

Nuclear ground-state properties in the context of V_{ud} and the 4-sigma tension in the CKM unitarity test

Stephan Malbrunot-Ettenauer
CERN Research Physicist

V_{ud} and CKM unitarity

mass eigenstates & weak eigenstates

$$\left(\begin{array}{c} d \\ s \\ b \end{array} \right)_L = \left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array} \right) \cdot \left(\begin{array}{c} d' \\ s' \\ b' \end{array} \right)_L \quad \begin{array}{c} \text{Cabibbo-Kobayashi} \\ \text{-Maskawa matrix} \end{array}$$

β - decay

ightarrow experimental test of unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \Delta_{\text{CKM}}$$
 $\Delta_{\text{CKM}} = 6(5) \cdot 10^{-4}$

PDG 2019

superallowed $0^+ \rightarrow 0^+ \beta$ decays

J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015)

superallowed $0^+ \rightarrow 0^+ \beta$ decays

J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015)

new calculation of Δ_R^V

- ⇒ reducing uncertainty by ~2
- → tension to CKM unitarity

$$\Delta_{\rm CKM} = 16(4) \cdot 10^{-4}$$

C.-Y. Seng et al., PRL 121, 241804 (2018)

 \Rightarrow are theoretical uncertainties (in δ_{NS}) in other corrections underestimated?

C.-Y. Seng et al., arXiv:1812.03352 (accepted PRD)

 \rightarrow (also applies to neutron β decay)

strongly motivates new studies

obtained through atomic physics techniques⇒ superb precision and accuracy

example of ⁷⁴Rb

but not accurate

⇒precision Penning-trap mass measurements

A. Kellerbauer et al., PRL 93, 072502 (2004) PRC 76, 045504 (2007) SME et al., PRL 107, 272501 (2011) PRC 91, 045504 (2015)

all $0^+ \rightarrow 0^+$ cases done in Penning traps

ISB corrections

≈20 % due to charge radius R_c

⇒ accessible through laser spectroscopy

E. Mané et al., PRL 107, 212502 (2011)

not known experimentally for many 0⁺→0⁺ cases!

⁶²Ga

Q-value

Half-life

 $\delta_{\rm c}$ - $\delta_{\rm NS}$

40

20

 δ_{R}'

ij

Parts

Frac. Uncertainty

Branching ratio

Ft-value

J. C. Hardy & I.S. Towner

⁷⁴Rb

$$Ft = ft(1+\delta_R)(1+\delta_{NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)} = \text{const} \qquad \left|V_{ud}\right| = \frac{G}{G}$$

J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015)

- most precisely studied superallowed β emitter
- rivals precision of all other 13 cases combined

$$Ft = ft(1+\delta_R)(1+\delta_{NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)} = \text{const} \qquad \left|V_{ud}\right| = \frac{C}{G}$$

most precisely studied superallowed β emitter

rivals precision of all other 13 cases combined

$$Ft = ft(1+\delta_R)(1+\delta_{NS}-\delta_C) = \frac{K}{2G_V^2(1+\Delta_R^V)} = \text{const} \qquad |V_{ud}| = \frac{G_V}{G_F}$$

- most precisely studied superallowed β emitter
- rivals precision of all other 13 cases combined

ISB corrections δ_c

$$\delta_C = \delta_{C1} + \delta_{C2}$$

configuration mixing within the restricted shell model space

radial overlap correction

26m
$$_{\Delta 1}$$
 $\delta_{C1} = 0.030(10) \%$ $\delta_{C2} = 0.280(15) \%$

I. S. Towner & J. C. Hardy, PRC 66, 035501 (2002). I. S. Towner & J. C. Hardy, PC 77, 025501 (2008).

 δ_{C2} : shell model based on Saxon-Woods radial functions

$$V_C(r) = Ze^2/r, \quad \text{for} \quad r \geqslant R_c,$$

$$= \frac{Ze^2}{2R_c} \left(3 - \frac{r^2}{R_c^2} \right), \quad \text{for} \quad r < R_c,$$

- nuclear charge radius enters here
- often not known experimentally (e.g. ^{26m}Al)
- ⇒extrapolation based on stable isotopes (and inflated uncertainties)

I. S. Towner private communications (2016).

measurement to place $\langle r^2 \rangle$ on solid experimental grounds

Collinear Laser Spectroscopy (CLS)

Relative frequency [MHz]

Measurement at COLLAPS/ISOLDE

isotope shift

$$\delta \nu^{A,A'} = M \frac{A' - A}{A \cdot A'} + F \delta \langle r^2 \rangle^{A,A'}$$

mass and field shift factors from atomic physics calculation

L. Filippin et al., Phys. Rev. A, 94, 062508 (2016)

charge radii

²⁶Al results at COLLAPS

unexpectedly low ratio of isomer to ground state

Preliminary

²⁶Al results at COLLAPS

unexpectedly low ratio of isomer to ground state

Preliminary

Intensity ratio first 6s/second 6s:

Gs: $0.94(1) [T_{1/2} = 7 \times 10^5 y]$

Iso: $0.56(4) [T_{1/2} = 6.34 s]$

Al charge radii

Preliminan

$$\delta \nu^{A,A'} = M \frac{A' - A}{A \cdot A'} + F \delta \langle r^2 \rangle^{A,A'}$$

$$F = [74.0 - 77.5] \text{ MHz/fm}^2$$

 $M = [-239 - -224] \text{ GHz u}$

L. Filippin et al., Phys. Rev. A, 94, 062508 (2016)

Conclusion

- sizeable theoretical uncertainties (due to M)
- $R_{26m} > R_{26gs} > R_{27}$

Al charge radii

Preliminan

$$\delta \nu^{A,A'} = M \frac{A' - A}{A \cdot A'} + F \delta \langle r^2 \rangle^{A,A'}$$

$$F = [74.0 - 77.5] \text{ MHz/fm}^2$$

 $M = [-239 - -224] \text{ GHz u}$

L. Filippin et al., Phys. Rev. A, 94, 062508 (2016)

Conclusion

- sizeable theoretical uncertainties (due to M)
- $R_{26m} > R_{26gs} > R_{27}$

nuclide	<r<sub>c²>[fm²]</r<sub>		reference
²⁷ Al	9.37(02)	r_c compilation	I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004)
^{26m} Al	9.24(12)	extrapolation for V _{ud}	Towner & Hardy PRC 66, 035501 (2002)

implications

single measurement would move <Ft> by $\sim \sigma/2$

⇒would reduce tension in CKM unitarity test

open questions:

reliable value of r_c in ²⁷Al (and uncertainty)?

$$R(A') = \sqrt{R^2(A) + \delta \langle r^2 \rangle^{AA'}}.$$

more precise mass shift factor M (atomic theory)?

• improved experimental data on isotope shift

would also increase uncertainty

^{26m}Al at JYFL

approved proposal ⇒ measurement late 2019 / early 2020

Summary and Outlook

- new calculation of inner radiative Δ_{R}^{V} for V_{ud}
- ⇒tension in CKM unitarity (1st row)

$$\triangle_{\rm CKM} = 16(4) \cdot 10^{-4}$$

- nuclear ground state properties could play a central role,
 - transition energies
 - R_c as input parameter for δ_c
- 26mAl
 - most precisely studied case
 - Δ_{Ft} dominated by δ_{c}

MIRACLS

- R_c experimentally unknown!
- COLLAPS indicates sizeable shift in R_c and hence <Ft> value
- prepare for new measurements
- new CLS methods to test nucl. theory

THANK YOU!

M. L. Bissell, K. Blaum, B. Cheal, R. F. Garcia Ruiz, W. Gins, C. Gorges, H. Heylen, A. Kanellakopoulos, S. Kaufmann, S. Lechner, B. Maaß, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nörtershäuser, L. V. Rodríguez, R. Sánchez, Z. Y. Xu, X. F. Yang, D. T. Yordanov

