

The Ghostly Messengers of the Universe

Irene Tamborra
Niels Bohr Institute, University of Copenhagen

Second Conference of Nordic Network for Diversity in Physics Helsinki, November 4, 2019

From Macroscopic to Microscopic

Neutrinos

Ghostly

Abundant

Elusive

Where Are Neutrinos Produced?

Nuclear reactors

Particle accelerators

Atmosphere

Earth

Sun

Supernovae and binary mergers

Gamma-ray bursts and other cosmic accelerators

Big Bang

Grand Unified Neutrino Spectrum

Figure from Vitagliano, Tamborra, Raffelt, arXiv: 1910.11878.

I Feel Like a Neutrino!

Ideal Messengers

Escaping unimpeded, neutrinos carry information about sources not otherwise accessible.

Powerful Probes in Astrophysics

Energy distribution

Similar to photons

Neutrinos only!

Core Collapse Supernova Explosion

Neutrinos carry 99% of the released energy (~ 10⁵³ erg).

Supernova Explosion Mechanism

Shock wave forms within the iron core. It dissipates energy dissociating the iron layer. **Neutrinos** provide energy to the stalled shock wave to start re-expansion.

Recent reviews: Janka (2017). Mirizzi, Tamborra et al. (2016).

Neutrinos Probe Supernova Dynamics

Neutrinos (and gravitational waves) can probe the explosion mechanism.

LESA: Neutrino-Driven Instability

Lepton-number emission asymmetry (**LESA**): Large-scale feature with **dipole character**.

Neutrinos Probe Black Hole Formation

- Low-mass supernovae can form black holes.
- Neutrinos reveal black-hole formation.
- Failed supernovae up to 20-40% of total.

Sukhbold et al., ApJ (2016). Ertl et al., ApJ (2016). Horiuchi et al., MNRSL (2014). O'Connor & Ott, ApJ (2011). O'Connor, ApJ (2015). Kuroda et al., MNRAS (2018).

Neutrino Alert

SuperNova Early Warning System (SNEWS).

Network to alert astronomers of a burst (neutrinos reach us earlier than photons).

Determination of **supernova direction** with neutrinos.

Crucial for vanishing or weak supernova.

Neutrinos Probe Global SN Population

- Independent test of the local supernova rate.
- Constraints on the fraction of black hole forming supernovae.

Moller, Suliga, Tamborra, Denton, JCAP (2018).

Neutrino Interactions

Nucleosynthesis

Synthesis of new elements could not happen without neutrinos.

Neutrinos Affect Nucleosynthesis

Neutrino may play a major role especially for element production around the polar region.

Wu, Tamborra, Just, Janka, PRD (2017). Wu & Tamborra, PRD (2017).

Red and Blue Kilonova Components

Figures taken from: Metzger & Fernandez, MNRAS (2014); Kasen et al., Nature 2017.

Neutrinos Affect Nucleosynthesis

Neutrino flavor conversions affect element production.

Upper Limit on Neutrino Emission

- ★ IceCube observed O(100) events in the TeV-PeV range.
- ★ Zenith Distribution compatible with isotropic flux.
- **★** Flavor distribution consistent with $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$.

IceCube Collaboration, Science (2013), PRL (2014), PRD (2015). IceCube Collaboration, ApJ (2015); PRL (2015). Ahlers & Halzen, Prog. Part. Phys. (2018).

Where Are These Neutrinos Coming From?

- ★ New physics?
- ★ Galactic origin [sub-dominant contribution]
- ★ Extragalactic origin
 - Star-forming galaxies
 - Gamma-ray bursts
 - Active galactic nuclei, blazars
 - Low-power or choked sources

More statistics needed! No strong preference so far.

Denton, Tamborra, JCAP (2018), ApJ (2018). Feyereisen, Tamborra, Ando, JCAP (2017). Mertsch, Rameez, Tamborra JCAP (2017).

Conclusions

Neutrinos:

- Fundamental in most energetic phenomena in our Universe.
- Ideal messengers.
- Carry imprints of the engine behind astrophysical sources.
- Affect element formation in astrophysical sources.
- Being a neutrino-like scientist helps to see things others don't see!

Thank you!