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Motivation
❖ Axion-like particles (ALPs) appear in many BSM scenarios 

and are well motivated: strong CP problem, mediator to 
hidden sector, pNGB of spontaneously broken global 
symmetry, possible explanation of (g-2)μ, …

❖ Assume the existence of a new pseudoscalar resonance a, 
which is a SM singlet and whose mass is protected by a 
(approximate) shift symmetry a→a+const.

❖ Many studies of possible collider probes of ALPs exist

❖ Here we focus on effects of ALPs on flavor observables
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only if the e↵ective Lagrangian contains an explicit mass term for the ALP. Its e↵ect is
suppressed, relative to the first term, by a factor m

2

a,0/m
2

h. The third term is the leading
operator mediating the decay h ! Za at tree level [47]. These decay modes will be of
particular interest to our discussion in Section 5.

After electroweak symmetry breaking (EWSB), the e↵ective Lagrangian (1) contains cou-
plings of the pseudoscalar a to ��, �Z and ZZ. The relevant terms read
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where sw = sin ✓w and cw = cos ✓w, and we have defined

C�� = CWW + CBB , C�Z = c
2

w CWW � s
2

w CBB CZZ = c
4

w CWW + s
4

w CBB . (8)

The fermion mass terms resulting after EWSB are brought in diagonal form by means of field
redefinitions, such that U †

u Yu Wu = diag(yu, yc, yt) etc. Under these field redefinitions the
matrices CF transform into new matrices

KU = U †
u CQ Uu , KD = U †

d CQ Ud , KE = U †
e CL Ue ,

Kf = W †
f Cf Wf ; f = u, d, e .

(9)

In any realistic model these couplings must have a hierarchical structure in order to be con-
sistent with the strong constraints from flavor physics. We will discuss the structure of the
flavor-changing ALP couplings in a companion paper [56]. For now we focus on the flavor-
diagonal couplings. Using the fact that the flavor-diagonal vector currents are conserved, we
can rewrite the relevant terms in the Lagrangian in the form
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where the sum runs over all fermion mass eigenstates, and we have defined (with i = 1, 2, 3)

cuiui = (Ku)ii � (KU)ii , cdidi = (Kd)ii � (KD)ii , ceiei = (Ke)ii � (KE)ii . (11)

ALP couplings to neutrinos do not arise at this order, because the neutrino masses vanish
in the SM, and hence the neutrino axial-vector currents are conserved. The leading shift-
invariant coupling of an ALP to neutrino fields arises at dimension-8 order from an operator
consisting of ⇤a times the Weinberg operator. Even in the most optimistic case, where no
small coupling constant is associated with this operator, the resulting a ! ⌫⌫̄ decay rate would
be suppressed, relative to the a ! �� rate, by a factor of order m

2

a v
4
/⇤6. Alternatively, if

Dirac neutrino mass terms are added to the SM, the corresponding couplings in (10) yield a
a ! ⌫⌫̄ decay rate proportional to m

2

⌫ . In either way, for ⇤ in the TeV range or higher, this
decay rate is so strongly suppressed that if an ALP can only decay into neutrinos (e.g. since
it is lighter than 2me and its coupling to photons is exactly zero for some reason) it would be
a long-lived particle for all practical purposes.

6

EWSB

(C�� = CWW + CBB etc.)

+ . . .

Effective Lagrangian
❖ The ALP couplings to the SM start at D=5 and are described by 

the effective Lagrangian (with                                a NP scale):
[Georgi, Kaplan, Randall 1986]

The first term is the leading Higgs portal interaction, while the second one is the leading
operator mediating the decay h ! Za at tree level [20]. This decay mode will be of particular
interest to our discussion, see Section 5.1.

After electroweak symmetry breaking (EWSB), the e↵ective Lagrangian (1) contains cou-
plings of the pseudoscalar a to ��, �Z and ZZ. The relevant terms read
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where sw = sin ✓w and cw = cos ✓w are functions of the weak mixing angle, and

C�� = CWW + CBB , C�Z = c2w CWW � s2w CBB CZZ = c4w CWW + s4w CBB . (5)

The fermion mass terms resulting after EWSB are brought in diagonal form by means of field
redefinitions, such that U †

u Yu Wu = diag(yu, yc, yt) etc. Under these field redefinitions the
matrices CF transform into new matrices

KU = U †
u CQ Uu , KD = U †

d CQ Ud , KE = U †
e CL Ue ,

Kf = W †
f Cf Wf ; f = u, d, e .

(6)

Note that KD = V †KUV , where V = U †
u Ud denotes the CKM matrix. In any realistic

model these couplings must have a hierarchical structure in order to be consistent with the
strong constraints from flavor physics. We will discuss the structure of the flavor-changing
ALP couplings in Section 7. For now, let us focus on the flavor-diagonal couplings of a to
fermions. Using the fact that the flavor-diagonal vector currents are conserved, we can rewrite
the relevant terms in the Lagrangian in the form
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where the sum runs over all fermion mass eigenstates (except the neutrinos), and we have
defined (with i = 1, 2, 3)

cuiui = (Ku)ii � (KU)ii , cdidi = (Kd)ii � (KD)ii , ceiei = (Ke)ii � (KE)ii . (8)

ALP couplings to neutrinos do not arise at this order, because the neutrinos masses vanish
in the SM, and hence the neutrino axial-vector currents are conserved. The leading shift-
invariant coupling of an ALP to neutrino fields arises at dimension-8 order from an operator
consisting of ⇤a times the Weinberg operator. Even in the most optimistic case where no small
coupling constant is associated with this operator, the resulting a ! ⌫⌫̄ decay rate would be
suppressed, relative to the a ! �� rate, by a factor of order m2

a v
4/⇤6. Alternatively, if Dirac

neutrino mass terms are added to the SM, the corresponding couplings in (7) yield a a ! ⌫⌫̄
decay rate proportional to m2

⌫ . In either way, for ⇤ in the TeV range or higher, this decay
rate is so strongly suppressed that if the ALP can only decay into neutrinos (e.g. since it is
lighter than 2me and its coupling to photons is exactly zero for some reason) it would be a
long-lived particle for all practical purposes.

3

+ flavor off-diagonal terms

EWSB

be above 1MeV. In Section 4 the preferred region of parameter space in which an ALP can
explain the anomalous magnetic moment of the muon is derived. Section 5 is devoted to a
detailed discussion of the exotic Higgs decays h ! Za and h ! aa. We discuss which regions
of parameter space can be probed with 300 fb�1 of integrated luminosity in Run-2 of the LHC,
and which regions can already be excluded using existing searches. In Section 6 we extend
this discussion to the exotic decay Z ! �a, and we study Z-pole constraints from electroweak
precision tests. We conclude in Section 7. Technical details of our calculations are relegated
to four appendices.

2 E↵ective Lagrangian for ALPs

We assume the existence of a new spin-0 resonance a, which is a gauge-singlet under the SM
gauge group. Its mass ma is assumed to be smaller than the electroweak scale. A natural way
to get such a light particle is by imposing a shift symmetry, a ! a+ c, where c is a constant.
We will furthermore assume that the UV theory is CP invariant, and that CP is broken only
by the SM Yukawa interactions. The particle a is supposed to be odd under CP. Then the
most general e↵ective Lagrangian including operators of dimension up to 5 (written in the
unbroken phase of the electroweak symmetry) reads [51]
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(1)

where we have allowed for an explicit shift-symmetry breaking mass term ma,0 (see below).
G

A
µ⌫ , W

A
µ⌫ and Bµ⌫ are the field strength tensors of SU(3)c, SU(2)L and U(1)Y , and gs, g and

g
0 denote the corresponding coupling constants. The dual field strength tensors are defined as

B̃
µ⌫ = 1

2
✏
µ⌫↵�

B↵� etc. (with ✏0123 = 1). The advantage of factoring out the gauge couplings
in the terms in the second line is that in this way the corresponding Wilson coe�cients are
scale invariant at one-loop order (see e.g. [52] for a recent discussion of the evolution equations
beyond leading order). The sum in the first line extends over the chiral fermion multiplets F
of the SM. The quantities CF are hermitian matrices in generation space. For the couplings
of a to the U(1)Y and SU(2)L gauge fields, the additional terms arising from a constant shift
a ! a+ c of the ALP field can be removed by field redefinitions. The coupling to QCD gauge
fields is not invariant under a continuous shift transformation because of instanton e↵ects,
which however preserve a discrete version of the shift symmetry. Above we have indicated the
suppression of the dimension-5 operators with a new-physics scale ⇤, which is the characteristic
scale of global symmetry breaking, assumed to be above the weak scale. In the literature on
axion phenomenology one often eliminates ⇤ in favor of the “axion decay constant” fa, defined
such that ⇤/|CGG| = 32⇡2

fa. Note that at dimension-5 order there are no ALP couplings to
the Higgs doublet �. The only candidate for such an interaction is

OZh =
(@µa)

⇤

�
�
†
iDµ �+ h.c.

�
! �

g

2cw

(@µa)

⇤
Zµ (v + h)2 , (2)

4

⇤ = 32⇡2fa|CGG|

M. Neubert:  The flavor of the ALP                                                                                                                                                2



only present for light ALPs

❖ Of particular relevance are the ALP couplings to photons and 
charged leptons; at 1-loop order we find:

Loop-induced ALP couplings

heavy particles decouple ~ma2/mW,f 2

a a

`

`

`W,Z, �

`

Figure 2: Representative one-loop Feynman diagrams contributing to the decay a ! `+`�.

amplitude. Combining all terms, we obtain (assuming ma 6= m⇡)
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The contribution from the coe�cient css not shown here would be suppressed, for light ALPs,
by a factor of order m2

⇡/m
2

⌘ relative to the contributions from cuu and cdd.

3.2 ALP decays into charged leptons

If the ALP mass is larger than 2me ⇡ 1.022MeV, the leptonic decay a ! e
+
e
� or decays

into heavier leptons (if kinematically allowed) can be the dominant ALP decay modes in
some regions of parameter space. We have calculated the corresponding decay rates from
the e↵ective Lagrangian including the complete set of one-loop mixing contributions from the
bosonic operators in (1) and (7), see Figure 2. In analogy with (12), we write the result in the
form (with ` = e, µ, ⌧)
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which is approximately linear in the ALP mass. At one-loop order, the e↵ective Wilson
coe�cient ce↵`` receives contributions from c`` as well as from the diboson coe�cients CWW and
CBB. Using the linear combinations of Wilson coe�cients defined in (8), we find
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Here Q` = �1 is the electric charge of the charged lepton, and T
`
3
= �

1

2
is the weak isospin of

its left-handed component. In the limit where m
2

` is either much smaller or much larger than
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which is approximately linear in the ALP mass. At one-loop order, the e↵ective Wilson
coe�cient ce↵`` receives contributions from c`` as well as from the diboson coe�cients CWW and
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Here Q` = �1 is the electric charge of the charged lepton, and T
`
3
= �

1

2
is the weak isospin of

its left-handed component. In the limit where m
2

` is either much smaller or much larger than

10
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Fermion couplings after EWSB
❖ After transformation to the mass basis, we obtain:

with:

where sw = sin ✓w and cw = cos ✓w, and we have defined
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The fermion mass terms resulting after EWSB are brought in diagonal form by means of field
redefinitions, such that U †

u Yu Wu = diag(yu, yc, yt) etc. Under these field redefinitions the
matrices CF transform into new matrices

KU = U †
u CQ Uu , KD = U †

d CQ Ud , KE = U †
e CL Ue ,

Kf = W †
f Cf Wf ; f = u, d, e .

(5)

Let us now consider the structure of the ALP–fermion couplings in (1) in more detail.
Since the matrices CF are hermitian (i.e. their eigenvalues are real), no CP-violating phases
arise at this stage. When after EWSB the quark fields are transformed to the mass basis, the
resulting couplings are
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with matrices KF defined in (5). Note that these couplings involve both vector and axial-
vector currents. Integrating by parts, the ALP coupling to neutrinos can be rewritten as
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i.e. its contribution can be absorbed into a shift of the Wilson coe�cients CWW and CBB in
(1). [But this shift should be such that �CWW = ��CBB!] For the flavor diagonal couplings
we write
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where the sum runs over all fermion mass eigenstates, and we have defined (with i = 1, 2, 3)

cuiui = (Ku)ii � (KU)ii , cdidi = (Kd)ii � (KD)ii , ceiei = (Ke)ii � (KE)ii . (9)

2.1 Loop-induced quark flavor-changing ALP couplings

Flavor-changing ALP–fermion interactions arise at one-loop order from loops involving W

bosons even if we assume that the UV theory does not contain new sources of flavor or
CP violation beyond those present in the SM. The largest e↵ects are those involving loops
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❖ Flavor-diagonal couplings from before:
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The non-diagonal contributions are those involving the CKM matrix. The corresponding
terms in KU and KD arise first at order ✏, while those in Ku and Kd arise first at order ✏2.
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with Yt = diag(0, 0, yt). We note that [V † (Yt)n V ]ij = y
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ti Vtj. Higher-order terms in ✏

have the e↵ect of generating more complicated functions of the top-quark mass, while the
dependence on CKM parameters remains unchanged. We thus find that under the MFV
hypothesis, to very good approximation, flavor-violating couplings only arise in the couplings
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❖ Strong phenomenological bounds on off-diagonal couplings 
motivate MFV ansatz:

❖ Neglecting the down-type quark masses:

Minimal flavor violation (MFV)

Acknowledgements

The research reported here has been supported by the Cluster of Excellence Precision Physics,
Fundamental Interactions and Structure of Matter (PRISMA – EXC 1098), and grant 05H12UME
of the German Federal Ministry for Education and Research (BMBF).

A Minimal flavor violation

In any realistic model, the coupling matrices KF in (??) must have a hierarchical structure in
order to be consistent with the strong constraints from flavor physics. Such a structure can be
ensured by imposing the principle of minimal flavor violation (MFV) [100, 101]. Under this
hypothesis, the matrices Cq in the quark sector can be expanded as (analogous results hold
in the lepton sector)

CQ = c
Q
0
1+ ✏

⇣
c
Q
1
Yu Y

†
u + c

Q
2
Yd Y

†
d

⌘
+ O(✏2) ,

Cu = c
u
0
1+ ✏ c

u
1
Y †

u Yu + O(✏2) ,

Cd = c
d
0
1+ ✏ c

d
1
Y †

d Yd + O(✏2) ,

(63)

where ✏ counts the order in the spurion expansion. Transforming to the mass basis, we obtain

KU = c
Q
0
1+ ✏

h
c
Q
1a (Y

diag

u )2 + c
Q
1b V (Y diag

d )2 V †
i
+ O(✏2) ,

KD = c
Q
0
1+ ✏

h
c
Q
1a V

† (Y diag

u )2 V + c
Q
1b (Y

diag

d )2
i
+ O(✏2) ,

Ku = c
u
0
1+ ✏ c

u
1
(Y diag

u )2 + ✏
2

h
c
u
2a (Y

diag

u )4 + c
u
2b Y

diag

u V (Y diag

d )2 V † Y diag

u

i
+ O(✏3) ,

Kd = c
d
0
1+ ✏ c

d
1
(Y diag

d )2 + ✏
2

h
c
d
2a (Y

diag

d )4 + c
d
2b Y

diag

d V † (Y diag

u )2 V Y diag

d

i
+ O(✏3) .

(64)

The non-diagonal contributions are those involving the CKM matrix. The corresponding
terms in KU and KD arise first at order ✏, while those in Ku and Kd arise first at order ✏2.
To very good approximation we can set y2q to zero for all light quarks. [Check this!] In this
approximation

KU ⇡ c
Q
0
1+ ✏ c

Q
1a (Yt)

2 + O(✏2) ,

KD ⇡ c
Q
0
1+ ✏ c

Q
1a V

† (Yt)
2 V + O(✏2) ,

Ku ⇡ c
u
0
1+ ✏ c

u
1
(Yt)

2 + O(✏2) ,

Kd ⇡ c
d
0
1 ,

(65)

with Yt = diag(0, 0, yt). We note that [V † (Yt)n V ]ij = y
n
t V

⇤
ti Vtj. Higher-order terms in ✏

have the e↵ect of generating more complicated functions of the top-quark mass, while the
dependence on CKM parameters remains unchanged. We thus find that under the MFV
hypothesis, to very good approximation, flavor-violating couplings only arise in the couplings

30

only source of flavor
violation

Acknowledgements

The research reported here has been supported by the Cluster of Excellence Precision Physics,
Fundamental Interactions and Structure of Matter (PRISMA – EXC 1098), and grant 05H12UME
of the German Federal Ministry for Education and Research (BMBF).

A Minimal flavor violation

In any realistic model, the coupling matrices KF in (??) must have a hierarchical structure in
order to be consistent with the strong constraints from flavor physics. Such a structure can be
ensured by imposing the principle of minimal flavor violation (MFV) [100, 101]. Under this
hypothesis, the matrices Cq in the quark sector can be expanded as (analogous results hold
in the lepton sector)

CQ = c
Q
0
1+ ✏

⇣
c
Q
1
Yu Y

†
u + c

Q
2
Yd Y

†
d

⌘
+ O(✏2) ,

Cu = c
u
0
1+ ✏ c

u
1
Y †

u Yu + O(✏2) ,

Cd = c
d
0
1+ ✏ c

d
1
Y †

d Yd + O(✏2) ,

(63)

where ✏ counts the order in the spurion expansion. Transforming to the mass basis, we obtain

KU = c
Q
0
1+ ✏

h
c
Q
1a (Y

diag

u )2 + c
Q
1b V (Y diag

d )2 V †
i
+ O(✏2) ,

KD = c
Q
0
1+ ✏

h
c
Q
1a V

† (Y diag

u )2 V + c
Q
1b (Y

diag

d )2
i
+ O(✏2) ,

Ku = c
u
0
1+ ✏ c

u
1
(Y diag

u )2 + ✏
2

h
c
u
2a (Y

diag

u )4 + c
u
2b Y

diag

u V (Y diag

d )2 V † Y diag

u

i
+ O(✏3) ,

Kd = c
d
0
1+ ✏ c

d
1
(Y diag

d )2 + ✏
2

h
c
d
2a (Y

diag

d )4 + c
d
2b Y

diag

d V † (Y diag

u )2 V Y diag

d

i
+ O(✏3) .

(64)

The non-diagonal contributions are those involving the CKM matrix. The corresponding
terms in KU and KD arise first at order ✏, while those in Ku and Kd arise first at order ✏2.
To very good approximation we can set y2q to zero for all light quarks. [Check this!] In this
approximation

KU ⇡ c
Q
0
1+ ✏ c

Q
1a (Yt)

2 + O(✏2) ,

KD ⇡ c
Q
0
1+ ✏ c

Q
1a V

† (Yt)
2 V + O(✏2) ,

Ku ⇡ c
u
0
1+ ✏ c

u
1
(Yt)

2 + O(✏2) ,

Kd ⇡ c
d
0
1 ,

(65)

with Yt = diag(0, 0, yt). We note that [V † (Yt)n V ]ij = y
n
t V

⇤
ti Vtj. Higher-order terms in ✏

have the e↵ect of generating more complicated functions of the top-quark mass, while the
dependence on CKM parameters remains unchanged. We thus find that under the MFV
hypothesis, to very good approximation, flavor-violating couplings only arise in the couplings

30

M. Neubert:  The flavor of the ALP                                                                                                                                                6



❖ Integrating out heavy SM fields, we find at 1-loop order (        ):

❖ For Λ=μ=1 TeV:

❖ No corresponding contributions to up-type quark and lepton 
couplings
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Figure 1: One-loop diagrams contributing to the flavor-changing ALP–quark couplings in the down
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where we have neglected the light quark masses. The presence of UV divergences in these
expressions signals that the couplings (KD)ij(µ) must contain flavor non-diagonal terms pro-
portional to the relevant entries of the CKM matrix in order to cancel the scale dependence
of the one-loop corrections. In the MFV case, where KU is diagonal, the above expression
reduces to (recall that ctt = (Ku)33 � (KU)33):
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The term proportional to CWW in this result agrees with a corresponding expression derived in
[13]. However, the parametrically leading term proportional to ctt, which is enhanced by a large
logarithm, was not considered in this reference. Numerically, we obtain with µ = ⇤ = 1TeV
[Check this! SR: Checked and agree]
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These loop-induced e↵ects should be considered as the minimal e↵ects of flavor violation
present in any ALP model, even if the couplings (KF )ij are diagonal at the UV scale ⇤.
Below we will explore the phenomenological implications of these e↵ects. The contributions
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B!K⇤
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B!K
0

(0) = 0.335 ± 0.036
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For the K ! ⇡a decay we use a linear parameterisation of the form factor
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1 +
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⇡

�0

◆
(17)

with �0 = (13.38 ± 1.19) ⇥ 10�3 [30].
An additional e↵ect which can enhance the K ! ⇡a rate is that the ⇡

0 state receives a
small admixture of the physical ALP, so that K ! ⇡a can be mediated by the same process
as K ! ⇡⇡. In the limit |m
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CGG
md � mu

md +mu

�
. (19)

So there is a contribution to K ! ⇡a through this mixing:

�(K ! ⇡a) = ✏
2 �(K ! ⇡⇡

0). (20)

The ALP can decay to photons, electrons, muons and hadrons. If it is su�ciently long-
lived it will escape the detector as missing energy. Constraints from relevant measurements are
listed in Table 1, for specified ALP decay products. It is important for many measurements
to consider the decay length of the ALP within the detector; details on this are given in
Appendix E.
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❖ On-shell decays                 and                      provide very strong 
bounds if kinematically allowed

❖ ALP can be long-lived or decay into photons or charged 
leptons

❖ Due to ALP-π0 mixing, the                 amplitude receives a 
contribution from the strong decay                 , since:  

K ! ⇡a B ! K(⇤)a

K ! ⇡a

K ! ⇡⇡0

;   for 
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Resulting bounds (95% CL)
❖ Model-independent upper limits:
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Observable Mass Range [MeV] ALP decay mode Constrained Limit (95% CL) on

coupling c |c| ·
�
TeV

⇤

�
·
p

B

B(K+
! ⇡

+
⌫̄⌫) 0 < ma < 265 (⇤) Long-lived (KD +Kd)ds 4.9 ⇥ 10�9

B(B+
! K

+
⌫̄⌫) 0 < ma < 4785 Long-lived (KD +Kd)sb 6.9 ⇥ 10�6

B(B ! K
⇤
⌫̄⌫) 0 < ma < 4387 Long-lived (KD � Kd)sb 5.1 ⇥ 10�6

B(⌥ ! �a(invisible)) ma < 9200 Long-lived (KD � Kd)bb 0.76

B(K+
! ⇡

+
��) ma < 108 �� (KD +Kd)ds 2.1 ⇥ 10�8

B(K+
! ⇡

+
��) 220 < ma < 354 �� (KD +Kd)ds 2.4 ⇥ 10�7

B(K0

L ! ⇡
0
��) ma < 110 �� Im(KD +Kd)ds 1.4 ⇥ 10�8

B(K0

L ! ⇡
0
��) ma < 363 �� Im(KD +Kd)ds 1.2 ⇥ 10�7

B(KL ! ⇡
0
e
+
e
�) 140 < ma < 362 e

+
e
� Im(KD +Kd)ds 2.9 ⇥ 10�9

dB/dq
2(B0

! K
⇤0
e
+
e
�)[0.0,0.05] 0 < ma < 224 e

+
e
� (KD � Kd)sb 8.3 ⇥ 10�7

dB/dq
2(B0

! K
⇤0
e
+
e
�)[0.05,0.15] 224 < ma < 387 e

+
e
� (KD � Kd)sb 6.5 ⇥ 10�7

B(KL ! ⇡
0
µ
+
µ
�) 210 < ma < 350 µ

+
µ
� Im(KD +Kd)ds 4.0 ⇥ 10�9

B(B+
! K

+
a(µ+

µ
�)) 250 < ma < 4700 (†) µ

+
µ
� (KD +Kd)sb 4.4 ⇥ 10�8

B(B0
! K

⇤0
a(µ+

µ
�)) 214 < ma < 4350 (†) µ

+
µ
� (KD � Kd)sb 5.1 ⇥ 10�8

B(J/ ! �a(µ+
µ
�)) 212 < ma < 3000 µ

+
µ
� (KU � Ku)cc 0.16

B(⌥ ! �a(µ+
µ
�)) 212 < ma < 9200 µ

+
µ
� (KD � Kd)bb 0.24

B(B+
! K

+
⌧
+
⌧
�) 3552 < ma < 4785 ⌧

+
⌧
� (KD +Kd)sb 8.2 ⇥ 10�5

B(⌥ ! �a(⌧+⌧�)) 3500 < ma < 9200 ⌧
+
⌧
� (KD � Kd)bb 1.5

B(⌥ ! �a(hadrons)) 300 < ma < 7000 hadrons (KD � Kd)bb 0.56

Table 1: Summary table of indicative constraints on the quark flavour violating ALP couplings
from hadron decays, in which the hadron can decay to an on-shell ALP. The measurements and SM
predictions (where appropriate) are given in ???????????? in Appendix ??. The limit cited is the
strongest limit found within the mass range probed by the measurement. (⇤): cuts are applied to
exclude the region around m⇡ (123 < m⌫⌫̄ < 168 MeV). (†): cuts are applied to exclude regions
around the J/ ,  (2S) and  (3370) resonances. [SR: this table needs to be updated with
corrected bounds]
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Interesting benchmark scenarios
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❖ Consider some concrete scenarios in which only one ALP 
coupling is present at tree level (very conservative) 

❖ All other ALP couplings are induced via loops in the EFT

❖ Calculate the relevant ALP branching ratios and the ALP decay 
length, which is relevant for determining which fraction of ALP 
decays can be reconstructed in the detector



Interesting benchmark scenarios
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KL
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0
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K
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K
+ a(µµ)

�Z

Figure 2: Bounds on ALP couplings to SU(2)L gauge bosons and all other Wilson coe�cients zero
at tree level.

because it is di�cult to distinguish the ALP from the ⇡0 when it decays into photons. We in-
dicate this by a dark gray vertical bar in Figure 2. Above the muon threshold, LHCb searches
for the charged and neutral B meson decays B+

! K
+
µ
+
µ
� and B

0
! K

⇤
µ
+
µ
� provide the

dominant constraints [50] and rule out couplings of the order of CWW/⇤ & 3⇥ 10�2 TeV�1 for
ALP masses ma < MB. The corresponding excluded parameter regions are shown in dark and
light brown in Figure 2. Slightly heavier ALPs, but stronger couplings are constrained by the
measurement of Bs ! µ

+
µ
�. Radiative ⌥ ! �µ

+
µ
� decays yield only very weak constraints,

because the flavour-diagonal couplings of the ALP to b quarks is only induced at 1-loop. In
Figure 2, we further show the parameter space that is ruled out by the LEP measurement of
the Z boson width on Z ! a� decays in gray, excluding CWW/⇤ & 2.5TeV�1 throughout the
ALP mass range. In particular, this constraint rules out an explanation of the measurement
of the anomalous magnetic moment of the muon by an ALP coupling to SU(2)L gauge bosons
alone for all ALP masses considered. The red dotted, dashed and solid contours show con-
stant values of Br(h ! aa) = 10�1

, 10�2 and 10�3, respectively. These branching ratios are
ruled out by the width of the Z boson as well. The corresponding parameter space is shown
in orange in Figure 2. Higgs decays into Z bosons and ALPs h ! aZ are not induced by CWW .

In Figure 3, we collect the constraints on ALPs with universal couplings to up-type quarks
cuu = ccc = ctt. For masses ma . m⇡, ALP couplings of |cuu|/⇤ & 10�3 TeV�1 are excluded by
the measurement of Br(K+

! ⇡
+
⌫̄⌫) shown in purple in Figure 3. Similar to the case of an

12
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❖ Scenario 1: Bounds on           , assuming all other couplings 
vanish at tree level

Br(h ! aa) = 0.1
0.01

0.001

CWW

B ! K⇤e+e�

�Z (Z ! �a)

K0 ! ⇡0��

K+ ! ⇡+��

⌥ ! �a(µ+µ�)

[Bauer, MN, Thamm 2017]

large π0-a mixing
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❖ Scenario 2: Bounds on                           , assuming all other 
couplings vanish at tree level
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L
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⇡
0
�
�

Figure 3: Bounds on universal ALP couplings to up-type quarks with cuu = ccc = ctt and all other
Wilson coe�cients zero at tree level.

ALP with couplings to SU(2)L gauge bosons, larger couplings cuu are excluded by constraints
from searches for K+

! ⇡
+
�� and K

0
! ⇡

0
�� decays shown in beige in Figure 3. While the

constraints on cuu from K
+

! ⇡
+
⌫̄⌫ decays are slightly stronger compared to the constraints

on CWW in Figure 2, constraints from photon decays are weaker. The reason is that tree-
level couplings to quarks only induce the ALP coupling to photons at the one-loop level. For
the same reason, the horizontal gray region indicating the parameter space excluded by the
contribution of �(Z ! a�) to the total Z width represents a significantly weaker constraint
|cuu|/⇤ & 146TeV�1. In contrast to Figure 2, the constraints from B

!
K

⇤
⌫⌫̄ and B

+
! K

+
⌫⌫̄

decays extend beyond the muon threshold and constraints on leptonic ALP couplings are ab-
sent, because the corresponding Wilson coe�cients c`` are only generated through 2-loop
diagrams. As a consequence, ALPs with universal couplings to up-quarks are largely uncon-
strained from flavour observables for ma & 1 GeV and the anomalous magnetic moment of the
muon cannot be explained in this scenario. Contours of constant Br(h ! aa) = 10�1

, 10�2

and 10�3 are shown as red dotted, dashed and solid lines, respectively. The ALP coupling to
top quarks also induces the exotic Higgs h ! Za and the corresponding contours of constant
Br(h ! Za) = 10�1

, 10�2 and 10�3 are shown as blue dotted, dashed and solid lines. In
contrast to ALPs coupled to SU(2)L gauge bosons, neither flavour constraints nor the mea-
surement of the width of the Z gauge boson exclude large branching ratios for exotic Higgs
decays for ma & 1 GeV in the case of universal ALP couplings to up-type quarks.

13

cuu = ccc = ctt

Br(h ! aa) = 0.1
0.01

0.001

Br(h ! Za) = 0.1
0.01

0.001

B+ ! K+⌫⌫̄

[Bauer, MN, Thamm 2017]

large π0-a mixing
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❖ Scenario 3: Bounds on                           , assuming all other 
couplings vanish at tree level
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Figure 4: Bounds on universal ALP couplings to down-type quarks with cdd = css = cbb and all
other Wilson coe�cients zero at tree level.

For universal ALP couplings to down-type quarks cdd = css = cbb, the constraints from
flavour observables are shown in Figure 4. Since only couplings to down quarks are present,
flavour-violating transitions between down quarks are not generated at one loop. Constraints
from Br(K+

! ⇡
+
⌫̄⌫), Br(K+

! ⇡
+
��) and Br(K ! ⇡

0
��) shown in purple, orange and

yellow in Figure 4, are therefore considerably weaker, because ALPs are only produced through
ALP-pion mixing. In contrast to both ALPs coupled to SU(2)L gauge bosons and ALPs
coupled to up-type quarks, radiative Upsilon decays lead to important constraints, because
the coupling to b-quarks is induced at tree-level. Searches for resonances in ⌥ ! �+ invisible
by BaBar [38] and ⌥ ! � + hadrons provide the strongest limit for ALPs with masses ma &
m⇡. The corresponding parameter space is shown in Figure 4 in light blue and dark green,
respectively. All constraints are allow for ALP couplings of |cdd|/⇤ & 10�1 TeV�1 and light
ALPs with ma . 10�2 GeV are almost unconstrained by flavour observables.2 Couplings
of the ALP to leptons are not induced at the 1-loop level, and a new physics contribution
to the anomalous magnetic moments of leptons is therefore negligible. The contribution of
�(Z ! a�) to the total Z width results in the constraint |cdd|/⇤ & 442TeV�1. The excluded
parameter space is shown gray in Figure 4. Higgs decays are strongly suppressed for ALP

2This does not mean that this parameter space is unconstrained in this scenario. Astrophysical and cosmo-
logical constraints, such as energy loss of red giants [51–53] and supernova observations [54, 55] are sensitive
to long-lived particles with couplings to photons or nuclei and lead to strong constraints for ma < m⇡.
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Lepton flavor violation
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Figure 5: Diagrams contributing to electromagnetic form factors.

couplings to down-type quarks, because the amplitudes are directly proportional to the Yukawa
coupling of the b quark.

4 Lepton flavour changing ALP couplings

In the SM lepton flavor violating (LFV) couplings are not present, because in the absence
of neutrino masses the SM respects an exact lepton flavor symmetry. E↵ects from MFV-
type ALP couplings in the lepton sector are therefore absent or proportional to neutrino
masses. Even if ALP tree-level couplings are lepton flavor violating, from eq.(6) it follows that
these couplings are suppressed by the lepton masses. Given the large hierarchy in charged
lepton masses, loop-e↵ects can be important. In observables probing lepton flavor-violating
decays like µ

+
! e

+
�, µ+

! e
+
e
�
e
+ or tau decays, the contributions from electromagnetic

form factors often dominate over LFV four fermion interactions. ALPs contribute to the
electromagnetic form factors through the diagrams shown in Figure 5 in the case of leptons. If
the ALP has non-vanishing lepton flavor-violating couplings, these form factors contribute to
µ
+

! e
+
�, as well as to three-body decays like µ+

! e
+
e
�
e
+, together with the tree-level ALP

exchange. We define q = p1 � p2 and p = p1 + p2 and use the gauge-invariant decomposition

¯̀
j(p2)�

µ(p1, p2) `i(p1) = ¯̀
j(p2)


F2(q

2)
�
p
µ

� (mi +mj)�
µ
�
+ F3(q

2)
⇣
q
µ

�
q
2

mi � mj
�
µ
⌘

+ F
5

2
(q2)

�
p
µ + (mi � mj)�

µ
�
�5 + F

5

3
(q2)

⇣
q
µ +

q
2

mi +mj
�
µ
⌘
�5

�
`i ,

(29)

The diagrams on the left and in the center of Figure 5 allow only for a single lepton flavor
change, whereas for the diagram at the right of Figure 5 both ALP-vertices can change the
lepton flavor, such that the heaviest lepton in this loop becomes the largest scale in the
calculation. In Appendix B, we give results for the form factors from these diagrams in terms
of Feynman diagrams, keeping the dominant terms in the expansion in ratios of lepton masses
mj/mi and m`/mj, where ` = ⌧ , j = e and i = µ in Figure 5. In the following we will use
the same symbols for the form factors independent of the external leptons and the correct
meaning should become clear from the context. Here, we give analytical results for the form
factors in the limit q2 = 0 for the µ ! e transition in the case of muon internal lines in the
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❖ Interesting (and complementary) bounds on lepton flavor-
violating couplings can be derived from decays such as              
t            ,               and                                (and corresp. τ decays) 

❖ Relevant diagrams:

❖ For simplicity, we will assume that one combination of 
couplings dominates

µ ! e� µ ! 3e µ ! e+ invisible
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Figure 6: Diagrams contributing to µ ! 3e decays.
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Depending on the ALP branching ratios and lifetime, this process can mediate the decays
µ ! 3e, µ ! e�� or µ ! e+ invisible. For ALPs decaying into collimated photons below the
experimental angular resolution, the signature µ ! e�� can be reconstructed as µ ! e�. We
discuss this in detail in Section 5.5.

5.2 µ ! 3e

If the ALP is too heavy to be produced on-shell in lepton decays, it can nevertheless mediate
the lepton-flavour violating decays µ ! 3e, and tau decays ⌧ ! 3e and ⌧ ! 3µ. In this
case both the tree-level exchange of the ALP and the contribution from photon penguins with
subsequent � ! e

+
e
� decays contribute. The corresponding diagrams are shown in Figure 6.

The di↵erential decay width for the three-body decay µ ! 3e is given by

d� =
1

(2⇡)3
1

32m2
µ

|M|
2
ds12ds23 , (38)

where sij = (pi+pj)2 and the two indistinguishable negatively charged electrons carry momenta
p1 and p3, and the momentum of the e

+ is given by p2. The squared matrix element summed
over electron and positron spins and averaged over muon spin states is given by MB:Check
terms with me/�a!!
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❖ Model-independent upper bounds (assuming on-shell ALP):

❖ Weaker bounds apply, if the ALP is too heavy to be on shell

Resulting bounds (95% CL)
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Observable Mass Range [MeV] ALP decay mode Constrained Limit (95% CL) on

coupling c |c| ·
�
TeV

⇤

�
·
p

B

B(µ ! ea(invisible)) 13 < ma < 80 Long-lived
p

|K
eµ
e |2 + |K

eµ
L |2 3.8 ⇥ 10�7
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p

|K
eµ
e |2 + |K

eµ
L |2 1.5 ⇥ 10�6

B(⌧ ! ea(invisible)) 0 < ma < 1600 Long-lived
p

|Ke⌧
e |2 + |Ke⌧

L |2 2.3 ⇥ 10�4
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p

|K
µ⌧
e |2 + |K

µ⌧
L |2 3.2 ⇥ 10�4
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p

|K
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e |2 + |K
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L |2 2.6 ⇥ 10�6
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+
e
�

p
|K

eµ
e |2 + |K

eµ
L |2 3.1 ⇥ 10�7

B(⌧� ! µ
�
e
+
e
�) 200 < ma < 1671 e

+
e
�

p
|K
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e |2 + |K
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L |2 6.1 ⇥ 10�7
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e
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L |2 7.5 ⇥ 10�7
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+
µ
�

p
|K

µ⌧
e |2 + |K
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L |2 6.6 ⇥ 10�7

B(⌧� ! µ
�
⇡
�
K

+) 633 < ma < 1671 ⇡
�
K

+
p

|K
µ⌧
e |2 + |K

µ⌧
L |2 1.1 ⇥ 10�6

Table 2: Summary table of constraints on the lepton flavour violating ALP couplings from lepton
decays, in which the lepton can decay to an on-shell ALP. The measurements and SM predictions
(where appropriate) are given in Table 9. The limit cited is the strongest limit found within the mass
range probed by the measurement.
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=
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, [? ] (48)
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2
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disagree with the SM prediction of lepton-flavour universality with uncertainties at the percent
level [82] with a significance of 2.5�. ALPs mediate the decays B ! K

(⇤)
`
+
`
� with di↵erent

interaction strengths for ` = e and ` = µ. The couplings of ALPs with masses m
2
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+
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e with

cµµ ! cee. An explanation by pseudoscalar couplings to muons is therefore ruled out, because
it contributes with the wrong sign [84]. For an ALP that couples only to electrons the condition
(50) reads

66 .
����
cee(KD +Kd)bs
1 � m2

a/m
2

Bs

���� . 101 , (51)

where we have set ⇤ = 1 TeV. The CDF limit on Br(Bs ! e
+
e
�) < 2.8 ⇥ 10�7 results in the

constraint
����
cee(KD � Kd)bs
1 � m2

a/m
2

Bs

���� . 26 . (52)

24



Interesting benchmark scenarios
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❖ Scenario 1: Bounds on                                               , assuming       
o                                                  and all other couplings vanish at 
tree level
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Figure 7: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5

�aµ =
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e
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⇥
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E )⇤K⌧µ
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⇣
mµ
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(44)

where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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with cµe ⌘

p
2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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❖ Scenario 1: Bounds on                                               , assuming       
o                                                  and all other couplings vanish at 
tree level

10-4 10-3 10-2 10-1 1 10
10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1

10-4 10-3 10-2 10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

10-4 10-3 10-2 10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

10-4 10-3 10-2 10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

�����-���-���-�

���

���

��

�

��-�

��-�

��-�

��-�

µ ! e�

µ
!

e�
�

µ ! e�e�

µ ! eee

µ ! e + inv.

10�1 1 10

µ ! eee

|c
µ

e
|/

⇤
[T

eV
�

1
]

1

10�2

10�4

10�6

10�8

10�10

(g � 2)e

Figure 7: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided

19

10-4 10-3 10-2 10-1 1 10
10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
1

10-4 10-3 10-2 10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

10-4 10-3 10-2 10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

10-4 10-3 10-2 10-1
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

�����-���-���-�

���

���

��

�

��-�

��-�

��-�

��-�

µ ! e�

µ
!

e�
�

µ ! e�e�

µ ! eee

µ ! e + inv.

10�1 1 10

µ ! eee

|c
µ

e
|/

⇤
[T

eV
�

1
]

1

10�2

10�4

10�6

10�8

10�10

(g � 2)e

Figure 7: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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❖ Scenario 1’: Bounds on                                                for different 
values of        o                            (all other couplings vanish)
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2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5

�aµ =
4mµ

e
F2(0) = �

mµm⌧

4⇡2 ⇤2
Re

⇥
(K⌧µ

E )⇤K⌧µ
e

⇤
h(x⌧ ) + O

⇣
mµ

m⌧

⌘
(44)

where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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with cµe ⌘
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2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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Figure 8: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1, 0.1 TeV�1 and 0.01 TeV�1, resepctively. All other Wilson coe�cients are set to
zero at tree level.

in [? ].

For a dominant flavour changing coupling cµe ⌘
p
2|(KE)µe|2 + 2|(Ke)µe|2 and masses

ma > mµ, the lepton flavour-changing transitions µ ! e� and µ ! 3e are induced by the
form factors defined in (??) and the four-fermion operators obtained by integrating out the
ALP. The two constraints shown in light blue and purple in Figure ?? therefore reflect the
expected hierarchy from the additional factor of ↵ and the phase space factor in �(µ ! 3e)
compared to �(µ ! e�) for this mass region [? ? ]. The situation changes for masses
ma < mµ, for which the ALP can be produced on-shell. Constraints from µ ! ea with sub-
sequent decays a ! ��, a ! e

+
e
� and a ! invisible are shown in light green, purple and

dark red in Figure ??, respectively, and provide stronger constraints compared to µ ! e� for
masses of a few MeV< ma < mµ. Here, we define the decay a ! invisible as the ALP leaving
the detector before decaying and details of the calculation can be found in Appendix ??. The
corresponding constraint is derived from the limits obtained by the TWIST collaboration [? ],
and is sensitive to the ALP decay length which is set by the ALP coupling to electrons in this
mass range. For masses 13MeV < ma < 80 MeV, the bound is largely independent from the
angular distribution of the electrons, whereas for masses ma < 80 MeV, the bound depends
on whether the decay is (an)isotropic. In our model the angular distribution depends on the
relative values of (KE)µe and (Ke)µe and we use the most conservative bound from [? ] in
this mass region. Kinematically, ALP decays into electrons and photons could in principle
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Figure 8: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with c⌧µ ⌘

p
2|(KE)⌧µ|2 + 2|(Ke)⌧µ|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

in purple and light red in Figure 8, respectively. For both decays the most stringent constraints
are from Belle [77] and the analysis employs a minimal invariant mass for all final state lepton
pairs of Mee & 0.2 GeV and Mµµ &? GeV. This search therefore does not constrain ALPs with
smaller masses. The di↵erent sensitivity to the coupling strength c⌧µ is a consequence of the
scaling of the ALP branching ratios with the lepton masses. We further show the constraint
from invisible ALP decays obtained by the ARGUS collaboration [78, 79] in light green in Fig-
ure 8. Here, invisible decays are defined again as the ALP leaving the detector before decaying
and details are given in Appendix E. For masses 2mµ < ma < m⌧ , the constraint is weaker,
because the decay width of the ALP is determined by the partial decay width into muons.
Below the muon pair threshold, the constraint is constant in ma. The ALP lifetime changes
significantly for ma < 2me, but the bound on c⌧µ does not change, because almost 100% of the
ALPs produced decay outside the detector for a ! e

+
e
� and a ! ��. For collimated photons

from the decay of a boosted ALP the decay chain ⌧ ! aµ ! µ�� can be constrained by
searches for ⌧ ! µ� if the photon pair cannot be resolved by the detector. The excluded pa-
rameter space is shown in yellow in Figure 8. For smaller ALP masses the constraint is weaker,
because the lifetime of the ALP increases. For masses ma < 2me this e↵ect is even stronger
and overcomes the fact that the branching ratio into photons is Br(a ! ��) = 1 in this mass
region. The ALP-contribution to the anomalous magnetic moment of the muon is dominated
by the diagram with a tau in the loop. In contrast to flavour conserving ALP couplings for
which the ALP couplings are purely axial, this diagram can contribute with the right sign to
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2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =
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For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5

�aµ =
4mµ

e
F2(0) = �

mµm⌧

4⇡2 ⇤2
Re

⇥
(K⌧µ

E )⇤K⌧µ
e

⇤
h(x⌧ ) + O

⇣
mµ

m⌧

⌘
(44)

where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5
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where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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Figure 8: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with c⌧µ ⌘

p
2|(KE)⌧µ|2 + 2|(Ke)⌧µ|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

in purple and light red in Figure 8, respectively. For both decays the most stringent constraints
are from Belle [77] and the analysis employs a minimal invariant mass for all final state lepton
pairs of Mee & 0.2 GeV and Mµµ &? GeV. This search therefore does not constrain ALPs with
smaller masses. The di↵erent sensitivity to the coupling strength c⌧µ is a consequence of the
scaling of the ALP branching ratios with the lepton masses. We further show the constraint
from invisible ALP decays obtained by the ARGUS collaboration [78, 79] in light green in Fig-
ure 8. Here, invisible decays are defined again as the ALP leaving the detector before decaying
and details are given in Appendix E. For masses 2mµ < ma < m⌧ , the constraint is weaker,
because the decay width of the ALP is determined by the partial decay width into muons.
Below the muon pair threshold, the constraint is constant in ma. The ALP lifetime changes
significantly for ma < 2me, but the bound on c⌧µ does not change, because almost 100% of the
ALPs produced decay outside the detector for a ! e

+
e
� and a ! ��. For collimated photons

from the decay of a boosted ALP the decay chain ⌧ ! aµ ! µ�� can be constrained by
searches for ⌧ ! µ� if the photon pair cannot be resolved by the detector. The excluded pa-
rameter space is shown in yellow in Figure 8. For smaller ALP masses the constraint is weaker,
because the lifetime of the ALP increases. For masses ma < 2me this e↵ect is even stronger
and overcomes the fact that the branching ratio into photons is Br(a ! ��) = 1 in this mass
region. The ALP-contribution to the anomalous magnetic moment of the muon is dominated
by the diagram with a tau in the loop. In contrast to flavour conserving ALP couplings for
which the ALP couplings are purely axial, this diagram can contribute with the right sign to
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Figure 5: Diagrams contributing to electromagnetic form factors.

couplings to down-type quarks, because the amplitudes are directly proportional to the Yukawa
coupling of the b quark.

4 Lepton flavour changing ALP couplings

In the SM lepton flavor violating (LFV) couplings are not present, because in the absence
of neutrino masses the SM respects an exact lepton flavor symmetry. E↵ects from MFV-
type ALP couplings in the lepton sector are therefore absent or proportional to neutrino
masses. Even if ALP tree-level couplings are lepton flavor violating, from eq.(8) it follows that
these couplings are suppressed by the lepton masses. Given the large hierarchy in charged
lepton masses, loop-e↵ects can be important. In observables probing lepton flavor-violating
decays like µ

+
! e

+
�, µ+

! e
+
e
�
e
+ or tau decays, the contributions from electromagnetic

form factors often dominate over LFV four fermion interactions. ALPs contribute to the
electromagnetic form factors through the diagrams shown in Figure 5 in the case of leptons. If
the ALP has non-vanishing lepton flavor-violating couplings, these form factors contribute to
µ
+

! e
+
�, as well as to three-body decays like µ+

! e
+
e
�
e
+, together with the tree-level ALP

exchange. We define q = p1 � p2 and p = p1 + p2 and use the gauge-invariant decomposition
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The diagrams on the left and in the center of Figure 5 allow only for a single lepton flavor
change, whereas for the diagram at the right of Figure 5 both ALP-vertices can change the
lepton flavor, such that the heaviest lepton in this loop becomes the largest scale in the
calculation. In Appendix B, we give results for the form factors from these diagrams in terms
of Feynman diagrams, keeping the dominant terms in the expansion in ratios of lepton masses
mj/mi and m`/mj, where ` = ⌧ , j = e and i = µ in Figure 5. In the following we will use
the same symbols for the form factors independent of the external leptons and the correct
meaning should become clear from the context. Here, we give analytical results for the form
factors in the limit q2 = 0 for the µ ! e transition in the case of muon internal lines in the
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Figure 7: Bounds on ALP mediated flavour o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
2|(KE)µe|2 + 2|(Ke)µe|2, assuming universal ALP couplings to leptons cee/⇤ = cµµ/⇤ =

c⌧⌧/⇤ = 1TeV�1 and all other Wilson coe�cients zero at tree level.

For ALPs with lepton flavor violating couplings, the dominant contribution arises from the
tau in the loop and we find from the diagrams shown in Figure 5

�aµ =
4mµ

e
F2(0) = �

mµm⌧

4⇡2 ⇤2
Re

⇥
(K⌧µ

E )⇤K⌧µ
e

⇤
h(x⌧ ) + O

⇣
mµ

m⌧

⌘
(44)

where the function h(x) is given in (35) and analogeous expressions hold for �ae with muons
or tau leptons in the loop. In contrast to the contribution from flavour-diagonal ALP couplings
(44), here both signs are possible because (KE)⌧µ and (Ke)⌧µ are independent couplings.

5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
others. A detailed discussion of lepton flavour violating ALP decays has also been provided
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5.5 Discussion of lepton flavour observables

We present constraints on the ALP-induced transition µ ! e, ⌧ ! µ or ⌧ ! e in Figure 7, 8
and Figure 9, respectively. We assume that all other flavour-changing lepton couplings vanish
in each case and that diagonal couplings to leptons are given by cee/⇤ = cµµ/⇤ = c⌧⌧/⇤ =
1TeV�1. These couplings are relevant to determine the branching ratios and decay lengths of
the ALP. In the absence of additional assumptions, a UV completion in which a horizontal
global symmetry group is broken to produce a pseudo-Nambu Goldstone boson would induce
all possible flavour o↵-diagonal couplings to leptons. The results presented in this section are
nevertheless useful to constrain UV complete models in which one coupling dominates over the
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However, the parameter space for which the ALP contribution is large enough to explain the
tension is excluded by the constraint from searches for ⌧ ! µ� decays. The parameter space
for which the ALP contribution can explain the measured value of (g�2)µ within 2� is shown
in orange in Figure 8.
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ALP couplings to vanish. The constraint from searches for ⌧ ! e� from BaBar [76] excludes
the parameter space shown in light blue in Figure 8. Searches for the three-body decays
⌧ ! eµµ and ⌧ ! 3e from Belle [77] only yield meaningful limits for on-shell ALPs and are
shown in light red and purple in Figure 8, respectively. The lower limit on ma is a consequence
of the experimental cuts to suppress backgrounds. ALPs with macroscopic decay length
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from the SM prediction for the parameter space shown in orange in Figure 8. The limit on
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Figure 5: Diagrams contributing to electromagnetic form factors.

couplings to down-type quarks, because the amplitudes are directly proportional to the Yukawa
coupling of the b quark.

4 Lepton flavour changing ALP couplings

In the SM lepton flavor violating (LFV) couplings are not present, because in the absence
of neutrino masses the SM respects an exact lepton flavor symmetry. E↵ects from MFV-
type ALP couplings in the lepton sector are therefore absent or proportional to neutrino
masses. Even if ALP tree-level couplings are lepton flavor violating, from eq.(8) it follows that
these couplings are suppressed by the lepton masses. Given the large hierarchy in charged
lepton masses, loop-e↵ects can be important. In observables probing lepton flavor-violating
decays like µ

+
! e

+
�, µ+

! e
+
e
�
e
+ or tau decays, the contributions from electromagnetic

form factors often dominate over LFV four fermion interactions. ALPs contribute to the
electromagnetic form factors through the diagrams shown in Figure 5 in the case of leptons. If
the ALP has non-vanishing lepton flavor-violating couplings, these form factors contribute to
µ
+

! e
+
�, as well as to three-body decays like µ+

! e
+
e
�
e
+, together with the tree-level ALP

exchange. We define q = p1 � p2 and p = p1 + p2 and use the gauge-invariant decomposition
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⌘
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(31)

The diagrams on the left and in the center of Figure 5 allow only for a single lepton flavor
change, whereas for the diagram at the right of Figure 5 both ALP-vertices can change the
lepton flavor, such that the heaviest lepton in this loop becomes the largest scale in the
calculation. In Appendix B, we give results for the form factors from these diagrams in terms
of Feynman diagrams, keeping the dominant terms in the expansion in ratios of lepton masses
mj/mi and m`/mj, where ` = ⌧ , j = e and i = µ in Figure 5. In the following we will use
the same symbols for the form factors independent of the external leptons and the correct
meaning should become clear from the context. Here, we give analytical results for the form
factors in the limit q2 = 0 for the µ ! e transition in the case of muon internal lines in the
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Conclusions
❖ ALPs with masses below 10 GeV (and higher) would 

potentially lead to interesting new-physics effects in 
a variety of flavor observables

❖ Allows one to probe flavor-changing ALP couplings 
to quarks and leptons down to few 10-9 Λ/TeV 
(quarks) and few 10-7 Λ/TeV (leptons)

❖ In lepton case, ALP represent a class of models 
where future bounds from Mu3e experiment will 
outperform those of MEG II
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