat	Linzita	Í I alt	л.
4	, TEKO	Channel	Limits	∫ <i>L</i> dt	s 8 TeV
$f_{M,0} / \Lambda^4$		WVγ WVγ	[-1.3e+02, 1.3e+02] [-7.7e+01, 8.1e+01]	20.2 fb ⁻¹ 19.3 fb ⁻¹	8 TeV
,0		ννγ Zer	[-7.1e+01, 7.5e+01]		8 TeV
		Zγ Zγ	[-7.6e+01, 6.9e+01]	19.7 fb ⁻¹	8 TeV
		Zγ Wγ	[-7.7e+01, 7.4e+01]	20.2 fb ⁻¹ 19.7 fb ⁻¹	8 TeV
		ss WW	[-6.0e+00, 5.9e+00]		13 TeV
	8		[-8.8e+00, 8.6e+00]	35.9 fb ⁻¹	13 TeV
		WZ γγ→WW	[-2.8e+01, 2.8e+01]	35.9 fb ⁻¹	8 TeV
		$\gamma \gamma \rightarrow \mathbf{VVV}$ $\gamma \gamma \rightarrow \mathbf{WW}$	[-4.2e+00, 4.2e+00]	20.2 fb ⁻¹ 24.7 fb ⁻¹	7,8 TeV
	7	γγ→VVV WV ZV	[-4.2e+00, 4.2e+00] [-6.6e-01, 6.6e-01]		13 TeV
			[-2.1e+02, 2.1e+02]	<u>35.9 fb⁻¹</u>	8 TeV
$f_{M,1}/\Lambda^4$		WVγ WVγ	[-1.3e+02, 1.2e+02]	20.2 fb ⁻¹ 19.3 fb ⁻¹	8 TeV
,.			[-1.9e+02, 1.8e+02]	19.3 fb ⁻¹	8 TeV
		Ζγ Ζγ	[-1.5e+02, 1.5e+02]	20.2 fb^{-1}	8 TeV
		Ψγ	[-1.2e+02, 1.3e+02]	20.2 fb 19.7 fb ⁻¹	8 TeV
		ss WW	[-8.7e+00, 9.1e+00]	35.9 fb^{-1}	13 TeV
	E E	WZ	[-8.2e+00, 8.9e+00]	35.9 fb ⁻¹	13 TeV
		νν∠ γγ→WW	[-1.1e+02, 1.0e+02]	20.2 fb ⁻¹	8 TeV
	- н	γγ→₩₩ γγ→₩₩	[-1.6e+01, 1.6e+01]	20.2 fb 24.7 fb ⁻¹	7,8 TeV
		WV ZV	[-1.9e+00, 2.0e+00]	35.9 fb ⁻¹	13 TeV
5 () 4			[-5.7e+01, 5.7e+01]	20.2 fb ⁻¹	8 TeV
$f_{M,2}/\Lambda^4$		Z ₂	[-3.2e+01, 3.1e+01]	19.7 fb ⁻¹	8 TeV
	· · · · · · · · · · · · · · · · · · ·		[-2.7e+01, 2.7e+01]	20.2 fb ⁻¹	8 TeV
		Zγ Zγ Wγ	[-2.6e+01, 2.6e+01]	19.7 fb ⁻¹	8 TeV
c 4		ŴΫγ	[-9.5e+01, 9.8e+01]	20.2 fb ⁻¹	8 TeV
$f_{M,3}/\Lambda^4$	· · · · · · · · · · · · · · · · · · ·	7~	[-5.8e+01, 5.9e+01]	19.7 fb ⁻¹	8 TeV
	· · · · · · · · · · · · · · · · · · ·	Z_{γ}	[-5.2e+01, 5.2e+01]	20.2 fb^{-1}	8 TeV
		Zγ Zγ Wγ	[-4.3e+01, 4.4e+01]	19.7 fb ⁻¹	8 TeV
f / A 4		wνγ	[-1.3e+02, 1.3e+02]	20.2 fb ⁻¹	8 TeV
$f_{M,4} / \Lambda^4$		Wy .	[-4.0e+01, 4.0e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,5} / \Lambda^4$		wννγ	[-2.0e+02, 2.0e+02]	20.2 fb ⁻¹	8 TeV
M,5 / X		Wγ	[-6.5e+01, 6.5e+01]	19.7 fb ⁻¹	8 TeV
$f_{M,6} / \Lambda^4$		Wγ	[-1.3e+02, 1.3e+02]	19.7 fb ⁻¹	8 TeV
M,6 / X	H I	ss WW	[-1.2e+01, 1.2e+01]	35.9 fb ⁻¹	13 TeV
		WV ZV	[-1.3e+00, 1.3e+00]	35.9 fb ⁻¹	13 TeV
$f_{M,7} / \Lambda^4$		Wγ	[-1.6e+02, 1.6e+02]	19.7 fb⁻¹	8 TeV
M,7 / X	· H	ss WW	[-1.3e+01, 1.3e+01]	35.9 fb ⁻¹	13 TeV
	_ P		[-3.3e+00, 3.3e+00]	35.9 fb ⁻¹	13 TeV
-	-200 0	200	400 60	0	800
			GC Limits @		

R.Bellan

3rd July 2019 – EW VV+jets at CMS

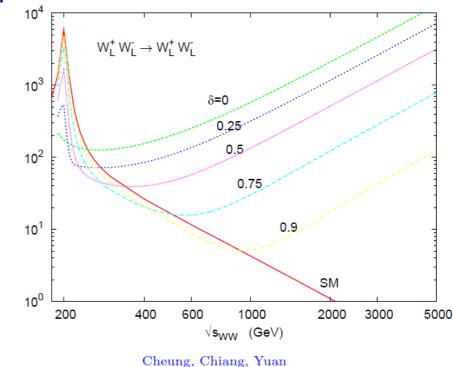
In the symmetry breaking (EWSB) mechanism the **W** and **Z** bosons get their **masses** and acquire a **longitudinal degree of polarization**.

The mechanism responsible for the EWSB has to **regulate the** $V_L V_L \rightarrow V_L V_L$ **cross section** such that the unitarity is preserved above $m_{VV} \sim 1-2$ TeV

VV scattering is the key process to probe EWSB and high energy vector boson scattering will play a central role:

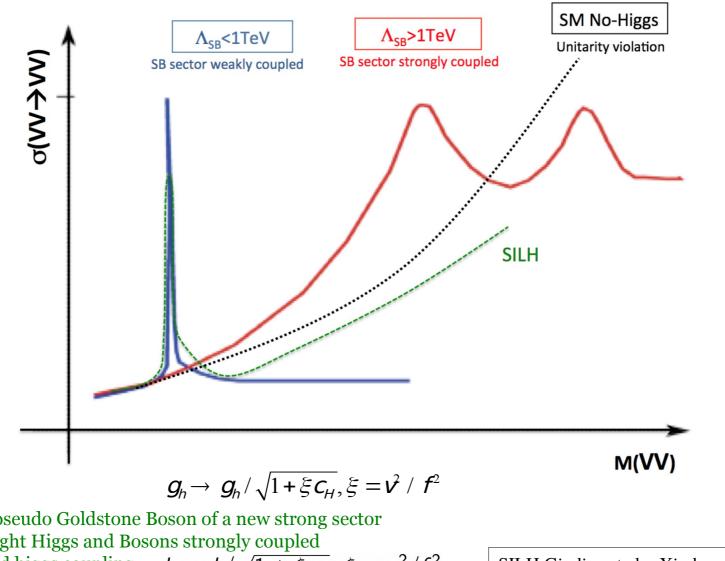
- both as a **test of the Higgs boson nature**
 - If the discovered Higgs boson contributes <u>fully to the EWSB</u>, then most probably the interaction among longitudinal weak bosons would remain <u>weak</u> at high energy
- and as a **model independent research** of alternative theory to explain EWSB
 - if the 125.5 GeV Higgs boson is only partially responsible for the EWSB, then the VV interaction could get <u>strong</u> at high energy.
- Also TGC and QGC processes may carry new physics phenomena

- If the cancellation of the **Higgs diagrams is not complete**, then we expect a **g**_{HWW} **coupling smaller than the SM**.
- The $W_L W_L$ will keep growing with \sqrt{s} , up to the new resonance, or more generally to the new physics scale Λ .


Cross Section (pb)

• Suppose the Higgs-WW coupling is amplitudes become

$$i\mathcal{M}^{\text{gauge}} = -i\frac{g^2}{4m_W^2} u + \mathcal{O}((E/m_W)^0)$$
$$i\mathcal{M}^{\text{higgs}} = i\frac{g^2}{4m_W^2} u \,\delta + \mathcal{O}((E/m_W)^0)$$


$$i\mathcal{M}^{\text{all}} = -i\frac{g^2}{4m_W^2}u(1-\delta) + \mathcal{O}((E/m_W)^0)$$

Measure with high precision both the HVV coupling and the $V_L V_L$ scattering

VV Scattering to test the EWSB

SILH:

Higgs a pseudo Goldstone Boson of a new strong sector Both a light Higgs and Bosons strongly coupled $h \rightarrow h/\sqrt{1+\xi c_H}, \ \xi = v^2/f^2$ Modified higgs coupling

SILH Giudice et al arXiv:hep-ph/0703164v2

R.Bellan

3rd July 2019 – EW VV+jets at CMS

INFN

• Extension of the SM Lagrangian by introducing additional **dimension-8 (or 6) operators**:

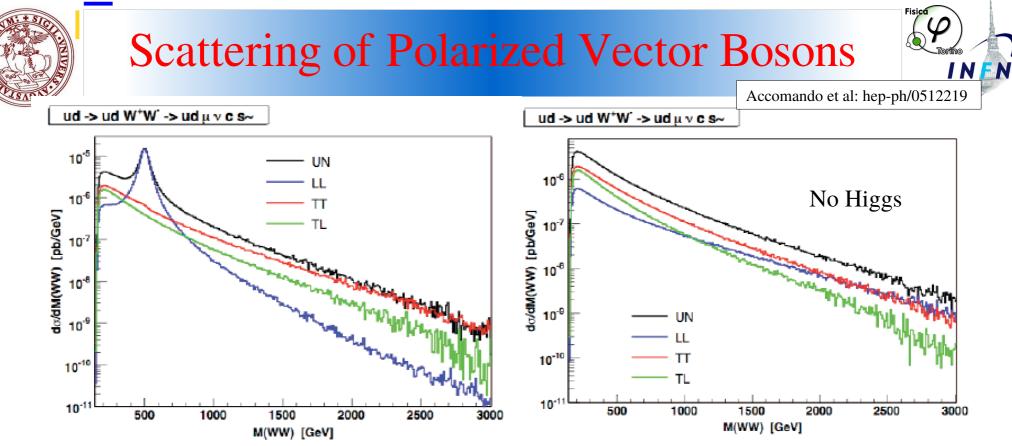
$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \dots$$

desideratum: $\Lambda \sim 1-2$ TeV

- **Effective field theory** is useful as a methodology for studying possible new physics effects from massive particles that are **not directly detectable**.
 - Underlying assumption: scale Λ is large compared with the experimentally-accessible energy
 - These operators have coefficients of inverse powers of mass (Λ), and hence are suppressed if this mass is large compared with the experimentally-accessible energy
 - <u>Limit</u>: Λ so large that the effect is comparable to missing higher order corrections from SM
 - An effective field theory is the **low-energy approximation of the new physics**
- coefficients in **dimension-6** (i.e. c_i/Λ^2) (e.g., hep-ph/9908254), may affects 3 boson vertices too:

- $C_{\phi W}/\Lambda^2$ (VBFNLO), a_0^W/Λ^2 , a_C^W/Λ^2 (CALCHEP)...

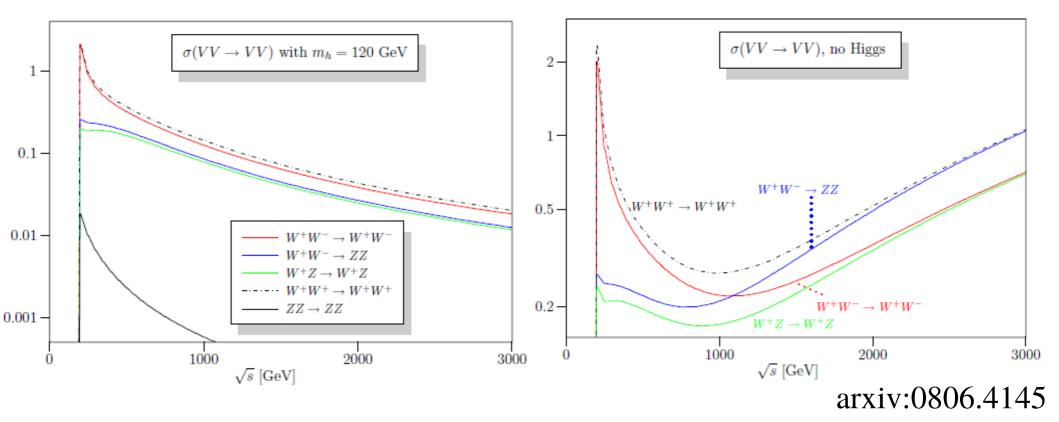
• coefficients in **dimension-8** (i.e. c_i/Λ^4) (e.g., hep-ph/0606118), **modifies 4 boson vertices only**:



- Needs to simulate all 2 \rightarrow 6 processes at least at the order $\mathcal{O}(\alpha_{EW}^{6})$
- Large interference among same order diagrams
- Signal has to be defined a posteriori, using kinematic cuts arXiv:0801.3359
- Cross Sections for $\sqrt{s} = 14$ TeV from <u>Phantom Monte Carlo Generator</u>: full simulation of $2 \rightarrow 6$ @ $(\alpha_{mu}^{6}) + (\alpha_{mu}^{4}\alpha_{mu}^{2})$

		qqqq	ιν/εν		$qqqq\mu\mu/ee$			
	no-Higgs		500 GeV		no-Higgs		500 GeV	
	σ (pb)	perc.	σ (pb) perc.		σ (pb)	perc.	σ (pb)	perc.
total	0.689	100%	0.718	100%	0.0305	100%	0.0350	100%
signal	0.158	23%	0.184	26%	0.0125	41%	0.0165	47%
top	0.495	72%	0.494	69%	0.0137	45%	0.0137	39%
non resonant	0.020	3%	0.023	3%	0.0030	10%	0.0035	10%
three bosons	0.016	2%	0.017	2%	0.0012	4%	0.0014	4%

	$qq\mu\mu\mu\mu\mu/eeee$				$qq\mu\mu\mu\nu$			$qq\mu^{\pm} u\mu^{\pm} u$				
	no-H	liggs	500 GeV		no-Higgs 500 GeV		GeV	no-Higgs		500 GeV		
	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.	σ (fb)	perc.
total	0.180	100%	0.310	100%	4.182	100%	4.152	100%	4.29	100%	4.16	100%
signal	0.120	66.4%	0.229	74.1%	1.317	31.5%	1.281	30.8%	3.26	76%	3.11	75%
top	0	0%	0	0%	1.817	43.5%	1.828	44.01%	0	0%	0	0%
non resonant	0.0364	20.2%	0.0533	17.2%	0.673	16.1%	0.651	15.7%	0.47	11%	0.46	11%
three bosons	0.0241	13.4%	0.0268	8.66%	0.375	8.9%	0.392	9.5%	0.56	13%	0.58	14%


- The VL are coupled to the Higgs and they are the ones sensitive to the EWSB.
- The behavior of the LL cross section only can give information on the scale at which the symmetry breaks.
- At large M(VV) the TT cross section is of the same order as the LL (in the no-Higgs case)

If there is a new resonance at a scale Λ , the LL cross section will not decrease until Λ .

- © Experimentally we should enhance LL wrt TT and measure XS at the highest M(VV)
 - The cross section decreases rapidly at high invariant masses due to PDF Hard life for LHC @14 TeV !
 - The invariant VV mass is the equivalent of the CM energy of the elastic VV scattering

3rd July 2019 – EW VV+jets at CMS

64