
Awkward Array: Numba

Jim Pivarski

Princeton University – IRIS-HEP

April 17, 2019

1 / 16

Knowing your audience

I presented an “Accelerating Python” tutorial to non-particle physics scientists:

I 8 Computer Science/Software Engineering/Electrical Engineering
I 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
I 5 Finance/Business/Political Science
I 2 Neuroscience
I 2 Civil Engineering

I started by showing how for-loopy code must be fundamentally rewritten to take
advantage of Numpy and why it might be worth the effort.

Surprise! They were more comfortable with the vectorized form (Numpy/Pandas).
Going the other way—from Numpy to for loops—was the novelty for them.

2 / 16

Knowing your audience

I presented an “Accelerating Python” tutorial to non-particle physics scientists:

I 8 Computer Science/Software Engineering/Electrical Engineering
I 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
I 5 Finance/Business/Political Science
I 2 Neuroscience
I 2 Civil Engineering

I started by showing how for-loopy code must be fundamentally rewritten to take
advantage of Numpy and why it might be worth the effort.

Surprise! They were more comfortable with the vectorized form (Numpy/Pandas).
Going the other way—from Numpy to for loops—was the novelty for them.

2 / 16

Knowing your audience

I presented an “Accelerating Python” tutorial to non-particle physics scientists:

I 8 Computer Science/Software Engineering/Electrical Engineering
I 7 Physics/Astronomy/Energy Science/Atmospheric & Ocean Science
I 5 Finance/Business/Political Science
I 2 Neuroscience
I 2 Civil Engineering

I started by showing how for-loopy code must be fundamentally rewritten to take
advantage of Numpy and why it might be worth the effort.

Surprise! They were more comfortable with the vectorized form (Numpy/Pandas).
Going the other way—from Numpy to for loops—was the novelty for them.

2 / 16

Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

for event in everything:
a = step1(event)
b = step2(a)
write_one(b)

I Good for debugging: insert
breakpoints, watch variables to
understand a single event.

I Detail can obscure big picture.

operation-at-a-time

a = step1(everything)
b = step2(a)
write_all(b)

I Composition of functions can
read like natural language.

I Indexes can be hard to align:
“error driven development!”

3 / 16

Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

for event in everything:
a = step1(event)
b = step2(a)
write_one(b)

I Good for debugging: insert
breakpoints, watch variables to
understand a single event.

I Detail can obscure big picture.

operation-at-a-time

a = step1(everything)
b = step2(a)
write_all(b)

I Composition of functions can
read like natural language.

I Indexes can be hard to align:
“error driven development!”

3 / 16

Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

for event in everything:
a = step1(event)
b = step2(a)
write_one(b)

I Good for debugging: insert
breakpoints, watch variables to
understand a single event.

I Detail can obscure big picture.

operation-at-a-time

a = step1(everything)
b = step2(a)
write_all(b)

I Composition of functions can
read like natural language.

I Indexes can be hard to align:
“error driven development!”

3 / 16

Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

for event in everything:
a = step1(event)
b = step2(a)
write_one(b)

I Good for debugging: insert
breakpoints, watch variables to
understand a single event.

I Detail can obscure big picture.

operation-at-a-time

a = step1(everything)
b = step2(a)
write_all(b)

I Composition of functions can
read like natural language.

I Indexes can be hard to align:
“error driven development!”

3 / 16

Knowing your audience

Regardless of which side of the divide you start from, event-at-a-time and
operation-at-a-time approaches are rather different and have different advantages.

event-at-a-time

for event in everything:
a = step1(event)
b = step2(a)
write_one(b)

I Good for debugging: insert
breakpoints, watch variables to
understand a single event.

I Detail can obscure big picture.

operation-at-a-time

a = step1(everything)
b = step2(a)
write_all(b)

I Composition of functions can
read like natural language.

I Indexes can be hard to align:
“error driven development!”

3 / 16

Most talks on awkward-array (including this meeting) are about
the value of introducing operation-at-a-time into particle physics.

This talk will be about getting event-at-a-time in Python without a speed penalty.

Programming strategy should be a separate question from performance.

4 / 16

Most talks on awkward-array (including this meeting) are about
the value of introducing operation-at-a-time into particle physics.

This talk will be about getting event-at-a-time in Python without a speed penalty.

Programming strategy should be a separate question from performance.

4 / 16

5 / 16

I’ve been using Numba for more than 2 years. . .

. . . and it always wins in my ease-of-use judgements and performance tests.

Method Configuration Speedup Cores
Plain Python for-loopy 1× 1
Numba for-loopy 50× 1
Numba-parallel for-loopy 165× all (12)
Numpy columnar 15× 1
CuPy columnar 77× GPU
Dask columnar 26× all (12)
Numba-CUDA CUDA details 800× GPU
pybind11 -O3 for-loopy C++ 34× 1
pybind11 -ffast-math for-loopy C++ 90× 1
Cython dual language 3.7× 1

(Sorted by my ease-of-use judgement.)
6 / 16

For-loopy plain Python code

import numpy

def run_plain(height, width, maxiterations=20):
y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
c = x + y*1j
fractal = numpy.full(c.shape, maxiterations, dtype=numpy.int32)
for h in range(height):

for w in range(width): # for each pixel (h, w)...
z = c[h, w]
for i in range(maxiterations): # iterate at most 20 times

z = z**2 + c[h, w] # applying z → z2 + c
if abs(z) > 2: # if it diverges (|z| > 2)

fractal[h, w] = i # color with iteration number
break # we're done; go away

return fractal

fractal = run_plain(6400, 9600)
7 / 16

For-loopy Numba-accelerated code

import numpy, numba

@numba.jit
def run_numba(height, width, maxiterations=20):

y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
c = x + y*1j
fractal = numpy.full(c.shape, maxiterations, dtype=numpy.int32)
for h in range(height):

for w in range(width): # for each pixel (h, w)...
z = c[h, w]
for i in range(maxiterations): # iterate at most 20 times

z = z**2 + c[h, w] # applying z → z2 + c
if abs(z) > 2: # if it diverges (|z| > 2)

fractal[h, w] = i # color with iteration number
break # we're done; go away

return fractal

fractal = run_numba(6400, 9600) # runs 50× faster than plain
7 / 16

Columnar Numpy code

import numpy

def run_numpy(height, width, maxiterations=20):
y, x = numpy.ogrid[-1:0:height*1j, -1.5:0:width*1j]
c = x + y*1j
fractal = numpy.full(c.shape, maxiterations, dtype=numpy.int32)
z = c
for i in range(maxiterations): # can't break early

z = z**2 + c # applying z → z2 + c
diverged = numpy.absolute(z) > 2 # |z| > 2 is "divergence"
diverging_now = diverged & (fractal == maxiterations)
fractal[diverging_now] = i # only set the new ones
z[diverged] = 2 # clamp diverged at 2

return fractal

fractal = run_numpy(6400, 9600) # runs 15× faster than plain
8 / 16

Here’s the catch:

Numba can only accelerate functions and data structures that it
recognizes (mostly numbers and arrays).

They must be statically typed (all types known before execution).

@numba.jit(nopython=True) only allows accelerated code;
@numba.jit() only accelerates what it can.

9 / 16

Here’s the catch:

Numba can only accelerate functions and data structures that it
recognizes (mostly numbers and arrays).

They must be statically typed (all types known before execution).

@numba.jit(nopython=True) only allows accelerated code;
@numba.jit() only accelerates what it can.

9 / 16

Here’s the catch:

Numba can only accelerate functions and data structures that it
recognizes (mostly numbers and arrays).

They must be statically typed (all types known before execution).

@numba.jit(nopython=True) only allows accelerated code;
@numba.jit() only accelerates what it can.

9 / 16

We can teach Numba to recognize more functions and types

10 / 16

Awkward arrays are statically typed

Arbitrarily complex data:

>>> import awkward
>>> array = awkward.fromiter(
... [[1.1, 2.2, None, 3.3, None],
... [4.4, [5.5]],
... [{"x": 6, "y": {"z": 7}}, None, {"x": 8, "y": {"z": 9}}]
...])

Has a data type known before execution, which is to say, before (JIT) compilation.

>>> print(array.type)

[0, 3) -> [0, inf) -> ?((float64 |
[0, inf) -> float64 |
'x' -> int64
'y' -> 'z' -> int64))

11 / 16

Goal: unbox all array types and lower all functions and methods,
so that they can be used in Numba functions written by users.

Status: done with JaggedArray, next is Table.

To use:

pip install awkward-numba or
conda install -c conda-forge awkward-numba

and then import awkward.numba in Python.

12 / 16

Goal: unbox all array types and lower all functions and methods,
so that they can be used in Numba functions written by users.

Status: done with JaggedArray, next is Table.

To use:

pip install awkward-numba or
conda install -c conda-forge awkward-numba

and then import awkward.numba in Python.

12 / 16

Goal: unbox all array types and lower all functions and methods,
so that they can be used in Numba functions written by users.

Status: done with JaggedArray, next is Table.

To use:

pip install awkward-numba or
conda install -c conda-forge awkward-numba

and then import awkward.numba in Python.

12 / 16

Physics-motivated example: pairs of muons and jets
import numpy, numba, awkward, awkward.numba

def random_particles(num_per_event, num_events):
num = numpy.random.poisson(num_per_event, num_events)
pt = numpy.random.exponential(10, num.sum())
eta = numpy.random.normal(0, 1, num.sum())
phi = numpy.random.uniform(-numpy.pi, numpy.pi, num.sum())
return (num, awkward.JaggedArray.fromcounts(num, pt),

awkward.JaggedArray.fromcounts(num, eta),
awkward.JaggedArray.fromcounts(num, phi))

num_muons, pt_muons, eta_muons, phi_muons = random_particles(1.5, 1000000)
num_jets, pt_jets, eta_jets, phi_jets = random_particles(3.5, 1000000)

Each of these is a jagged array of particle attributes. Mass of all muon-jet pairs is

def unzip(pairs): return pairs.i0, pairs.i1
pt1, pt2 = unzip(pt_muons.cross(pt_jets)) # make a big array of all pairs
eta1, eta2 = unzip(eta_muons.cross(eta_jets)) # separately for each attribute
phi1, phi2 = unzip(phi_muons.cross(phi_jets)) # because we don't have Tables yet

compute mass for all muon-jet pairs in all events in one line
mass = numpy.sqrt(2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))

13 / 16

Physics-motivated example: pairs of muons and jets
import numpy, numba, awkward, awkward.numba

def random_particles(num_per_event, num_events):
num = numpy.random.poisson(num_per_event, num_events)
pt = numpy.random.exponential(10, num.sum())
eta = numpy.random.normal(0, 1, num.sum())
phi = numpy.random.uniform(-numpy.pi, numpy.pi, num.sum())
return (num, awkward.JaggedArray.fromcounts(num, pt),

awkward.JaggedArray.fromcounts(num, eta),
awkward.JaggedArray.fromcounts(num, phi))

num_muons, pt_muons, eta_muons, phi_muons = random_particles(1.5, 1000000)
num_jets, pt_jets, eta_jets, phi_jets = random_particles(3.5, 1000000)

Each of these is a jagged array of particle attributes. Mass of all muon-jet pairs is

def unzip(pairs): return pairs.i0, pairs.i1
pt1, pt2 = unzip(pt_muons.cross(pt_jets)) # make a big array of all pairs
eta1, eta2 = unzip(eta_muons.cross(eta_jets)) # separately for each attribute
phi1, phi2 = unzip(phi_muons.cross(phi_jets)) # because we don't have Tables yet

compute mass for all muon-jet pairs in all events in one line
mass = numpy.sqrt(2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))

13 / 16

Physics-motivated example: pairs of muons and jets

For-loopy code to do the same thing (i.e. a conventional analysis):

def run_plain(num_muons, pt_muons, eta_muons, phi_muons,
num_jets, pt_jets, eta_jets, phi_jets):

offsets = numpy.empty(len(num_muons) + 1, numpy.int64)
content = numpy.empty((num_muons * num_jets).sum())
offsets[0] = 0
for i in range(len(num_muons)):

offsets[i + 1] = offsets[i]
for muoni in range(num_muons[i]):

pt1 = pt_muons[i][muoni] # more verbose than it
eta1 = eta_muons[i][muoni] # would be with Table
phi1 = phi_muons[i][muoni]
for jeti in range(num_jets[i]):

pt2 = pt_jets[i][jeti]
eta2 = eta_jets[i][jeti]
phi2 = phi_jets[i][jeti]
content[offsets[i + 1]] = numpy.sqrt(

2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))
offsets[i + 1] += 1

return awkward.JaggedArray(offsets[:-1], offsets[1:], content)

14 / 16

Physics-motivated example: pairs of muons and jets

For-loopy code to do the same thing (i.e. a conventional analysis):

@numba.jit(nopython=True)
def run_numba(num_muons, pt_muons, eta_muons, phi_muons, # can pass JaggedArrays

num_jets, pt_jets, eta_jets, phi_jets): # into Numba-JIT function
offsets = numpy.empty(len(num_muons) + 1, numpy.int64)
content = numpy.empty((num_muons * num_jets).sum())
offsets[0] = 0
for i in range(len(num_muons)):

offsets[i + 1] = offsets[i]
for muoni in range(num_muons[i]):

pt1 = pt_muons[i][muoni] # more verbose than it
eta1 = eta_muons[i][muoni] # would be with Table
phi1 = phi_muons[i][muoni]
for jeti in range(num_jets[i]):

pt2 = pt_jets[i][jeti]
eta2 = eta_jets[i][jeti]
phi2 = phi_jets[i][jeti]
content[offsets[i + 1]] = numpy.sqrt(

2*pt1*pt2*(numpy.cosh(eta1 - eta2) - numpy.cos(phi1 - phi2)))
offsets[i + 1] += 1

return awkward.JaggedArray(offsets[:-1], offsets[1:], content) # and out!

14 / 16

What this buys us

Method Pro Con Runtime
JaggedArray.cross concise inflexible 121.12 seconds
Plain Python loop explicit verbose 120.62 seconds
Numba-compiled explicit verbose 120.62 seconds (to compile)

120.22 seconds (to run)

Apart from a factor of 5 between JaggedArray.cross and Numba-compiled
(which may leap-frog as implementations improve), we can now write arbitrary
for-loop algorithms on JaggedArray without an enormous cost.

The choice can be made based on the type of problem, not performance.

15 / 16

What this buys us

Method Pro Con Runtime
JaggedArray.cross concise inflexible 121.12 seconds
Plain Python loop explicit verbose 120.62 seconds
Numba-compiled explicit verbose 120.62 seconds (to compile)

120.22 seconds (to run)

Apart from a factor of 5 between JaggedArray.cross and Numba-compiled
(which may leap-frog as implementations improve), we can now write arbitrary
for-loop algorithms on JaggedArray without an enormous cost.

The choice can be made based on the type of problem, not performance.

15 / 16

Summary

I I highly recommend Numba for physics analysis.

I Code blocks are only accelerated by Numba if they consist of recognized
functions and data structures, and if all types can be statically known.

I Awkward array types are statically known; I can extend Numba to recognize
them and their operations.

I Done with JaggedArrays (the hardest); usable in a limited way.

I When Tables, ObjectArrays, and maybe MaskedArrays are done, most
physics code will work.

I There are 9 other awkward array types. . .

16 / 16

