## FAIR Quench Detection System – Meeting with CERN Experts



## Introduction to the FAIR Quench Detection System – Concept, Philosophy, Strategy

P. Szwangruber, W. Freisleben, V. Raginel, A. Wiest / GSI

CERN, 2019-04-04



## Outline

- FAIR Project
- Super-FRS
  - large aperture super-ferric magnets
  - magnet protection
- SIS100
  - main superconducting magnet circuits and their protection
  - bus-bars and main current leads
  - correctors magnets their bus-bars and local current leads
- FAIR Quench Detection Electronics
- Summary



## Outline

- FAIR Project
- Super-FRS
  - large aperture super-ferric magnets
  - magnet protection
- SIS100
  - main superconducting magnet circuits and their protection
  - bus-bars and main current leads
  - correctors magnets their bus-bars and local current leads
- FAIR Quench Detection Electronics
- Summary



## FAIR Project – a new international accelerator

facility in Darmstadt, Germany.

<u>Physics research program</u> addresses broad variety of topics ranging from fundamental questions of the evolution of the universe to the structure of matter.



#### pre-acceleration

injection to  $\rightarrow$  sc synchrotron **SIS100** 

□ fast cycling machine (2 T, 4 T/s)



Antiproton and collector rings – beam storage and modification for various experiments

#### → Sc FRagment Separator Super-FRS

magnetic spectrometer for the study of exotic particles.





## **Super-FRS**



## **World's Superconducting Fragment Separators**

Dipoles

A1900 at National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), USA

**BigRIPS** at Institute of Physical and Chemical Research (RIKEN) in Japan

## **Super-FRS** at FAIR, Darmstadt, Germany

|                          | A1900 | Super-FRS |
|--------------------------|-------|-----------|
| $B_{gap}$ (T)            | 2     | 1.6       |
| Gap (mm)                 | 90    | 140       |
| Bend Angle (°)           | 45    | 9.75      |
| <i>ρ</i> (m)             | 3.1   | 12.5      |
| $B\varrho$ (T·m)         | 6.2   | 20        |
| $I_{\rm n}$ (A)          | 171   | 245       |
| <i>L</i> (H)             | 36.25 | 15        |
| $E_{\rm mag}~({\rm kJ})$ | 530   | 450       |

| 0   | Machine          | Field Grad.<br>(T/m) | I <sub>n</sub><br>(A) | L<br>(H) | $E_{ m mag}$ (kJ) |
|-----|------------------|----------------------|-----------------------|----------|-------------------|
| חמת | A1900 Type QD    | 11                   | 404.5                 | 5.08     | 372               |
| 3   | BigRIPS Q1000    | 14.1                 | 135                   | 18-33    | 270               |
|     | Super–FRS "long" | 10                   | 291                   | 26.5     | 1120              |

FAIR Quench Detection System - Meeting with CERN Experts



## Super-FRS





## Super-FRS





## **Super-FRS Multiplets**

up to 9 magnets in a common He bath...





## **Super-FRS Magnets Parameters**

|                                   |      | Multiplet magnets  |                     |           | Dipoles            |          |              |            |                 |
|-----------------------------------|------|--------------------|---------------------|-----------|--------------------|----------|--------------|------------|-----------------|
|                                   |      | Long<br>Quadrupole | Short<br>Quadrupole | Sextupole | Steering<br>magnet | Octupole | 9.75<br>(D3) | 11<br>(D2) | Branch<br>(D3Y) |
| Max. inductance L                 | н    | 43.2               | 30.41               | 1.06      | 0.0665             | 0.097    | 23           | 26         | 24              |
| Max. operation<br>current lop     | A    | 300                | 300                 | 291       | 280                | 163      | <250         | <250       | 280             |
| Max. test current<br>(110%)       | A    | 330                | 330                 | 320       | 308                | 179      | 275          | 275        | 308             |
| Rising time for<br>operation T    | sec. | 120                | 120                 | 120       | 120                | 120      | 120          | 120        | 120             |
| Max. inductive<br>voltage =Llop/T | V    | 108.0              | 76.0                | 2.6       | 0.2                | 0.1      | 47.9         | 54.2       | 56.0            |
| Stored energy at lop              | kJ   | 952                | 670                 | 37        | 2.6                | 1.3      | 572          | 666        | 490             |



## Super-FRS Magnets – Powering Circuit



Correctors



## Super-FRS Magnets – Powering Circuit



Correctors



## **Super-FRS Quench Detection**

- All magnets powered individually
- Location of the quench detectors in the power converter cabinets make perfectly sense
- Cabinet infrastructure, interlock card, MFU, SCU available



Opportunity to merge the development with SIS100



## **SIS100**

## World's Superconducting Particle Accelerators



| Accelerator | Circumference   | $B_{\rm dipole}$ | Ве                 | $\frac{dB_{dipole}}{dt}$ | Years of  |
|-------------|-----------------|------------------|--------------------|--------------------------|-----------|
|             | $(\mathrm{km})$ | (T)              | (T·m)              | (T/s)                    | operation |
| Tevatron    | 6.300           | 4.4              | $3.3 \cdot 10^{3}$ | 0.29                     | 1987-2011 |
| HERA        | 6.336           | 4.682            | -                  | 0.007                    | 1992-2007 |
| Nuclotron   | 0.252           | 1.98             | 45                 | 2                        | 1993-     |
| RHIC        | 3.834           | 3.45             | 839.5              | 0.07                     | 2000-     |
| LHC         | 27              | 8.36             | $23 \cdot 10^{3}$  | 0.008                    | 2009-     |
| SIS100      | 1.0836          | 1.9              | 100                | 4                        | 2022-     |
| SIS300      | 1.0836          | 4.5              | 300                | 1                        | -         |



## SIS100 vs. LHC

#### Parameters of superconducting dipole circuit of LHC and SIS100

| Machine                                                                      | LHC                              | SIS100                |                                        |
|------------------------------------------------------------------------------|----------------------------------|-----------------------|----------------------------------------|
| Number of magnets                                                            | 154/circuit                      | 108                   |                                        |
| Number of power converters                                                   | 1/circuit                        | 2                     |                                        |
| Nominal current (kA)                                                         | 11.85                            | 13.1                  | SIS100 is a fast cycling               |
| Nominal ramp rate (A/s)                                                      | 10                               | 28000                 | machine with                           |
| Total inductance                                                             | $154 \times 2 \times 51 =$       | $108 \times 0.55 =$   | extremely high ramp                    |
| of the circuit (mH)                                                          | $= 15.7 \times 10^3$             | = 59.4                | rate!                                  |
| Inductive voltage at cycling (V)<br>per twin dipole / overall in the circuit | 1/pprox 160                      | $15.4/ \approx 1660$  | Protection system                      |
| Energy extraction system                                                     | $2 \times R_{\rm d}$ per circuit | $12 \times R_{\rm d}$ | of SIS100                              |
| Cold by–pass                                                                 | cold diode<br>per twin dipole    | none                  | considers only<br>extraction resistors |
| Quench back heaters                                                          | on each coil                     | none                  |                                        |

SIS100: low AC loss superconducting cable (Nuclotron type), NbTi/CuMn



Quench back effect is not expected! If a single magnet quenches, other magnet will not quench due to high d*i*/d*t* at current dumping (very low probability).

FAIR Quench Detection System – Meeting with CERN Experts



## **SIS100 Magnets Parameters**

| Magnet                 | Nominal<br>current (A)           | Inductance<br>(mH)               | Inductive<br>voltage (V)         | Quantity                      |
|------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------|
| Main<br>dipole         | 13100                            | 0.55                             | 15.4                             | 108                           |
| Main<br>quad.          | 10512                            | 0.41                             | 7.5                              | 83 (QD)<br>36 (F1)<br>47 (F2) |
| Chrom.<br>sext.        | 250                              | 43                               | 62                               | 42                            |
| Steering<br>magnet     | 245 (SH)<br>241 (SV)             | 21                               | 25                               | 83 magnets<br>166 coils       |
| Multipole<br>corrector | 250 (MQ)<br>250 (MS)<br>250 (MO) | 1.1 (MQ)<br>5.6 (MS)<br>7.4 (MO) | 1.8 (MQ)<br>5.8 (MS)<br>7.7 (MO) | 12 magnets<br>36 coils        |
| In/ex<br>quad.         | 507                              | 139                              | 147                              | 4                             |



## **SIS100** Dipoles





## **SIS100** Quadrupole Doublet Modules



FAIR Quench Detection System – Meeting with CERN Experts



## **SIS100** Quadrupole Units







FAIR Quench Detection System – Meeting with CERN Experts



## **SIS100** Quadrupole Units





## **SIS100 Splices**



- excellent reproducibility since 2013
- easy and fast connection method
- relatively low ac losses
- no correlation between R (300 K) and R (4 K)



## **Main Current Leads**

14 kA DC HTS current leads

- Cu part vapour cooled
- HTS part conduction cooled





## **SIS100** Dipole Circuit





## SIS100 Main Quadrupole QD





## SIS100 Main Quadrupole F1/F2





## **SIS100 Corrector Magnets**



single coil



- 2 coils:
- horizontal
- vertical

#### **Multipole corrector**



3 coils:

- quad.
- sext.
- oct.



## SIS100 Chromaticity Sextupole (7 circuits)





### **SIS100 Chromaticity Sextupoles Circuits**





## SIS100 Chromaticity Sextupole Circuit





## **SIS100** Quench Detection Structure

#### Main circuits



FAIR Quench Detection System – Meeting with CERN Experts



## **SIS100 Corrector Magnets**

Insulated strand Nuclotron-type cable



High risk of symmetrical quench, e.g. beam induced. Balance BRD is completely insensitive to such an event.

A typical solution for the problem considers either an asymmetrical middle V-tap of BRD or/and secondary BRD in multi-coil circuits.







### **MID Prototypes**



(2013)

(2018)



## **MID Prototype**



#### Main features:

- analogue robust design, fully differential channels
- easy hardware adaptation for various strand numbers (SIS100: 27, 24, 20, 13)
- 2 kV HV insulation
- Iocally adjustable threshold and parameters of the validation circuit
- □  $V_{\text{coil}}$ ,  $V_{\text{MID}}$  and TRIGGER available for post mortem and data logging (bandwidth < 1 kHz → 300 Hz)
- cable detection with pull-up resistors





Quench Detection and Magnet Protection:

- S1, S2 redundant mechanical circuit breakers
- C snubber capacitor in order to cut-out the voltage peak on the switch
- $R_{\rm d}$  energy extraction resistor (always-ON)

Solenoid and LCL are monitored by the quench detection system of the test facility:

- small bridge coil extremities and the middle V-tap,  $V_{th} = 200 \text{ mV}$
- large bridge solenoid + 2 x HTS with the us of the middle V-tap,  $V_{th} = 220 \text{ mV}$
- 2x (Cu+HTS) 2 single-ended channels,  $V_{th} = 80 \text{ mV}$

MID does not serve as a safety system!

• 
$$t_v = -5 \text{ ms}$$





□ visible current drop → PC's current regulator not as fast as initially anticipated
 □ drop in the current is immediately transferred to the MID strand → which actually speeds up the quench detection; CAUTION: polarity in MID is of extreme importance!

□ filtering and signal conditioning blocks function as expected

- □ in the example,  $V_{\text{thMID}}$  was set to 340 mV, tv ≈ 5 ms, lower threshold is possible
- □ the signal at the comparator output is clean and clearly indicates quench



## **FAIR Quench Detection System**

































# SIS100 Quench Detection System (Evolution)







## **QuD Analogue Board**



# FAIR Quench Detection Electronics (Evolution)







## **DE0-Nano Development Platform**





## **Digital Board**

Functionality:

- Acquisition of the circuit voltages and transfer to the MFU
- Control of the QuD thresholds
- Remote control of the QuD
  - Reset of the QuD.
  - Reset of the QuD Trigger latch
  - Test each channel of the QuD (Quench test)
  - Read-out of the QuD type
  - Read-out of the QuD status



## QuD Digital Board $\leftrightarrow$ MFU

- Control and Readout of the QuD via FPGA : Reset, reset trigger latch, quench test, readout for QuD type, readout of QuD status.
- Transfer active quench trigger to the MFU in order to timestamp the quench event with accelerator timing.
- Data transfer from the FPGA to the MFU after a quench trigger and for very low frequency data logging and on-demand data recording.
- Launch on-demand recording with user selected parameters (number of signals to record, sampling rate, time span).
- Reset FPGA board
- Activation of the threshold control feature (to be seen if needed).
- Readout of the status of threshold control (active or not active).
- Setting and readout of the threshold values.
- Firmware upload: update of the FPGA firmware must be possible remotely from the FAIR control system.



## **QuD Analogue Boards**

|                    | QuD Type                                                          |                                                                      |                                         |                                                        |  |
|--------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--|
| Analog<br>Inputs # | QuD for SIS100<br>Main Magnet<br>circuits                         | QuD for SIS100<br>Corrector<br>Magnets and<br>Local Current<br>Leads | QuD for<br>SIS100 Main<br>Current Leads | QuD for S-FRS<br>Magnets and<br>Local Current<br>Leads |  |
| 1                  | $V_{P}-V_{G}$                                                     | V <sub>magnet</sub>                                                  | V <sub>CU MCL+</sub>                    | V <sub>magnet</sub> half 1                             |  |
| 2                  | $V_{G}-V_{N}$                                                     | V <sub>MID</sub>                                                     | V <sub>CU MCL-</sub>                    | Vmagnet half 2                                         |  |
| 3                  | V <sub>bridge</sub>                                               | V <sub>bridge</sub>                                                  | V <sub>HTS MCL+</sub>                   | V <sub>bridge</sub>                                    |  |
| 4                  | V <sub>P</sub> -V <sub>G</sub> – from<br>QuD redundant<br>channel | $V_{LCL^+}$                                                          | V <sub>HTS_MCL-</sub>                   | V <sub>LCL+</sub>                                      |  |
| 5                  | V <sub>G</sub> -V <sub>N</sub> – from<br>QuD redundant<br>channel | V <sub>LCL-</sub>                                                    | Quench Trigger                          | V <sub>LCL</sub> -                                     |  |
| 6                  | V <sub>bridge</sub> – from QuD<br>redundant channel               | Quench Trigger                                                       |                                         | Quench Trigger                                         |  |
| 7                  | Quench Trigger                                                    |                                                                      |                                         |                                                        |  |
| 8                  |                                                                   |                                                                      |                                         |                                                        |  |



## QuD i/o

#### Analog outputs to the QuD – Thresholds

| Analog Outputs # | Description                     |
|------------------|---------------------------------|
| 1                | Voltage Threshold QuD Channel 1 |
| 2                | Voltage Threshold QuD Channel 2 |
| 3                | Voltage Threshold QuD Channel 3 |
| 4                | Voltage Threshold QuD Channel 4 |

#### **Digital inputs from QuD**

#### **Digital outputs to QuD**

| Digital Input # | Description    | Digital Output # | Description                   |
|-----------------|----------------|------------------|-------------------------------|
| 1               | Quench trigger | 1                | Board reset                   |
| 2               | QuD status     | 2                | Trigger latch reset           |
| 3               | QuD type bit 1 | 3                | Quench test QuD channel 1     |
| 4               | OuD type bit 2 | 4                | Quench test QuD channel 2     |
| 5               | OuD type bit 3 | 5                | Quench test QuD channel 3     |
| 6               | QuD type bit 4 | 6                | Quench test QuD channel 4     |
| 7               | spare          | 7                | Trigger for Threshold error & |
| •               | spare          |                  | FPGA power failure            |
| 0               | spare          | 8                | spare                         |



Correctors

## **SIS100 Quench Detection System**

#### Main circuits



FAIR Quench Detection System – Meeting with CERN Experts



## **SIS100** Quench Cabinets Distribution



- 7 cabinets in (11+4) rooms
- cables up to 150 m
- cabling along the beam
- ~442 quench conditioning boxes at the support structure:
  - 1-2/ DP
  - 2/ QDM
  - 4/ BPL,
  - FB, CLB, EB...
- cabling concept is rather complicated
- several types of QCB layout

## SIS100 Quench Detection System – Cabinet System





FAIR Quench Detection System - Meeting with CERN Experts



## Thank you for your attention!

#### Special thanks to:

V. Plyusnin, H. Welker, C. Roux and other colleagues who supported this work.