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Why worldlines and worldsheets? And what are they?



Quantum field theory on the lattice

• In the lattice formulation we give the Feynman path integral a mathematically precise
meaning by introducing a space time lattice Λ.

〈O〉 =
1

Z

∫
D[φ] e−S[φ] O[φ]

D[φ] =
∏

x∈Λ dφ(x)

S[φ] .... discretized action

• In a Monte Carlo simulation one generates a finite number of field configurations
φ(n), n = 1, 2 ... N with probability

P [φ(n)] =
e−S[φ(n)]

Z

Observables assume the form of mean values

〈O〉 =
1

N

N∑
n=1

O[φ(n)] + O(1/
√
N)



Complex action problem

• In general, lattice field theories with finite chemical potential µ
or a topological term have actions S[φ] with an imaginary part.

• The Boltzmann factor

e−S[φ] ∈ C

thus has a complex phase and cannot be used as a probability weight.

• Standard Monte Carlo simulation techniques are not available
for a non-perturbative analysis.

”Complex action problem” or ”Sign problem”

• Generic feature of finite density field theories both, on the lattice
and in the continuum, for bosonic and fermionic theories.



Solving the complex action problem with worldlines and worldsheets

• For some systems one can use strong coupling expansion techniques to rewrite the
partition function in terms of new variables (”dual variables”) such that it is a sum over
real and positive terms.

• The dual variables are worldlines for matter fields and worldsheets for gauge fields.

• The Monte Carlo simulation then is done in terms of the worldlines and worldsheets.

• New Monte Carlo techniques for systems with constraints.

spaceti
m

e



How does the mapping to worldlines and worldsheets work?

... example of a charged scalar field with chemical potential

C. Gattringer, T. Kloiber, Nucl. Phys. B 869 (2013) 56



Worldline representation for the charged φ4 field

• Lattice action: ( φn ∈ C , M2 = m2 + 8 )

S =
∑
n

[
M2 |φn|2 + λ |φn|4

]
−
∑
n,ν

[
e−µ δν,4 φ?n φn+ν̂ + eµ δν,4 φx φ

?
n+ν̂

]

• Expand the nearest neighbor terms of e−S:∏
n,ν

exp
(
e−µ δν4 φ?n φn+ν̂

)
=
∏
n,ν

∞∑
jn,ν=0

(e−µ δν4)jn,ν

jn,ν !
(φ?n φn+ν̂)

jn,ν

=
∑
{j}

e−µ
∑
n jn,4

∏
n,ν

1

jn,ν !

∏
n

φ
∑
ν jn−ν̂,ν

n φ?n
∑
ν jn,ν

• jn,ν (and jn,ν for other NN-term) turn into the new worldline degrees of freedom.



Worldline representation - integrating out the fields

• Integral over φn ∼ r eiθ: (F , F are sums of j.,ν , j.,ν connected to n)∫
C

d φn
2π

e−M
2|φn|2−λ|φn|4 φ F

n φ? Fn =

=

∫ ∞
0

dr r 1 +F +F e−M
2r2−λr4

∫ π

−π

dθ

2π
e iθ (F−F ) = R(F + F ) δ(F − F )

• At every site n there is a weight factor R(F + F ) and a constraint δ(F − F ).

• Explicitly the product over the constraints at all sites reads (dn,ν = jn,ν − jn,ν):∏
n

δ
(∑

ν

[ dn,ν − dn−ν̂,ν ]
)

⇔
∑
ν

[ dn,ν − dn−ν̂,ν ] = ~∇~dn = 0 ∀n

• Admissible configurations of worldline variables are oriented loops of flux:



Worldline representation - final form

• The original partition function is mapped exactly to a sum over configurations
of the worldline variables jn,ν , jn,ν ∈ N0 with dn,ν = jn,ν − jn,ν .

Z =
∑
{j,j}

W [ j, j ] C[ d ]

• W [ j, j ] : Real and positive weight from radial d.o.f. and combinatorics.

• Constraints from integrating over the symmetry group (dn,ν = jn,ν − jn,ν):

C[ d ] =
∏
n

δ
(
~∇~dn

)

• Particle number N ⇔ temporal winding number ω[d] of dn,ν-flux:

e−µ
∑
n dn,4 = e−µNt ω[d] = e−µβ ω[d] ≡ e−µβ N



New representation is very powerful ....

Example: Finite density condensation and scattering data

F. Bruckmann, C. Gattringer, T. Kloiber, T. Sulejmanpasic, PRL 115, 231601 (2015)
C. Gattringer, M. Giuliani and O. Orasch, PRL 120, 241601 (2018)



Condensation thresholds

Expectation value 〈N〉 of the particle number as a function of the
chemical potential µ at very low temperature (charged scalar field):
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• At critical values µn(L) one observes jumps from 〈N〉 = n−1 to 〈N〉 = n.

• The condensation thresholds µn(L) depend on the spatial extent L.



Connection of condensation thresholds and n-particle energies

• Grand canonical partition sum and grand potential:

Z = Tr e−β(Ĥ −µ N̂) = e−β Ω(µ)

• Low T : In each particle sector Z is governed by the minimal grand potential Ω(µ)

Ω(µ)
T→0−→



ΩN=0
min = 0 , µ ∈ [0, µ1]

ΩN=1
min = m − 1µ , µ ∈ [µ1, µ2]

ΩN=2
min = W2 − 2µ , µ ∈ [µ2, µ3]

ΩN=3
min = W3 − 3µ , µ ∈ [µ3, µ4]

. . .

• m: physical mass, W2: minimal 2-particle energy, W3: minimal 3-particle energy . . .

• Use continuity of Ω(µ) to relate the critical µn to m and the Wn.

m(L) = µ1(L) , W2(L) = µ1(L) + µ2(L) , ... Wn(L) =
n∑
k=1

µk(L)



Connection of condensation thresholds and n-particle energies

• The multi-particle energies are governed by low energy parameters.

• In particular their finite volume dependence can be related to scattering data.

(K. Huang, C.N. Yang, M. Lüscher, S.R. Beane, W. Detmold, M.J. Savage, S.R. Sharpe, M.T. Hansen)

I = −8.914,J = 16.532

m(L) = m∞ +
A

L
3
2

e−L m∞

W2(L) = 2m+
4πa

mL3

[
1− a

L

I
π

+
( a
L

)2 I 2−J
π2

+O
( a
L

)3]
W3(L) = 3m+

12πa

mL3

[
1− a

L

I
π

+
( a
L

)2 I 2+J
π2

+O
( a
L

)3]
m(L) = µ1(L) , W2(L) = µ1(L) + µ2(L) , W3(L) = µ1(L) + µ2(L) + µ3(L)

• We thus expect that one can describe the thresholds µn(L) with scattering data.



Comparison of threshold data with the finite volume relations
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• Good agreement: Condensation can indeed be described with scattering data.

• Key technical ingredient: Worldline representation



Summary

• All lattice field theories can be exactly rewritten in terms of worldlines and worldsheets.

• In several examples it was seen that this overcomes complex action problems.

• Interesting physics can be explored. Examples: finite density, topological terms ...

Developments:

• Fermions: Resummation of contributions in bag determinants.

• To address the re-ordering problem of non-abelian gauge fields we use
abelian color cycles, which are paths through color space along plaquettes.

(poster by Joshua Hoffer)

• The ACC construction can be generalized by including matter fields.

• Weights for all terms of strong coupling expansion known in closed form.



A glimpse at fermions: Baryon bags

C. Gattringer, PRD 97 (2018) 074506



Framework, separation of Baryon terms

Lattice QCD with one flavor of staggered fermions:

Z =

∫
D[U ] eSG[U ] ZF [U ] , ZF [U ] =

∫
D[ψ, ψ] eSF [ψ,ψ,U ]

Action:

SF [ψ, ψ, U ] =
∑
x

[
2mψxψx +

∑
ν

γx,ν

[
ψxUx,νψx+ν̂ − ψx+ν̂U

†
x,νψx

]]

Expansion of nearest neighbor Boltzmann factor:

e γ ψ Uψ = 1 + γ (ψUψ) +
1

2!
(ψUψ)2 +

γ

3!
(ψUψ)3

=

[
1 +

γ

3!
(ψUψ)3

] [
1 + γ (ψUψ) +

1

2!
(ψUψ)2

]
= e

γ
3!

(ψUψ)3
2∑

k=0

(γ ψUψ)k

k!



Baryon action

Cubic term is independent of gauge fields:

(ψUψ)3 = (ψaUabψb)
3 = ψa ψb ψa′ ψb′ ψa′′ ψb′′ Uab Ua′b′ Ua′′b′′

= ψ3 ψ2 ψ1 ψ1 ψ2 ψ3 εa a′a′′ Uab Ua′b′ Ua′′b′′ εb b′b′′

= ψ3 ψ2 ψ1 ψ1 ψ2 ψ3 εa a′a′′ εa a′a′′ detU = 3! ψ3 ψ2 ψ1 ψ1 ψ2 ψ3

Definition of baryon fields:

Bx = ψx,3 ψx,2 ψx,1 , Bx = ψx,1 ψx,2 ψx,3 ( = εabc ψx,a ψx,b ψx,c / 3! )

Boltzmann factor:

eSF [ψ,ψ,U ] = eSB [B,B] × WQD[ψ, ψ, U ]

SB[B,B] =
∑
x

[
2M BxBx +

∑
ν

γx,ν

[
BxBx+ν̂ −Bx+ν̂ Bx

]]



Partition sum with factorized baryon contributions

Partition sum:

Z =

∫
D[ψ, ψ] eSB [B,B]

∫
D[U ] eSG[U ] WQD[ψ, ψ, U ] =

∫
D[ψ, ψ] eSB [B,B] W int

QD [ψ, ψ]

• Strong coupling: quark and diquark term W int
QD can be calculated in closed form.

• Grassmann integral can be saturated either with terms from eSB [B,B] or from W int
QD .

• Decompose space time into baryon bags Bi and a complementary domain B:

Bi : baryon terms are used for saturating the Grassmann integral.

B : quark and diquark terms are used for the Grassmann integral.

• Bx = ψx,3 ψx,2 ψx,1 and Bx = ψx,1 ψx,2 ψx,3 inherit Grassmann properties.

• Contribution from a baryon bag Bi is the bag determinant det D(i).



Final form of partition sum with baryon bags

Bag-factorized partition sum

Z =
∑
{B}

∏
i

det D(i) × ZB

• The partition function is a sum over configurations of baryon bags and the path integral
is decomposed into baryon bag contributions and terms in the complementary domain.

• Inside the baryon bags Bi the system chooses a description with freely propagating
baryons as degrees of freedom.

• The bag determinants det D(i) are real and positive. They sum contributions of many
worldlines inside Bi.

• In the complementary domain B the relevant degrees of freedom are monomers and
dimers for quarks and diquarks. ZB is real and positive.

• The dynamics and scale of the fermion bags depends on the couplings. ⇒ MC update



Towards non-abelian gauge fields

C. Gattringer, C. Marchis, Nucl. Phys. B916 (2017) 627
C. Marchis, C. Gattringer, Phys. Rev. D (2018) 034508



Where is the problem?

• Before integrating the scalar fields with
∫
D[φ] =

∫ ∏
x dφx we had to reorder them:

∏
x,ν

(φ?x φx+ν̂)
jx,ν (φx φ

?
x+ν̂)

jx,ν =
∏
x

φ
∑
ν( jx,ν+jx−ν̂,ν )

x φ?x
∑
ν( jx,ν+jx−ν̂,ν )

(works also for abelian gauge fields)

• When reordering fermionic d.o.f. one picks up minus signs (Grassmann numbers).

• Reordering non-abelian gauge fields?

.... one does not even know how to do it!

• We currently explore decomposing the action into smaller building blocks:

Abelian color cycles (ACC)



Decomposition of the non-abelian action into abelian color cycles:

• Action for SU(2) lattice gauge theory ( Ux,µ ∈ SU(2) ) :

S = −β
2

∑
x,µ<ν

Tr Ux,µ Ux+µ̂,ν U
†
x+ν̂,µ U

†
x,ν = −β

2

∑
x,µ<ν

2∑
a,b,c,d=1

Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

• The products Uabx,µ U
bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν are the abelian color cycles (ACC) (= paths through

color space along plaquettes) we use for expanding the Boltzmann factor. Example:

+ !

U 21
x,µ

x+µ2

1

*U 22U ,
22 *

U 12

x ! ,µ

!,

x,µ N0p
x

2122

• Suitable parameterization:

Ux,µ =

 cos θx,µ e
iαx,µ sin θx,µ e

iβx,µ

− sin θx,µ e
−iβx,µ cos θx,µ e

−iαx,µ

 θx,µ ∈ [0, π/2] , αx,µ, βx,µ ∈ [−π, π]



Expansion in ACCs

• Partition sum:

Z =

∫
D[U ] exp

(
β

2

∑
x,µ<ν

∑
a,b,c,d

Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

)
,

∫
D[U ] =

∏
x,µ

dUx,ν

• Expansion of the Boltzmann factor:

Z =

∫
D[U ]

∏
x,µ<ν

∏
a,b,c,d

e
β
2
Uabx,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

=

∫
D[U ]

∏
x,µ<ν

∏
a,b,c,d

∞∑
p abcdx,µν = 0

(
β
2

) pabcdx,µν

p abcdx,µν !

(
Uab
x,µ U

bc
x+µ̂,ν U

dc ?
x+ν̂,µ U

ad ?
x,ν

)pabcdx,µν

• Reordering the terms:

Z =
∑
{p}

∏
x,µ<ν

∏
a,b,c,d

(
β
2

) pabcdx,µν

p abcdx,µν !

∏
x,µ

∫
dH [θx,µ, αx,µ, βx,µ]

∏
ab

(
Uab
x,µ

)Nab
x,µ[p](

Uab ?
x,µ

)Nab
x,µ[p]

Remaining link integrals can be solved and give constraints and weights
for the configurations {p} of the cycle occupation numbers pabcdx,µν ∈ N0.



Partition function as sum over occupation numbers of ACCs

• Dual partition sum:

Z =
∑
{p}

Wβ[p] (−1)
∑
x,µ J

21
x,µ

∏
x,µ<ν

δ
(
J 11
x,µ − J 22

x,µ

)
δ
(
J 12
x,µ − J 21

x,µ

)
J ab
x,µ = total flux from a to b along the link x, µ

• 16 possible ACCs that can be occupied (i.e., p abcdx,µν > 0 ):

• Constraints at each link:

= =&
! !



ACC representation - summary

• The partition sum is a sum over configurations of cycle occupation numbers p abcdx,µν ∈ N0.

• At every link the fluxes must obey constraints:

= =&
! !

• SU(3) has three color choices with 34 = 81 ACCs and constraints:

=
!

; =
!

=
!

; =
!

• We are working on a resummation strategy to overcome signs.



Summary

• All lattice field theories can be exactly rewritten in terms of worldlines and worldsheets.

• In several examples it was seen that this overcomes complex action problems.

• Interesting physics can be explored. Examples: finite density, topological terms ...

• Fermions are a challenge. Resummation of contributions in bag determinants.

• To address the re-ordering problem of non-abelian gauge fields we use
abelian color cycles, which are paths through color space along plaquettes.

• The ACC construction can be generalized by including matter fields.

• Weights for all terms of the strong coupling expansion are known in closed form.


