Physics at the LHC

Karl Jakobs University of Freiburg / Germany

Humboldt Forum, Kitzbühel, 24th June 2019

Physics at the LHC

- Data Taking at the LHC
- Physics highlights
 - Standard Model processes and parameters
 - Higgs boson physics
 - Search for Supersymmetry
 - Dark Matter
- Plans for the High Luminosity LHC (HL-LHC)

Karl Jakobs University of Freiburg / Germany

Humboldt Forum, Kitzbühel, 24th June 2019

Data taking at the LHC

- Run 1: 2010 2012 $\sqrt{s} = 7 / 8 \text{ TeV}$ $L_{int} = 28 \text{ fb}^{-1} \text{ delivered}$ Run 2: 2015 2018 $\sqrt{s} = 13 \text{ TeV}$ $L_{int} = 156 \text{ fb}^{-1} \text{ delivered}$
- Excellent performance of the accelerator and of the experiments
 The goal of 150 fb⁻¹ (in Run 1 + Run 2) has been clearly surpassed

Data taking at the LHC (cont.)

 $Z \rightarrow \mu\mu$ candidate with 65 additional reconstructed vertices!

Data taking in Run 2

- Excellent performance as well of the ATLAS and CMS experiments
 High data-taking efficiency and high data quality
- Timely analyses → some results shown here use the complete Run-2 dataset

Summary of recent results from the LHC

Di-jet event with the highest di-jet invariant mass of $m_{jj} = 8.02$ TeV recorded during 2016

Double differential jet production cross sections, as a function of p_T and rapidity y (full 2015 data set, \sqrt{s} = 13 TeV)

- Also at the highest energies explored so far, the data are well described by NLO perturbative QCD calculations (NLOJet++)
- Latest comparisons to NNLO predictions (NNLOJet) [J. Currie, N. Glover, T. Pieres, Phys. Rev. Lett. 118 (2017)]

 → improved agreement, however, scale dependent

Search for new phenomena in di-jet events

Publication on 2015+2016 data: 37.0 fb^{-1} at $\sqrt{s} = 13 \text{ TeV}$

95% CL exclusion limits: Excited quarks

Add. gauge bosons:

Quantum Black Holes:

Contact Interactions:

 $m_{q^*} > 6.0 \text{ TeV}$ (5.8 TeV exp.)* $m_{W'} > 3.6 \text{ TeV}$ (3.7 TeV exp.)

 $m_{BH} > 8.9 \text{ TeV}$ (8.9 TeV exp.) $\Lambda > 13.1 \text{ TeV } (\eta_{LL} = +1)$

 $\Lambda > 21.8 \text{ TeV } (\eta_{LL} = -1)$

*pre-LHC limit on excited quarks from the Tevatron: 0.87 TeV

Search for new phenomena in di-jet events

• Prel. result based on complete Run-2 (2015-2018) dataset: 139 fb⁻¹ at \sqrt{s} = 13 TeV

95% CL exclusion limits: Excited quarks

36 fb⁻¹ $m_{q^*} > 6.0 \text{ TeV}$ (5.8 TeV exp.) 139 fb⁻¹ $m_{q^*} > 6.7 \text{ TeV}$ (6.4 TeV exp.)

Vector boson scattering

EW same-charge WW+jj 6.9σ (4.6 σ) obs (exp)

ATLAS-CONF-2018-030

EW WZ+jj production 5.6 σ (3.3 σ) obs (exp) ATLAS-CONF-2018-033

Cross-sections for di-boson production

Di-boson cross-section ratios: exp. measurement / theoretical predictions (SM) (Theory predictions have been updated to the latest NNLO calculations where available)

Status of Higgs Boson measurements

Results of Searches for H $\rightarrow \gamma\gamma$ and H $\rightarrow ZZ^* \rightarrow 4\ell$ at 13 TeV

- Impressive signals in these high-resolution bosonic decay channels (Data collected form 2015 to 2017 in Run 2 at 13 TeV)
- Observation with a significance of $> 5\sigma$ in each channel

$H \rightarrow \gamma \gamma$ signals for various categories

a) untagged categories

(expected to be dominated by gluon fusion)

o) VBF categories

(tag-jet configuration, $\Delta \eta$, m_{ii})

c) VH categories

(one-lepton, E_T^{miss}, low-mass di-jets)

d) ttH categories

(lepton, jets, b-jet(s))

Differential cross-section measurements

- Data are well described by theoretical calculations (within large uncertainties)
- Such measurements will become important ingredients for future measurements of Higgs boson parameters (Effective Field Theories)

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu \text{ signal}$

- Large branching fraction, however, also severe backgrounds (no mass peak, due to neutrinos)
- \rightarrow Rely on lepton/jet kinematics (\rightarrow transverse mass M_T, di-lepton invariant mass m_{$\ell\ell$}, $\theta_{\ell\ell}$)

• Very significant excesses visible in the "transverse mass" and $m_{\ell\ell}$ distributions ATLAS: gluon fusion 6.3 σ observed (5.2 σ expected)

CMS: total 9.1σ obs

 9.1σ observed (7.1 σ expected)

Couplings to fermions?

Search for $H \rightarrow \tau\tau$ and $H \rightarrow bb$ decays, and ttH production

Observation of H → bb decays

- H→bb mode dominates Higgs decays (BR~58%)
- Most sensitive channel exploits VH, H→bb (V=W/Z)

Published on the same day (24th Aug 2018)

 Combination of Z and W final states characterised by lepton multiplicity:

(2-lepton (
$$Z\rightarrow \ell\ell$$
), 1-lepton ($W\rightarrow \ell v$), and 0-lepton ($Z\rightarrow vv$))

Phys. Rev. Lett. 121 (2018) 121801

19

Combination with ATLAS Run-1 results \rightarrow 5.4 σ observed (5.5 σ expected)

Search for ttH Production

- Direct access to top-Yukawa coupling
- Rich decay topologies; final states with leptons, jets, b-jets, photons

Observation of ttH production

- Combination of all channels leads to observation of ttH production in both experiments (2018)
- Measured production and decay rates consistent with SM expectation

CMS observation of ttH production: (combination of Run-1 and Run-2 data)

$$\mu = 1.26$$

Significance: 5.2σ (obs.), 4.2σ (exp.)

Including the 2018 data for H $\rightarrow \gamma\gamma$

Higgs signal appears in ttH production with decays into $\gamma\gamma$

- Observed significance: 4.9σ (4.2σ exp.)
- Signal strength consistent with SM expectation: $\mu_{t\bar{t}H} = 1.38^{+0.33}_{-0.31} (\text{stat.})^{+0.13}_{-0.11} (\text{exp.})^{+0.22}_{-0.14} (\text{theo.})$

Combined ATLAS & CMS Higgs analysis — Run-1 legacy

ATLAS & CMS Run-1 combination of Higgs boson coupling measurements

Agreement among experiments

Overall signal strength (Run 1):

 $\mu = 1.09 \pm 0.11$

(ATLAS + CMS)

JHEP 08 (2016) 045

Note that the least model-dependent observables at the LHC are ratios of couplings

Higgs boson properties

So far, all measured properties are in agreement with the expectations from the Standard Model, however, precision has to be increased

→ access to rare decay modes, higher precision, Higgs boson self-coupling

Search for Physics beyond the Standard Model

© Hitoshi Murayama, IPMU Tokyo & Berkeley

Search for Supersymmetry

-Results are already partially based on the complete Run-2 dataset-

Data well described by expectations from SM processes

Gluino searches in final states with leptons

(E_T^{miss} in events with 2 same-sign leptons,+ 2 jets)

Data well described by expectations from SM processes

Gluino mass limit beyond 1.6 TeV, $m(\chi^0) = 0$

Results on dedicated searches for stop quarks

- Weaker mass limits for partners of the top quark (lower production rate, tt background)
- However, significant progress, with mass limits ~1 TeV (light neutralinos), including coverage for complex decay scenarios

The 95% CL exclusion limits on $\chi_1^+\chi_1^-$ and $\chi_1^\pm\chi_2^0$ production with either SM-boson-mediated or ℓ -mediated decays, as a function of the χ_1^\pm , χ_2^0 and χ_1^0 masses. The production cross-section is for pure wino $\chi_1^+\chi_1^-$ and $\chi_1^\pm\chi_2^0$. Each individual exclusion contour represents a union of the excluded regions of one or more analyses.

Searches for Dark Matter particles (using signatures with large E_Tmiss)

- Mono-jet
- Mono-photon
- Mono-W or mono-Z
- Mono Higgs (H → bb)
- Mono-top

Example: mono-jet search, E_T^{miss} spectrum

Data are in good agreement with the expectations from Standard Model processes

(applies to all mono-X searches)

Interpretation on searches for Dark Matter:

Model assumptions:

- neutral, spin-1 particle acts as mediator
- DM assumed to be Dirac fermion
- Five parameters:
 - Mass of mediator
 - Mass of DM particle
 - g_q: flavour-universal coupling of Z' boson to all quarks
 - g_I: coupling to all lepton-flavours
 - g_X: coupling to DM

Sensitivity via searches for resonances and events with large E_T^{miss}

Interpretation on searches for Dark Matter:

Summary of Results on Searches for other BSM physics

The next steps

Expected integrated luminosity of LHC and HL-LHC

Expected integrated luminosity of LHC and HL-LHC

3000

2500 HL-LHC:

Configuration $\begin{array}{c|cccc}
\mathcal{L}_{inst} & & \int \mathcal{L} \text{ per year} \\
\hline
Baseline & 5 & 140 & 250
\end{array}$ Ultimate 7.5 200 >300

HL-LHC inclusive Higgs sample will be 23 times larger (30 times for 4 ab⁻¹) than that expected for full Run-2 (~150 fb⁻¹ at 13 TeV)

With 3 ab⁻¹: 190 million H and 120 thousand HH (ggF) produced (SM)

ATLAS Phase-II Upgrade

Conclusions

- With the operation of the LHC at the highest energies, particle physics has entered a new era;
 Superb performance of the LHC and the experiments
- The Standard Model is challenged at the high-energy frontier with ever increasing precision
- Higgs boson:
 - Within present uncertainties, its properties are in agreement with the predictions of the Standard Model
 - We moved from the discovery to the measurement phase;
 - The Higgs boson might be a portal to *New Physics* (precision required)
- So far no signals from New Physics
- Future direction: HL-LHC Exploration of the Higgs sector and continuation of direct searches

