Awkward Array: Numba

Jim Pivarski

Princeton University – IRIS-HEP

April 17, 2019
Knowing your audience

I presented an “Accelerating Python” tutorial to non-particle physics scientists:

- 8 Computer Science/Software Engineering/Electrical Engineering
- 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
- 5 Finance/Business/Political Science
- 2 Neuroscience
- 2 Civil Engineering
Knowing your audience

I presented an “Accelerating Python” tutorial to non-particle physics scientists:

- 8 Computer Science/Software Engineering/Electrical Engineering
- 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
- 5 Finance/Business/Political Science
- 2 Neuroscience
- 2 Civil Engineering

I started by showing how for-loopy code must be fundamentally rewritten to take advantage of Numpy and why it might be worth the effort.
Knowing your audience

I presented an “Accelerating Python” tutorial to non-particle physics scientists:

- 8 Computer Science/Software Engineering/Electrical Engineering
- 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
- 5 Finance/Business/Political Science
- 2 Neuroscience
- 2 Civil Engineering

I started by showing how for-loopy code must be fundamentally rewritten to take advantage of Numpy and why it might be worth the effort.

Surprise! They were more comfortable with the vectorized form (Numpy/Pandas). Going the other way—from Numpy to for loops—was the novelty for them.
Knowing your audience

Regardless of which side of the divide you start from, **event-at-a-time** and **operation-at-a-time** approaches are rather different and have different advantages.

event-at-a-time

```python
for event in everything:
a = step1(event)
b = step2(a)
write_one(b)
```

operation-at-a-time

```python
a = step1(everything)
b = step2(a)
write_all(b)
```
Knowing your audience

Regardless of which side of the divide you start from, **event-at-a-time** and **operation-at-a-time** approaches are rather different and have different advantages.

event-at-a-time

```python
for event in everything:
    a = step1(event)
    b = step2(a)
    write_one(b)
```

- Good for debugging: insert breakpoints, watch variables to understand a single event.

operation-at-a-time

```python
a = step1(everything)
b = step2(a)
write_all(b)
```

- Composition of functions can read like natural language.
- Indexes can be hard to align: "error driven development!"
Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

```python
for event in everything:
    a = step1(event)
    b = step2(a)
    write_one(b)
```

- Good for debugging: insert breakpoints, watch variables to understand a single event.
- Detail can obscure big picture.

operation-at-a-time

```python
a = step1(everything)
b = step2(a)
write_all(b)
```

- Composition of functions can read like natural language.
- Indexes can be hard to align: "error driven development!"
Knowing your audience

Regardless of which side of the divide you start from, **event-at-a-time** and **operation-at-a-time** approaches are rather different and have different advantages.

event-at-a-time

```python
for event in everything:
    a = step1(event)
    b = step2(a)
    write_one(b)
```

- Good for debugging: insert breakpoints, watch variables to understand a single event.
- Detail can obscure big picture.

operation-at-a-time

```python
a = step1(everything)
b = step2(a)
write_all(b)
```

- Composition of functions can read like natural language.
Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

```python
for event in everything:
    a = step1(event)
    b = step2(a)
    write_one(b)
```

- Good for debugging: insert breakpoints, watch variables to understand a single event.
- Detail can obscure big picture.

operation-at-a-time

```python
a = step1(everything)
b = step2(a)
write_all(b)
```

- Composition of functions can read like natural language.
- Indexes can be hard to align: “error driven development!”
Most talks on awkward-array (including this meeting) are about the value of introducing operation-at-a-time into particle physics.

This talk will be about getting event-at-a-time in Python without a speed penalty.
Most talks on awkward-array (including this meeting) are about the value of introducing operation-at-a-time into particle physics.

This talk will be about getting event-at-a-time in Python without a speed penalty. Programming strategy should be a separate question from performance.
Accelerate Python Functions

Numba translates Python functions to optimized machine code at runtime using the industry-standard LLVM compiler library. Numba-compiled numerical algorithms in Python can approach the speeds of C or FORTRAN.

You don't need to replace the Python interpreter, run a separate compilation step, or even have a C/C++ compiler installed. Just apply one of the Numba decorators to your Python function, and Numba does the rest.

```python
from numba import jit
import random

@jit(nopython=True)
def monte_carlo_pi(nsamples):
    acc = 0
    for i in range(nsamples):
        x = random.random()
        y = random.random()
        if (x**2 + y**2) < 1.0:
            acc += 1
    return 4.0 * acc / nsamples
```
I’ve been using Numba for more than 2 years...

...and it always wins in my ease-of-use judgements and performance tests.

<table>
<thead>
<tr>
<th>Method</th>
<th>Configuration</th>
<th>Speedup</th>
<th>Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Python</td>
<td>for-loopy</td>
<td>1×</td>
<td>1</td>
</tr>
<tr>
<td>Numba</td>
<td>for-loopy</td>
<td>50×</td>
<td>1</td>
</tr>
<tr>
<td>Numba-parallel</td>
<td>for-loopy</td>
<td>165×</td>
<td>all (12)</td>
</tr>
<tr>
<td>Numpy</td>
<td>columnar</td>
<td>15×</td>
<td>1</td>
</tr>
<tr>
<td>CuPy</td>
<td>columnar</td>
<td>77×</td>
<td>GPU</td>
</tr>
<tr>
<td>Dask</td>
<td>columnar</td>
<td>26×</td>
<td>all (12)</td>
</tr>
<tr>
<td>Numba-CUDA</td>
<td>CUDA details</td>
<td>800×</td>
<td>GPU</td>
</tr>
<tr>
<td>pybind11 -O3</td>
<td>for-loopy C++</td>
<td>34×</td>
<td>1</td>
</tr>
<tr>
<td>pybind11 -ffast-math</td>
<td>for-loopy C++</td>
<td>90×</td>
<td>1</td>
</tr>
<tr>
<td>Cython</td>
<td>dual language</td>
<td>3.7×</td>
<td>1</td>
</tr>
</tbody>
</table>

(Sorted by my ease-of-use judgement.)
import numpy

def run_plain(height, width, maxiterations=20):
 y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
 c = x + y*1j
 fractal = numpy.full(c.shape, maxiterations, dtype=numpy.int32)
 for h in range(height):
 for w in range(width):
 # for each pixel (h, w)...
 z = c[h, w]
 for i in range(maxiterations):
 # iterate at most 20 times
 z = z**2 + c[h, w]
 # applying $z \rightarrow z^2 + c$
 if abs(z) > 2:
 # if it diverges ($|z| > 2$)
 fractal[h, w] = i
 # color with iteration number
 break
 # we're done; go away
 return fractal

fractal = run_plain(6400, 9600)
import numpy, numba

@numba.jit
def run_numba(height, width, maxiterations=20):
 y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
 c = x + y*1j
 fractal = numpy.full(c.shape, maxiterations, dtype=numpy.int32)
 for h in range(height):
 for w in range(width):
 # for each pixel (h, w) ...
 z = c[h, w]
 for i in range(maxiterations):
 # iterate at most 20 times
 z = z**2 + c[h, w]
 # applying $z \rightarrow z^2 + c$
 if abs(z) > 2:
 # if it diverges ($|z| > 2$)
 fractal[h, w] = i
 # color with iteration number
 break
 # we're done; go away
 return fractal

fractal = run_numba(6400, 9600) # runs 50× faster than plain
Columnar Numpy code

```python
import numpy

def run_numpy(height, width, maxiterations=20):
    y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
    c = x + y*1j
    fractal = numpy.full(c.shape, maxiterations, dtype=numpy.int32)
    z = c
    for i in range(maxiterations):
        # can't break early
        z = z**2 + c
        # applying $z \rightarrow z^2 + c$
        diverged = numpy.absolute(z) > 2
        # $|z| > 2$ is "divergence"
        diverging_now = diverged & (fractal == maxiterations)
        fractal[diverging_now] = i
        # only set the new ones
        z[diverged] = 2
        # clamp diverged at 2
    return fractal

fractal = run_numpy(6400, 9600)
# runs 15× faster than plain 8 / 16
```
Here’s the catch:

Numba can only accelerate **functions** and **data structures** that it recognizes (mostly numbers and arrays).
Here’s the catch:

Numba can only accelerate **functions** and **data structures** that it recognizes (mostly numbers and arrays).

They must be **statically typed** (all types known before execution).
Here’s the catch:

Numba can only accelerate **functions** and **data structures** that it recognizes (mostly numbers and arrays).

They must be **statically typed** (all types known before execution).

```python
@numba.jit(nopython=True) only allows accelerated code;
@numba.jit() only accelerates what it can.
```
6. Extending Numba

This chapter describes how to extend Numba to make it recognize and support additional operations, functions, or types. Numba provides two categories of APIs to this end:

- The high-level APIs provide abstracted entry points which are sufficient for simple uses. They require little knowledge of Numba’s internal compilation chain.
- The low-level APIs reflect Numba’s internal compilation chain and allow flexible interaction with its various layers, but require more effort and experience with Numba internals.

It may be helpful for readers of this chapter to also read some of the documents in the developer manual, especially the architecture document.

- 6.1. High-level extension API
 - 6.1.1. Implementing functions
 - 6.1.2. Implementing methods
 - 6.1.3. Implementing attributes
 - 6.1.4. Importing Cython Functions
- 6.2. Low-level extension API
 - 6.2.1. Typing
 - 6.2.2. Lowering
 - 6.2.2.1. Native operations
 - 6.2.2.2. Constants
 - 6.2.2.3. Boxing and unboxing
Awkward arrays are statically typed

Arbitrarily complex data:

```python
>>> import awkward
>>> array = awkward.fromiter(
...     [[1.1, 2.2, None, 3.3, None],
...      [4.4, [5.5]],
...      [{"x": 6, "y": {"z": 7}}, None, {"x": 8, "y": {"z": 9}}]
... )
```

Has a data type known before execution, which is to say, before (JIT) compilation.

```python
>>> print(array.type)
```

```
[0, 3) -> [0, inf) -> ?((float64
  | [0, inf) -> float64 | 'x' -> int64
  | 'y' -> 'z' -> int64 ))
```
Goal: *unbox* all array types and *lower* all functions and methods, so that they can be used in Numba functions written by users.

To use:

- `pip install awkward-numba`
- `conda install -c conda-forge awkward-numba`

and then `import awkward.numba` in Python.
Goal: unbox all array types and lower all functions and methods, so that they can be used in Numba functions written by users.

Status: done with `JaggedArray`, next is `Table`.
Goal: unbox all array types and lower all functions and methods, so that they can be used in Numba functions written by users.

Status: done with `JaggedArray`, next is `Table`.

To use:

```
pip install awkward-numba or
conda install -c conda-forge awkward-numba
```

and then `import awkward.numba` in Python.
Physics-motivated example: pairs of muons and jets

```python
import numpy, numba, awkward, awkward.numba

def random_particles(num_per_event, num_events):
    num = numpy.random.poisson(num_per_event, num_events)
    pt = numpy.random.exponential(10, num.sum())
    eta = numpy.random.normal(0, 1, num.sum())
    phi = numpy.random.uniform(-numpy.pi, numpy.pi, num.sum())
    return (num, awkward.JaggedArray.fromcounts(num, pt),
            awkward.JaggedArray.fromcounts(num, eta),
            awkward.JaggedArray.fromcounts(num, phi))

num_muons, pt_muons, eta_muons, phi_muons = random_particles(1.5, 1000000)
num_jets, pt_jets, eta_jets, phi_jets = random_particles(3.5, 1000000)
```

Each of these is a jagged array of particle attributes. Mass of all muon-jet pairs is

```python
def unzip(pairs):
    return pairs.i0, pairs.i1

pt1, pt2 = unzip(pt_muons.cross(pt_jets))
# make a big array of all pairs
eta1, eta2 = unzip(eta_muons.cross(eta_jets))
# separately for each attribute
phi1, phi2 = unzip(phi_muons.cross(phi_jets))
# because we don't have Tables yet
# compute mass for all muon-jet pairs in all events in one line
mass = numpy.sqrt(2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))
```
Physics-motivated example: pairs of muons and jets

```python
import numpy, numba, awkward, awkward.numba

def random_particles(num_per_event, num_events):
    num = numpy.random.poisson(num_per_event, num_events)
    pt = numpy.random.exponential(10, num.sum())
    eta = numpy.random.normal(0, 1, num.sum())
    phi = numpy.random.uniform(-numpy.pi, numpy.pi, num.sum())
    return (num, awkward.JaggedArray.fromcounts(num, pt),
            awkward.JaggedArray.fromcounts(num, eta),
            awkward.JaggedArray.fromcounts(num, phi))

num_muons, pt_muons, eta_muons, phi_muons = random_particles(1.5, 1000000)
num_jets, pt_jets, eta_jets, phi_jets = random_particles(3.5, 1000000)

Each of these is a jagged array of particle attributes. Mass of all muon-jet pairs is

def unzip(pairs):
    return pairs.i0, pairs.i1

pt1, pt2 = unzip(pt_muons.cross(pt_jets))  # make a big array of all pairs
eta1, eta2 = unzip(eta_muons.cross(eta_jets))  # separately for each attribute
phi1, phi2 = unzip(phi_muons.cross(phi_jets))  # because we don't have Tables yet

# compute mass for all muon-jet pairs in all events in one line
mass = numpy.sqrt(2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))
```

13 / 16
Physics-motivated example: pairs of muons and jets

For-loopy code to do the same thing (i.e. a conventional analysis):

```python
def run_plain(num_muons, pt_muons, eta_muons, phi_muons,
             num_jets, pt_jets, eta_jets, phi_jets):
    offsets = numpy.empty(len(num_muons) + 1, numpy.int64)
    content = numpy.empty((num_muons * num_jets).sum())
    offsets[0] = 0
    for i in range(len(num_muons)):
        offsets[i + 1] = offsets[i]
        for muoni in range(num_muons[i]):
            pt1 = pt_muons[i][muoni]  # more verbose than it
            eta1 = eta_muons[i][muoni]  # would be with Table
            phi1 = phi_muons[i][muoni]
            for jeti in range(num_jets[i]):
                pt2 = pt_jets[i][jeti]
                eta2 = eta_jets[i][jeti]
                phi2 = phi_jets[i][jeti]
                content[offsets[i + 1]] = numpy.sqrt(2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))
                offsets[i + 1] += 1
    return awkward.JaggedArray(offsets[:-1], offsets[1:], content)
```

14 / 16
Physics-motivated example: pairs of muons and jets

For-loopy code to do the same thing (i.e. a conventional analysis):

```python
@numba.jit(nopython=True)
def run_numba(num_muons, pt_muons, eta_muons, phi_muons, num_jets, pt_jets, eta_jets, phi_jets):
    # can pass JaggedArrays into Numba-JIT function
    offsets = numpy.empty(len(num_muons) + 1, numpy.int64)
    content = numpy.empty((num_muons * num_jets).sum())
    offsets[0] = 0
    for i in range(len(num_muons)):
        offsets[i + 1] = offsets[i]
        for muoni in range(num_muons[i]):
            pt1 = pt_muons[i][muoni]
            eta1 = eta_muons[i][muoni]
            phi1 = phi_muons[i][muoni]
            for jeti in range(num_jets[i]):
                pt2 = pt_jets[i][jeti]
                eta2 = eta_jets[i][jeti]
                phi2 = phi_jets[i][jeti]
                content[offsets[i + 1]] = numpy.sqrt(2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))
                offsets[i + 1] += 1
    return awkward.JaggedArray(offsets[:-1], offsets[1:], content)  # and out!
```

What this buys us

<table>
<thead>
<tr>
<th>Method</th>
<th>Pro</th>
<th>Con</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>JaggedArray.cross</td>
<td>concise</td>
<td>inflexible</td>
<td>1.1 seconds</td>
</tr>
<tr>
<td>Plain Python loop</td>
<td>explicit</td>
<td>verbose</td>
<td>120 seconds</td>
</tr>
<tr>
<td>Numba-compiled</td>
<td>explicit</td>
<td>verbose</td>
<td>0.62 seconds (to compile)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.22 seconds (to run)</td>
</tr>
</tbody>
</table>

Apart from a factor of 5 between `JaggedArray.cross` and Numba-compiled (which may leap-frog as implementations improve), we can now write arbitrary for-loop algorithms on `JaggedArray` without an enormous cost.
What this buys us

<table>
<thead>
<tr>
<th>Method</th>
<th>Pro</th>
<th>Con</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>JaggedArray.cross</td>
<td>concise</td>
<td>inflexible</td>
<td>1.1 seconds</td>
</tr>
<tr>
<td>Plain Python loop</td>
<td>explicit</td>
<td>verbose</td>
<td>120 seconds</td>
</tr>
<tr>
<td>Numba-compiled</td>
<td>explicit</td>
<td>verbose</td>
<td>0.62 seconds (to compile)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.22 seconds (to run)</td>
</tr>
</tbody>
</table>

Apart from a factor of 5 between `JaggedArray.cross` and Numba-compiled (which may leap-frog as implementations improve), we can now write arbitrary for-loop algorithms on `JaggedArray` without an enormous cost.

The choice can be made based on the type of problem, not performance.
I highly recommend Numba for physics analysis.

Code blocks are only accelerated by Numba if they consist of recognized functions and data structures, and if all types can be statically known.

Awkward array types are statically known; I can extend Numba to recognize them and their operations.

Done with JaggedArrays (the hardest); usable in a limited way.

When Tables, ObjectArrays, and maybe MaskedArrays are done, most physics code will work.

There are 9 other awkward array types...