=) PRINCETON (g irs
UNIVERSITY hep

Awkward Array: Numba

Jim Pivarski

Princeton University — IRIS-HEP

April 17, 2019

1/16

Knowing your audience A

| presented an “Accelerating Python” tutorial to non-particle physics scientists:

» 8 Computer Science/Software Engineering/Electrical Engineering

» 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
» 5 Finance/Business/Political Science

» 2 Neuroscience

» 2 Civil Engineering

2/16

Knowing your audience A

| presented an “Accelerating Python” tutorial to non-particle physics scientists:

» 8 Computer Science/Software Engineering/Electrical Engineering

» 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
» 5 Finance/Business/Political Science

» 2 Neuroscience

» 2 Civil Engineering

| started by showing how for-loopy code must be fundamentally rewritten to take
advantage of Numpy and why it might be worth the effort.

2/16

Knowing your audience

| presented an “Accelerating Python” tutorial to non-particle physics scientists:

» 8 Computer Science/Software Engineering/Electrical Engineering

» 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
» 5 Finance/Business/Political Science

» 2 Neuroscience

» 2 Civil Engineering

| started by showing how for-loopy code must be fundamentally rewritten to take
advantage of Numpy and why it might be worth the effort.

Surprise! They were more comfortable with the vectorized form (Numpy/Pandas).
Going the other way—from Numpy to for loops—was the novelty for them.

2/16

Knowing your audience A

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time operation-at-a-time

for event in everything: a = stepl (everything)
a = stepl (event) b = step2(a)
b = step2(a) write_all (b)

write_one (b)

3/16

Knowing your audience A

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time operation-at-a-time

for event in everything: a = stepl (everything)
a = stepl (event) b = step2(a)
b = step2(a) write_all (b)

write_one (b)
» Good for debugging: insert

breakpoints, watch variables to
understand a single event.

3/16

Knowing your audience A

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time operation-at-a-time

for event in everything: a = stepl (everything)
a = stepl (event) b = step2(a)
b = step2(a) write_all (b)

write_one (b)

» Good for debugging: insert
breakpoints, watch variables to
understand a single event.

» Detail can obscure big picture.

3/16

Knowing your audience A

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time operation-at-a-time

for event in everything: a = stepl (everything)
a = stepl (event) b = step2(a)
b = step2(a) write_all (b)

write_one (b)

» Good for debugging: insert » Composition of functions can
breakpoints, watch variables to read like natural language.
understand a single event.

» Detail can obscure big picture.

3/16

Knowing your audience A

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time operation-at-a-time

for event in everything: a = stepl (everything)
a = stepl (event) b = step2(a)
b = step2(a) write_all (b)

write_one (b)

» Good for debugging: insert » Composition of functions can
breakpoints, watch variables to read like natural language.
understand a single event. » Indexes can be hard to align:

» Detail can obscure big picture. “error driven development!”

3/16

Most talks on awkward-array (including this meeting) are about
the value of introducing operation-at-a-time into particle physics.

This talk will be about getting event-at-a-time in Python without a speed penalty.

4/16

Most talks on awkward-array (including this meeting) are about
the value of introducing operation-at-a-time into particle physics.

This talk will be about getting event-at-a-time in Python without a speed penalty.

Programming strategy should be a separate question from performance.

4/16

©2Numba

Numba makes Python code fast

Numba is an open source JIT compiler that translates a subset of Python and NumPy
code into fast machine code.

Accelerate Python
Functions

Numba translates Python functions to optimized machine code at
runtime using the industry-standard LLVM compiler library. Numba-
compiled numerical algorithms in Python can approach the speeds
of C or FORTRAN.

You don't need to replace the Python interpreter, run a separate
compilation step, or even have a C/C++ compiler installed. Just
apply one of the Numba decorators to your Python function, and
Numba does the rest.

Learn More »

Try Numba »

from numba import jit
import random

@jit(nopython=True)
def monte carlo pi(nsamples):
acc = @
for i in range(nsamples):
x = random. random()
y = randon. randon()
if (442 + y**2) < 1.0
acc += 1
return 4.8 * acc / nsamples

5/16

I've been using Numba for more than 2 years. ..

...and it always wins in my ease-of-use judgements and performance tests.

Method Configuration Speedup Cores
Plain Python for-loopy 1x 1
Numba for-loopy 50x 1
Numba-parallel for-loopy 165x all (12)
Numpy columnar 15% 1
CuPy columnar 77x GPU
Dask columnar 26x all (12)
Numba-CUDA CUDA details 800x GPU
pybind11l -03 for-loopy C++ 34x 1
pybind1l —-ffast-math for-loopy C++ 90x 1
Cython dual language 3.7% 1

(Sorted by my ease-of-use judgement.)

6/16

For-loopy plain Python code

import numpy

def run_plain(height, width, maxiterations=20) :
y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width=*17]
c = x + yx1]
fractal = numpy.full (c.shape, maxiterations, dtype=numpy.int32)
for h in range (height) :

for w in range (width) : # for each pixel (h, w)...
z = clh, w]
for i in range(maxiterations): # iterate at most 20 times
z = zx+x2 + cl[h, w] # applying z — z° + ¢
if abs(z) > 2: # 1f it diverges (|z]| > 2)
fractallh, w] = 1 # color with iteration number
break # we're done; go away

return fractal

fractal = run_plain (6400, 9600)
7/16

For-loopy Numba-accelerated code

import numpy, numba

@numba. jit

def run_numba (height, width, maxiterations=20):
y, x = numpy.ogrid[-1:0:height*1j, —-1.5:0:width=*17]
c = x + yx1]

fractal = numpy.full (c.shape, maxiterations, dtype=numpy.int32)
for h in range (height) :
for w in range (width) : # for each pixel (h, w)...
z = clh, w]
for i in range (maxiterations): iterate at most 20 times

#

z = zx+x2 + cl[h, w] # applying z — z° + ¢

if abs(z) > 2: # 1f it diverges (|z]| > 2)
fractallh, w] = 1 # color with iteration number
break # we're done; go away

return fractal

fractal = run_numba (6400, 9600) # runs 50x faster than plain
7/16

Columnar Numpy code 4

import numpy

def run_numpy (height, width, maxiterations=20):
y, X = numpy.ogrid[-1:0:height+17j, -1.5:0:width%17]
c = x + yx1]

fractal = numpy.full (c.shape, maxiterations, dtype=numpy.int32)
z = C
for i in range(maxiterations): # can't break early
z = zx%2 + C # applying z — z° + ¢
diverged = numpy.absolute(z) > 2 # |z| > 2 is "divergence"
diverging_now = diverged & (fractal == maxiterations)
fractal[diverging now] = 1 # only set the new ones
z [diverged] = 2 # clamp diverged at 2

return fractal

fractal = run_numpy (6400, 9600) # runs 15X faster than plain
8/16

Here's the catch:

Numba can only accelerate functions and data structures that it
recognizes (mostly numbers and arrays).

9/16

Here's the catch:

Numba can only accelerate functions and data structures that it
recognizes (mostly numbers and arrays).

They must be statically typed (all types known before execution).

9/16

Here's the catch:

Numba can only accelerate functions and data structures that it
recognizes (mostly numbers and arrays).

They must be statically typed (all types known before execution).

@numba. jit (nopython=True) only allows accelerated code;
@numba. jit () only accelerates what it can.

9/16

We can teach Numba to recognize more functions and types

9 Numba Site ~ Page = «58 Examples 6.1 High-level __» Source

6. Extending Numba

This chapter describes how to extend Numba to make it recognize and support additional operations, functions or types. Numba provides two

categories of APIs to this end.

The high-level APIs provide abstracted entry points which are sufficient for simple uses. They require little knowledge of Numba's

internal compilation chain

The low-level APIs reflect Numba's internal compilation chain and allow flexible interaction with its various layers, but require more effort

and experience with Numba internals.

It may be helpful for readers of this chapter to also read some of the documents in the develop

er manual, especially the architecture

document.

+ 6.1. High-level extension API
s 6.1.1. Implementing functions
o 6.1.2. Implementing methods
o 6.1.3. Implementing attributes
s 6.1.4. Importing Cython Functions
« 6.2. Low-level extension API
o 6.2.1. Typing
o 6.2.2. Lowering
= 6.2.2.1. Native operations
= 6.2.2.2. Constants

= 6.2.2.3. Boxing and unboxing 10/16

Awkward arrays are statically typed s

Arbitrarily complex data:

>>> import awkward
>>> array = awkward.fromiter (
[[1.1, 2.2, None, 3.3, None]l,
(4.4, [5.511,
[{"x": 6, "y": {"z": 7}}, None, {"x": 8, "y": {"z": 9}}]
1)

Has a data type known before execution, which is to say, before (JIT) compilation.

>>> print (array.type)

[0, 3) -> [0, inf) -> ?((float64
[0, inf) —> float64d |
'x'" => int64

y' => 'z' —> int64))

11/16

AL

Goal: unbox all array types and lower all functions and methods,
so that they can be used in Numba functions written by users.

12/16

AL

Goal: unbox all array types and lower all functions and methods,
so that they can be used in Numba functions written by users.

Status: done with JaggedArray, next is Table.

12/16

AL

Goal: unbox all array types and lower all functions and methods,
so that they can be used in Numba functions written by users.

Status: done with JaggedArray, next is Table.

To use:

pip install awkward-numba or
conda install -c conda-forge awkward-numba

and then import awkward.numba in Python.

12/16

Physics-motivated example: pairs of muons and jets

import numpy, numba, awkward, awkward.numba

def random_particles (num_per_event, num_events):
num = numpy.random.poisson (num_per_event, num_events)

pt = numpy.random.exponential (10, num.sum())
eta = numpy.random.normal (0, 1, num.sum())
phi = numpy.random.uniform(-numpy.pi, numpy.pi, num.sum())

return (num, awkward.JaggedArray.fromcounts (num, pt),
awkward.JaggedArray.fromcounts (num, eta),
awkward.JaggedArray.fromcounts (num, phi))

num_muons, pt_muons, eta_muons, phi_muons = random_particles (1.5, 1000000)
num_jets, pt_jets, eta_jets, phi_jets = random_particles (3.5, 1000000)

13/16

Physics-motivated example: pairs of muons and jets

import numpy, numba, awkward, awkward.numba

def random_particles (num_per_event, num_events):
num = numpy.random.poisson (num_per_event, num_events)

pt = numpy.random.exponential (10, num.sum())
eta = numpy.random.normal (0, 1, num.sum())
phi = numpy.random.uniform(-numpy.pi, numpy.pi, num.sum())

return (num, awkward.JaggedArray.fromcounts (num, pt),
awkward.JaggedArray.fromcounts (num, eta),
awkward.JaggedArray.fromcounts (num, phi))

num_muons, pt_muons, eta_muons, phi_muons = random_particles (1.5, 1000000)
num_jets, pt_jets, eta_jets, phi_jets = random_particles (3.5, 1000000)

Each of these is a jagged array of particle attributes. Mass of all muon-jet pairs is

def unzip(pairs): return pairs.i0O, pairs.il

ptl, pt2 = unzip (pt_muons.cross (pt_jets)) # make a big array of all pairs
etal, eta2 = unzip(eta_muons.cross(eta_jets)) # separately for each attribute
phil, phi2 = unzip (phi_muons.cross (phi_jets)) # because we don't have Tables yet

compute mass for all muon-jet pairs in all events in one line

mass = numpy.sqrt (2+«ptl+pt2+ (numpy.cosh(etal - eta2) - numpy.cos(phil - phi2))) 13/16

Physics-motivated example: pairs of muons and jets

For-loopy code to do the same thing (i.e. a conventional analysis):

def run_plain(num_muons, pt_muons, eta_muons, phi_muons,
num_jets, pt_jets, eta_jets, phi_jets):

offsets = numpy.empty (len(num_muons) + 1, numpy.inté4)
content = numpy.empty ((num_muons »* num_jets) .sum())
offsets[0] = 0
for i in range (len(num_muons)) :
offsets[i + 1] = offsets[i]
for muoni in range (num_muons[i]):
ptl = pt_muons[i] [muoni] # more verbose than it
etal = eta_muons[i] [muoni] # would be with Table
phil = phi_muons[i] [muoni]
for jeti in range (num_jets[i]):
pt2 = pt_jets[i][jeti]
eta2 = eta_jets[i] [Jeti]
phi2 = phi_jets[i] [jeti]
content [offsets[i + 1]] = numpy.sqgrt (
2xptlxpt2« (numpy.cosh(etal - eta2) - numpy.cos(phil - phi2)))
offsets[i + 1] += 1
return awkward.JaggedArray (offsets[:-1], offsets[1l:], content)

14/16

Physics-motivated example: pairs of muons and jets

For-loopy code to do the same thing (i.e. a conventional analysis):

@numba. jit (nopython=True)
def run_numba (num_muons, pt_muons, eta_muons, phi_muons, # can pass JaggedArrays
num_jets, pt_jets, eta_jets, phi_jets): # into Numba-JIT function
offsets = numpy.empty (len(num_muons) + 1, numpy.inté4)
content = numpy.empty ((num_muons »* num_jets) .sum())
offsets[0] = 0
for i in range (len(num_muons)) :
offsets[i + 1] = offsets[i]
for muoni in range (num_muons[i]):
ptl = pt_muons[i] [muoni] # more verbose than it
etal = eta_muons[i] [muoni] # would be with Table
phil = phi_muons[i] [muoni]
for jeti in range (num_jets[i]):
pt2 = pt_jets[i][jeti]
eta2 = eta_jets[i] [Jeti]
phi2 = phi_jets[i] [jeti]

content [offsets[i + 1]] = numpy.sqgrt (
2xptlxpt2« (numpy.cosh(etal - eta2) - numpy.cos(phil - phi2)))
offsets[i + 1] += 1
return awkward.JaggedArray (offsets[:-1], offsets[l:], content) # and out!

14/16

What this buys us

Method Pro Con Runtime
JaggedArray.cross concise inflexible 1.1 seconds

Plain Python loop explicit verbose 120 seconds
Numba-compiled explicit verbose 0.62 seconds (to compile)

0.22 seconds (to run)

Apart from a factor of 5 between JaggedaArray.cross and Numba-compiled
(which may leap-frog as implementations improve), we can now write arbitrary
for-loop algorithms on JaggedArray without an enormous cost.

15/16

What this buys us

Method Pro Con Runtime
JaggedArray.cross concise inflexible 1.1 seconds

Plain Python loop explicit verbose 120 seconds
Numba-compiled explicit verbose 0.62 seconds (to compile)

0.22 seconds (to run)

Apart from a factor of 5 between JaggedaArray.cross and Numba-compiled
(which may leap-frog as implementations improve), we can now write arbitrary
for-loop algorithms on JaggedArray without an enormous cost.

The choice can be made based on the type of problem, not performance.

15/16

Summary s

» | highly recommend Numba for physics analysis.

» Code blocks are only accelerated by Numba if they consist of recognized
functions and data structures, and if all types can be statically known.

» Awkward array types are statically known; | can extend Numba to recognize
them and their operations.

» Done with JaggedArrays (the hardest); usable in a limited way.

» When Tables, ObjectArrays, and maybe MaskedArrays are done, most
physics code will work.

» There are 9 other awkward array types. ..

16/16

