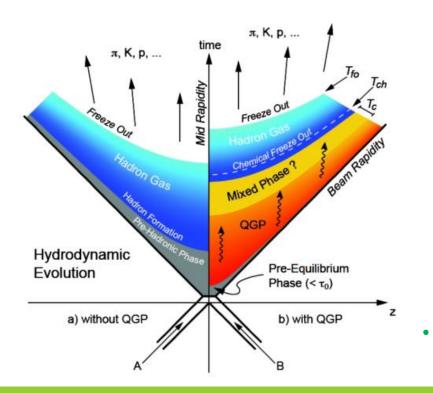
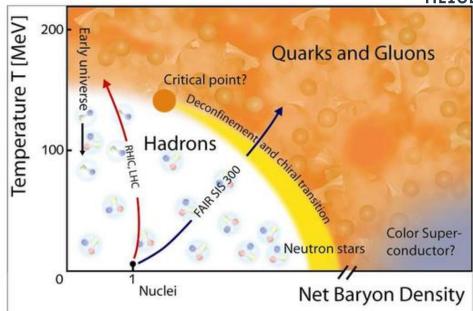
Discoveries and Open Puzzles in Particle Physics and Gravitation 23–28 June 2019 Kitzbühel

Charm baryon production in pp, p-Pb and Pb-Pb collsions with ALICE at the LHC

E. Meninno* on behalf of the ALICE Collaboration

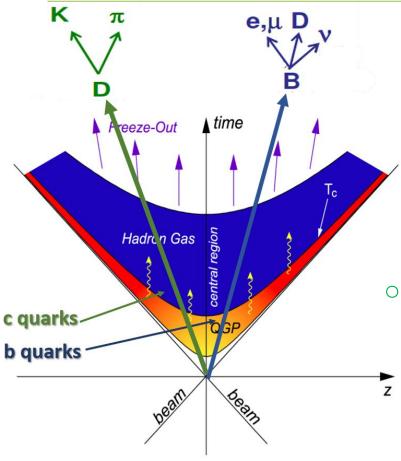



* Stefan Meyer Institut für subatomare Physik

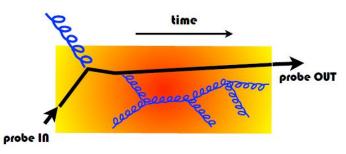
ALICE

QUARK-GLUON PLASMA

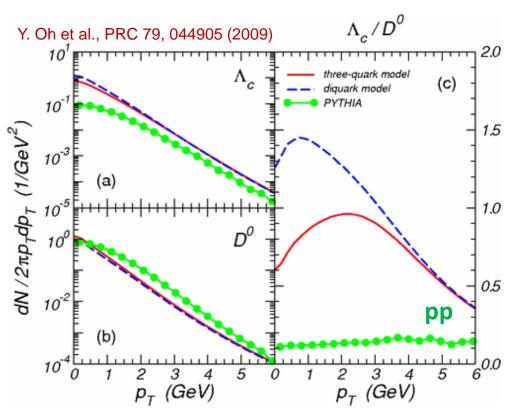
- At very high temperature and/or density, a phase transition from ordinary matter to a colour-deconfined medium is predicted
- New state of matter called *Quark-Gluon Plasma* (QGP)

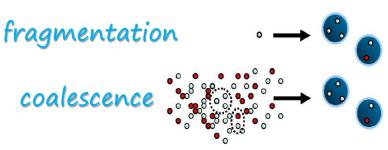


- The QGP can be recreated in laboratory via ultra-relativistic Heavy-Ion (HI) collisions.
 Different phases:
 - o pre-equilibrium
 - o QGP
 - hadronization
 - o freeze out
- Experimental investigation of the QGP with HI collisions celebrated its 30th anniversary <u>last year</u> (SPS, RHIC,LHC)


27/06/2019

HEAVY-FLAVOUR PRODUCTION




- Heavy (charm and beauty) quarks: powerful probes for the Quark Gluon Plasma created in HI collisions
 - Produced in the early stages of the collision, they experience the whole evolution of the medium, interacting with its constituents via elastic scatterings and gluon radiations.
- Expected less energy loss w.r.t. light quarks and gluons in the QCD medium
 →Higher penetrating power

HEAVY BARYON PRODUCTION

Understand hadronisation processes in the QGP: measuring the baryon/meson ratio

- Enhancement of Λ_c^+/D^0 (and $\Lambda_b^+/\overline{B}^0$) ratio predicted in coalescence models.
- Further enhancement expected if thermalised light diquark states exist in the QGP.

ALICE

HEAVY FLAVOUR PRODUCTION

..HF studies important also in small systems!

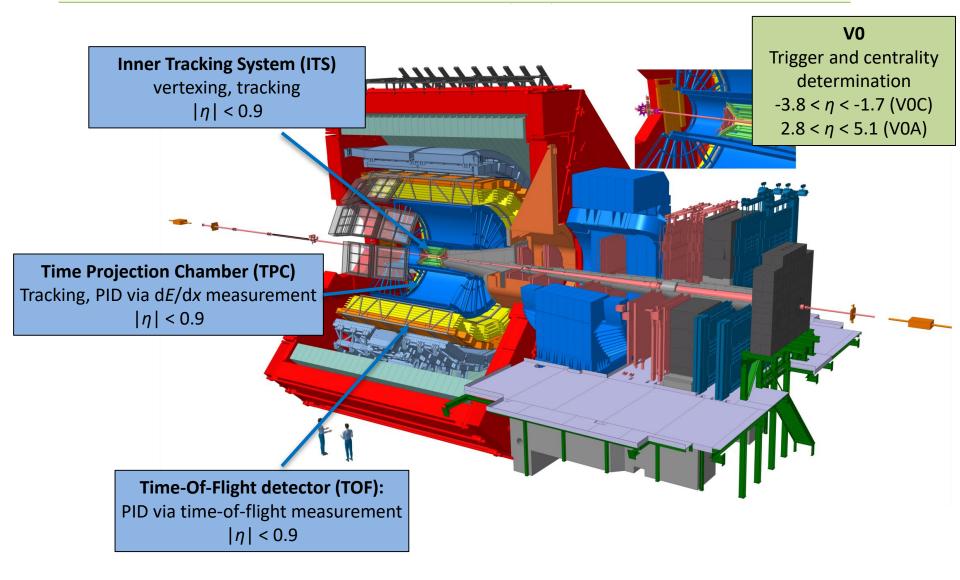
- In pp collisions
- Production cross section computed using perturbative QCD (pQCD) calculations down to low $p_{\rm T}$

$$d\sigma_{AB \to h}^{hard} = f_{b/B}(x_1, Q^2) \otimes f_{a/A}(x_2, Q^2) \otimes d\sigma_{ab \to c}^{hard}(x_1, x_2, Q^2) \otimes D_{c \to h}(z, Q^2)$$

Parton Distribution Functions (not perturbative)

*p*QCD

Fragmentation Function (not perturbative)

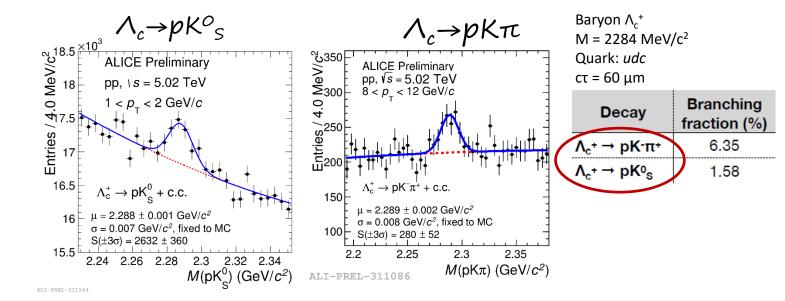

- Test of pQCD calculations at the TeV domain
- Reference for p-Pb and Pb-Pb collisions
- Baryon /meson ratio sensitive to the hadronisation mechanisms.

• In p-Pb collisions

- Reference for Pb-Pb collisions
- Study cold nuclear matter (CNM) effects in the initial and final states.
- Address possible collective effects resembling what observed in heavy-ion collisions
- Small QGP formed also in p-Pb collisions?

The ALICE apparatus

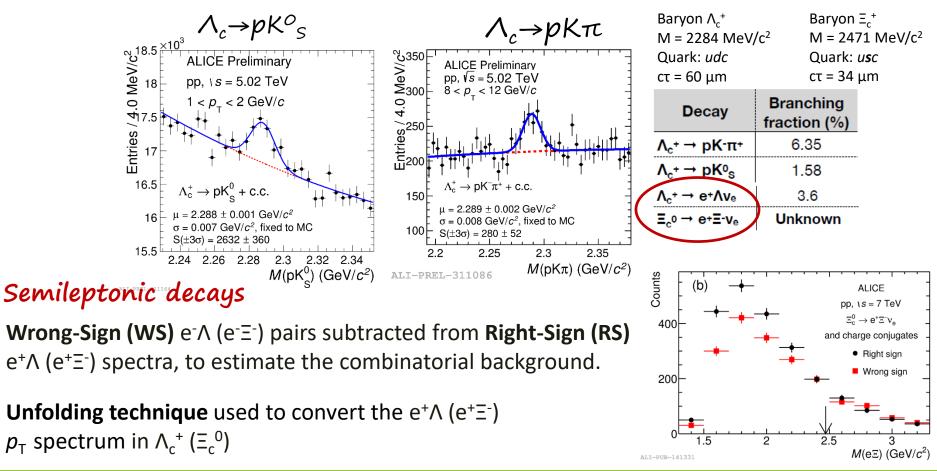
The ALICE apparatus



Charmed-hadron reconstruction

Hadronic decays

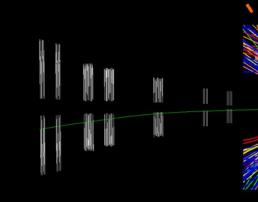
- **Reconstruction of secondary** vertex, displaced from primary vertex.
- Candidates selected applying topological selection and PID (using TPC and TOF)
- Signal extraction from invariant mass distribution, in each individual p_{T} interval.



Charmed-hadron reconstruction

Hadronic decays

- **Reconstruction of secondary** vertex, displaced from primary vertex.
- Candidates selected applying topological selection and PID (using TPC and TOF)
- **Signal extraction** from invariant mass distribution, in each individual p_{T} interval.

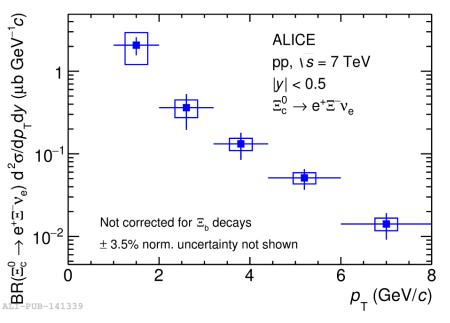

0

Ο

Results in pp and p-Pb collisions

JX V

NA MA

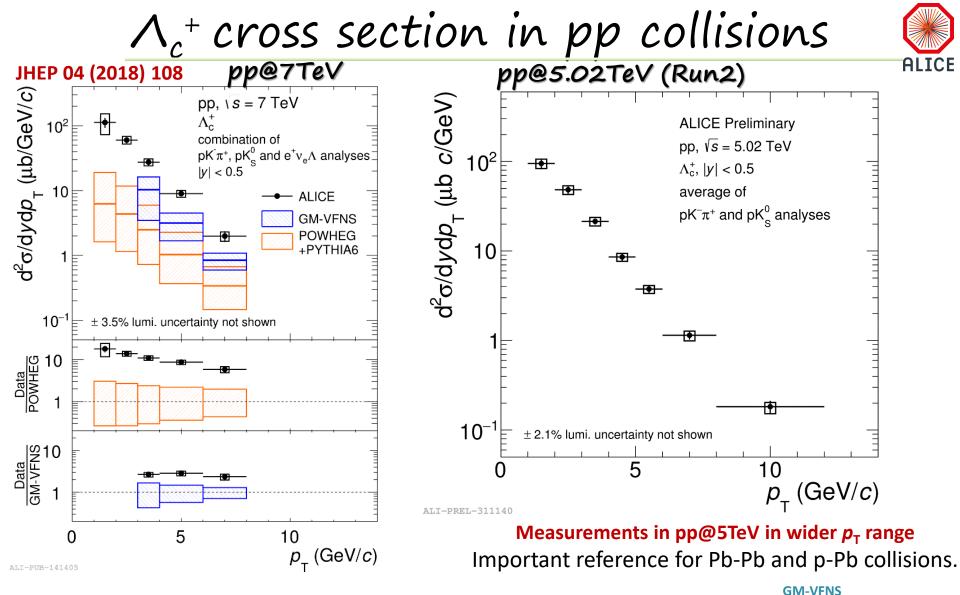


27/06/2019

Results from Run1 for Ξ_{c}^{o}

First measurement of Ξ_c^0 production in pp collisions at \sqrt{s} = 7 TeV

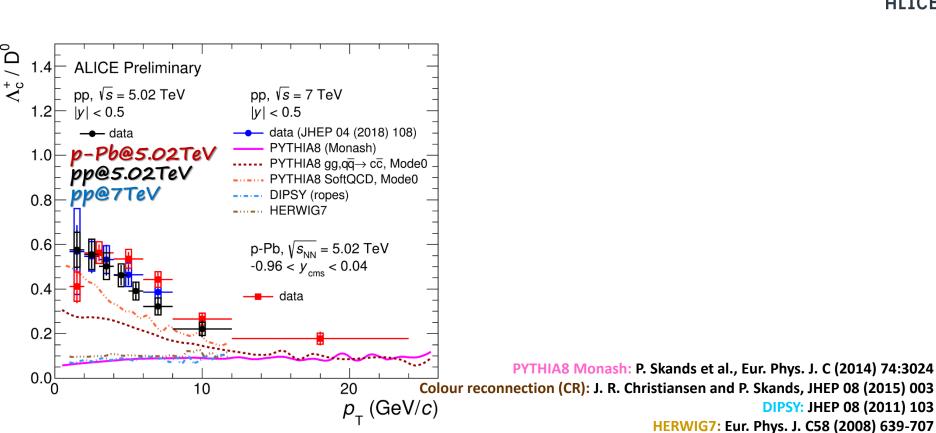
○ Ξ_c^0 cross section x B.R.($\Xi_c^0 \rightarrow e^+\Xi^-\nu_e$) in 1 < p_T < 8 GeV/c


B.R. $(\Xi_0^c \rightarrow e^+ \Xi^- v_e)$ not known, high uncertainty bands in the theoretical predictions.

PYTHIA8 Monash: P. Skands et al., Eur. Phys. J. C (2014) 74:3024 Colour reconnection (CR): J. R. Christiansen and P. Skands, JHEP 08 (2015) 003

- Baryon/meson $\Xi_c^0 \rightarrow e^+ \Xi^- v_e / D^0$ ratio higher than theoretical predictions.
- **PYTHIA8** with enhanced colour reconnection mechanisms closer to data.

27/06/2019



• $\Lambda_c^+ p_T^-$ -differential cross section **underestimated** by theoretical models in pp (and p-Pb, see backup) collisions

Eur. Phys. J. C41, 199 (2005) POWHEG JHEP0709, 126 (2007)

27/06/2019

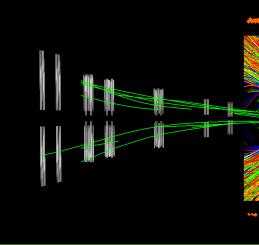
Results for Λ_c^+/D^o

ALI-DER-314626

- All the models underestimate data.
 - PYTHIA8 with enhanced colour reconnection mode closer to data.
- p-Pb results agree with pp ones within uncertainties.

Total charm cross section

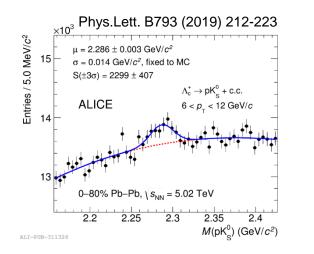
Eur. Phys. J. C77 (2017) 550


	Extr. factor to $p_{\rm T} > 0$	$d\sigma/dy _{ y <0.5}$ (µb)
\mathbf{D}^0	$1.0002\substack{+0.0004\\-0.0002}$	$500\pm36(stat)\pm39(syst)\pm18(lumi)\pm5(BR)$
D^+	$1.25\substack{+0.29\\-0.09}$	$227 \pm 18(\text{stat}) \pm 25(\text{syst}) \pm 8(\text{lumi}) \pm 6(\text{BR})^{+52}_{-16}(\text{extrap})$
D*+	$1.21\substack{+0.28\\-0.08}$	$251 \pm 29(stat) \pm 24(syst) \pm 9(lumi) \pm 3(BR)^{+58}_{-16}(extrap)$
D^+_s	$2.23^{+0.71}_{-0.65}$	$89 \pm 18(\text{stat}) \pm 11(\text{syst}) \pm 3(\text{lumi}) \pm 3(\text{BR})^{+28}_{-26}(\text{extrap})$

$$\left. d\sigma_{pp,7\,TeV}^{c\overline{c}}/dy \right|_{|y|<0.5} = 954 \pm 69\,(\text{stat}) \pm 97\,(\text{tot. syst.})\,\mu\text{b}$$

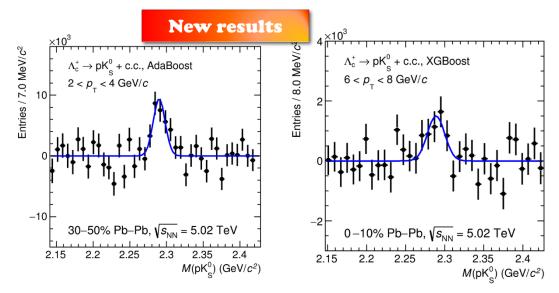
• Λ_c cross section measurement will allow to estimate the total charm production cross section at mid-rapidity in pp collisions @ 5TeV

∧_c cross section extrapolation down to *p*_T = 0 in progress

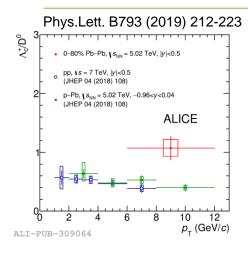

Results in Plo-Plo collisions

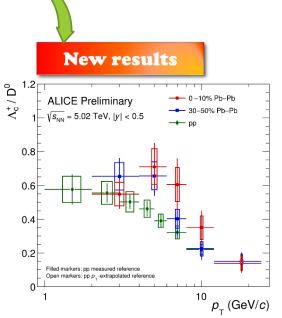
27/06/2019

 Λ_c production in Pb-Pb collisions at the LHC

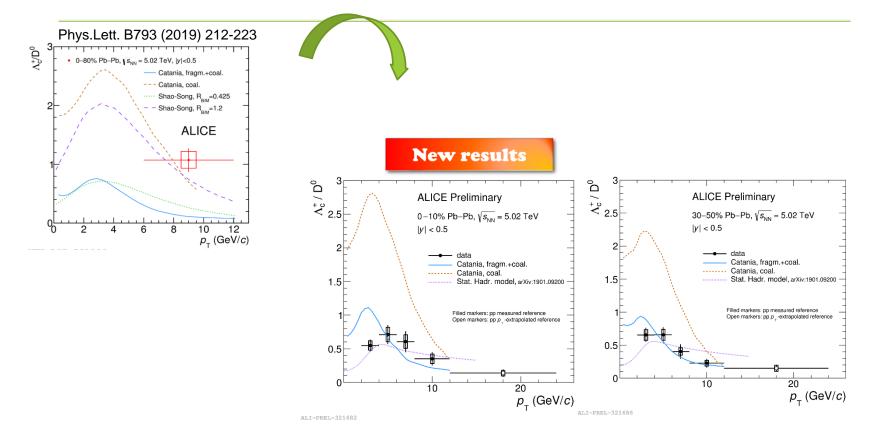

• First analysis of $\Lambda_c^+ \rightarrow pK_s^0$ with topological cut selection in 0-80 % centrality and for $6 < p_T < 12 \text{ GeV}/c$.

• Analysis of the latest Run 2 Pb-Pb 2018 data


 Machine Learning algorithms used to reduce the background


Topological, kinematical and PID variables used as training for ML

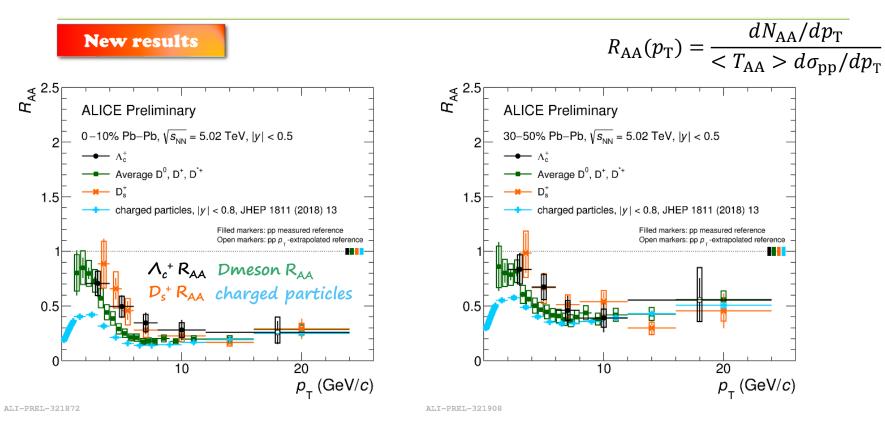
Baryon to meson ratio: Λ_c^+ / D^o



ALI-PREL-323761

 Hint of higher Λ_c⁺/D⁰ than in pp (and p-Pb) collisions.
 Λ_c⁺/D⁰ ratio in central collisions higher than in peripheral collisions

Baryon to meson ratio: Λ_c^+ / D^o



• Λ_c^+/D^0 results compatible with model calculations including both coalescence and fragmentation.

Catania: Eur.Phys.J.C (2018) 78:348 Shao-Song: Phys. Rev. C 97, 064915

27/06/2019

- Hint for a nuclear modification factor smaller for central collisions.
- Suggested hierarchy $\Lambda_c^+ R_{AA} >$ (non strange) *D*-meson $R_{AA} >$ charged particles R_{AA}
- Comparison with D_s⁺ not straightforward, due to still high uncertanties

Conclusions

Measurements of charmed baryons with ALICE in pp and p-Pb collisions

- First measurement of Ξ_c^0 production in pp collisions @7 TeV
- Recent Λ_c⁺ measurements in pp@5 TeV (Run2) more p_T –differential and covering a wider p_T range. Important reference for Pb-Pb
- Charm bearyon production higher than theoretical predictions, tuned on e⁺e⁻ measurements.

Paper writing in progress

Conclusions

Measurements of charmed baryons with ALICE in pp and p-Pb collisions

- First measurement of Ξ_c^0 production in pp collisions @7 TeV
- Recent Λ_c⁺ measurements in pp@5 TeV (Run2) more p_T –differential and covering a wider p_T range. Important reference for Pb-Pb
- Charm bearyon production higher than theoretical predictions, tuned on e⁺e⁻ measurements.
 Paper writing in progress

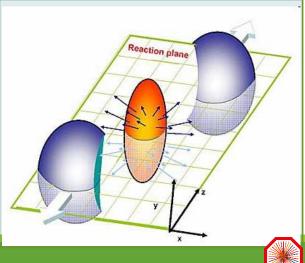
Λ_c in Pb-Pb collisions

- \circ Λ_c^+/D^0 : Hint of enhancement with respect to pp and p-Pb collisions.
- $\circ~\Lambda_c^{+}/D^0$ in Pb-Pb compatible by models including hadronisation via coalescence and fragmentation
- $\Lambda_c^+ R_{AA}$ measured in 2 ≤ p_T ≤ 24 GeV/*c* in 0-10% and 30-50% centrality intervals.
 - Further constraint on charmed baryon production mechanisms with higher precision: waiting for ALICE upgrade in RUN 3 + 4

27/06/2019

27/06/2019

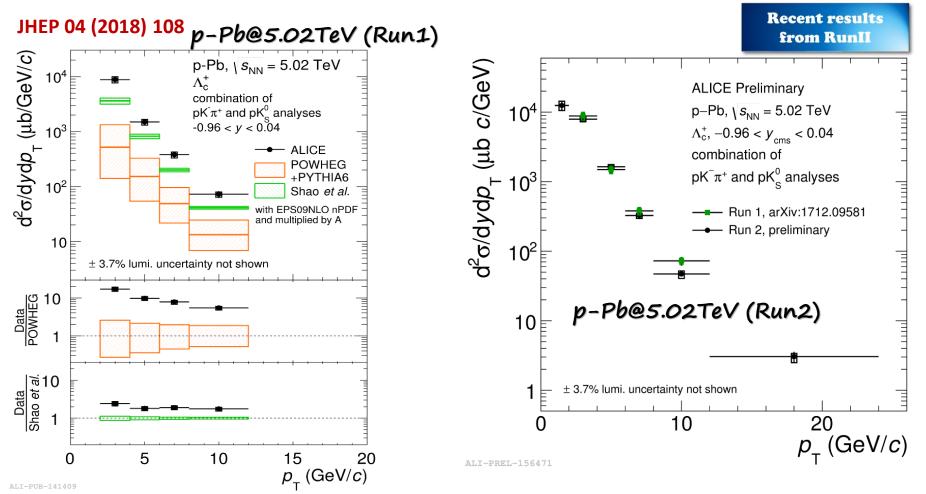
Open HF in A-A collisions: Observables * Parton energy loss


- ΔE depends on the parton color charge and mass, in-medium energy density, path length
- Investigated through the Nuclear Modificaton Factor

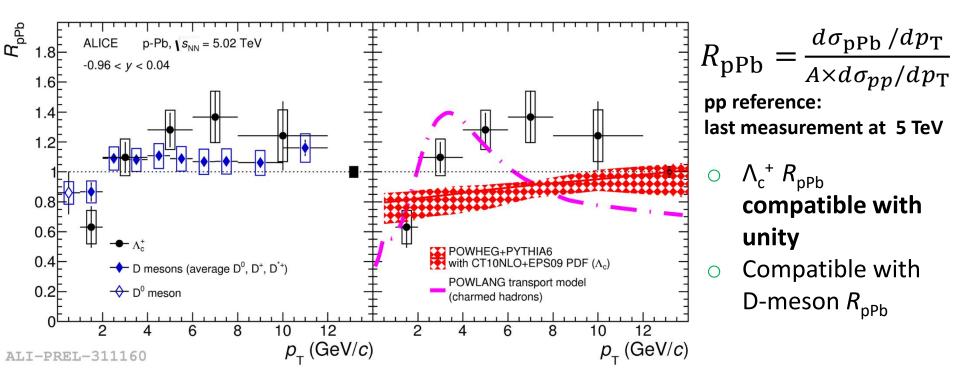
- Initial spatial anisotropy \rightarrow azimuthally anisotropic momentum distribution
- non-central collisions

 \rightarrow anisotropy dominated by elliptic flow v_2

- **low** p_{T} : v_{2} sensitive to collective expansion
- **high** p_{T} : v_{2} sensitive to path-length dependence of in-medium parton energy loss


$$\frac{2\pi}{N}\frac{dN}{d\varphi} = [1 + 2\nu_1\cos(\varphi - \Psi_{RP}) + 2\nu_2\cos[2(\varphi - \Psi_{RP})] + \cdots]$$

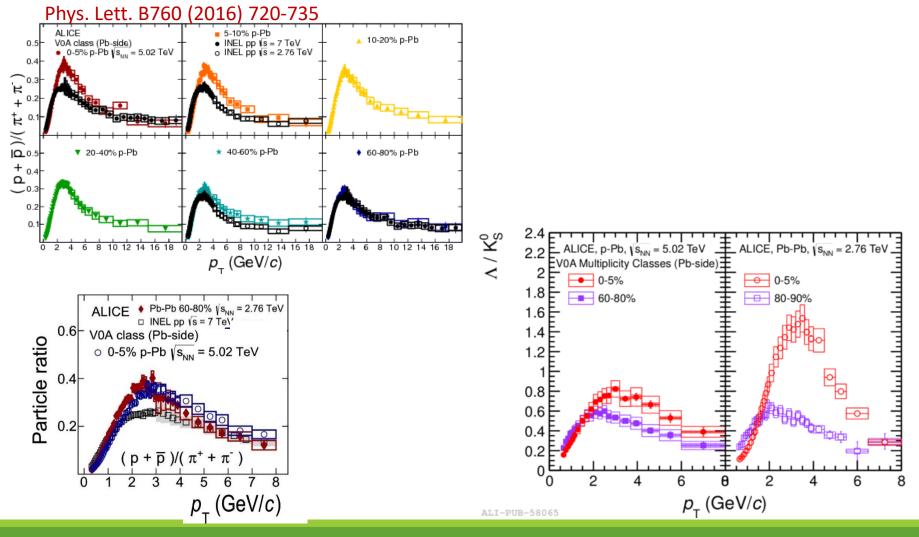
^{*} Azimuthal anisotropy


- $\Lambda_c^+ p_T^-$ -differential cross section **underestimated** by theoretical models in p-Pb (and pp) collisions
- Improved precision and extended p_{T} range with Run II data.

POWHEG JHEP0709, 126 (2007) Lansberg and Shao Eur. Phys. J. C77, no. 1, 1 (2017)

27/06/2019

Λ_{c}^{+} nuclear modification factor R_{pPb}


 Compatible with -POWHEG+PYTHIA6 with CT10NLO+EPS09 PDF - only CNM effects models within included uncertainties: -POWLANG – small QGP formation included

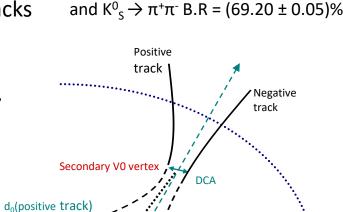
> POWHEG +PYTHIA parton shower: JHEP 0709:126,2007 POWLANG: JHEP03(2016)123

27/06/2019

Physics motivations

- ALICE and CMS observed enhancement of baryon/meson ratio at intermediate p_{T} in High Multiplicity (HM) pp and p-Pb collisions.
 - Similar to what was observed in HI collisions

27/06/2019


Physics motivations

- Measurement in pp collisions:
 - Important to test predictions from pQCD and the models of hadronisation in vacuum.
- Measurement in p-Pb collisions:
 - Important to distinguish cold-nuclear-matter (CNM) effects, that can affect the charm hadron production.
- Baryon/meson ratio particularly sensitive to the fragmentation process.
 - Differences observed in pp collisions (CDF+LHCb) with respect to e⁺e⁻ collisions (LEP) in the beauty sector
 <u>http://pdg.lbl.gov/2017/reviews/rpp2017-rev-b-meson-prod-decay.pdf</u>

→ hint of non-universal fragmentation fractions for baryons in the beauty sector

 $\Lambda_c \rightarrow p K^{o_s}$ analysis strategy

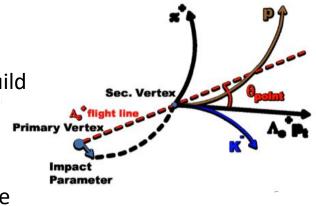
- K⁰_S candidate reconstructed from pairs of opposite-sign tracks forming a vertex displaced from the interaction vertex, according to track selection and topological cuts:
 - Distance of closest approach (DCA), Cosine of pointing angle, $p_{T}(K_{S}^{0} daughters), d_{0}(K_{S}^{0} daughters), m_{inv(\pi^{+}\pi^{-})}$
- Proton candidates are selected, according to track quality selection and PID (the main selection, dusing TPC and TOF)
- Built Λ_c candidate, combining K^0_s and proton candidates
- Further selection to improve signal extraction, via two methods:
 - Topological cuts on several variables (standard analysis STD)
 - Cut on multivariate discriminator (TMVA)
- Feed-down correction
- Efficiency and acceptance corrections
- Cross section estimate

iting angle

(negative track)

Primary verte

 $\Lambda_c \rightarrow pK^0_s B.R = (1.58 \pm 0.08)\%$


27/06/2019

 $\Lambda_c \rightarrow p K \pi$ analysis strategy

 $Λ_c$ →pKπ B.R = (6.35 ± 0.33)%

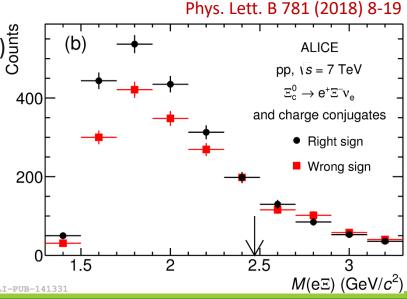
\circ pK π candidate building

Pairs of opposite charge tracks selected. Third track added to build a triplet and secondary vertex of the triplet estimated. **Cuts applied**: high-quality single track cuts, cuts on p_T daughters, quality of reconstructed vertex, DCA, cosine of Λ_c pointing angle (angle between the Λ_c flight line and the momentum of the reconstructed Λ_c candidate), Bayesian PID.

- Further selection to improve signal extraction, via two methods:
 - Topological cuts on several variables (standard analysis STD)
 - Cut on multivariate discriminator (TMVA)
- Feed-down correction
- Efficiency and acceptance corrections
- Cross section estimate

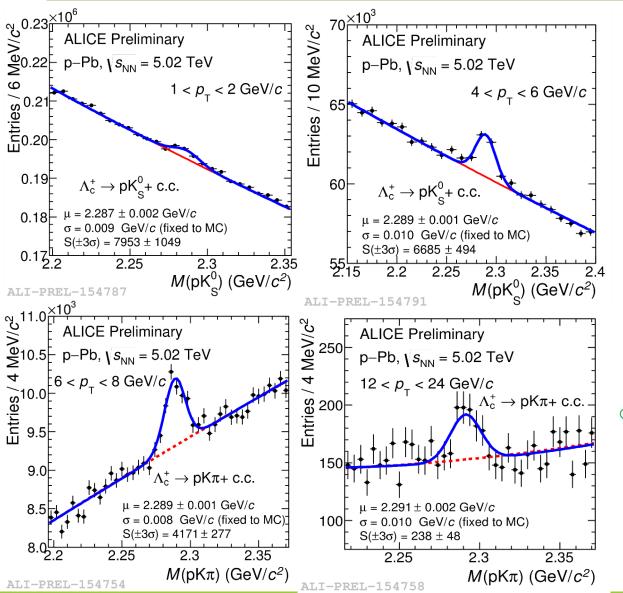
27/06/2019

Charmed-hadron reconstruction Semileptonic decays


Wrong-Sign (WS) $e^{-}\Lambda$ ($e^{-}\Xi^{-}$) pairs subracted from **Right-Sign (RS)** Baryon Λ

E. MENINNO

- Wrong-Sign (WS) e⁻Λ (e⁻Ξ⁻) pairs subracted from Right-Sign (RS e⁺Λ (e⁺Ξ⁻) spectra, to estimate the combinatorial background.
- PID for electrons using TOF and TPC.
- Subtracted contributions from:
 - \circ $\Lambda_b^0(\Xi_b^0)$ in WS spectra
 - \circ Ξ_c^+ in RS spectra, for Λ_c^+ analysis.
- **Unfolding technique** used to convert the $e^+\Lambda$ ($e^+\Xi^-$) p_T spectrum in Λ_c^+ (Ξ_c^0)
- Subtraction of contribution from beauty hadrons (only for Λ_c⁺)
- \circ $\,$ Corrections for acceptance and efficiency


Baryon Λ_c^+ Baryon Ξ_c^+ M = 2284 MeV/c²M = 2471 MeV/c²Quark: udcQuark: uscct = 60 μ mct = 34 μ m

Decay	Branching fraction (%)		
$\Lambda_{c^{+}} \rightarrow e^{+} \Lambda v_{e}$	3.6		
$\Xi_{c^{0}} \rightarrow e^{+}\Xi^{-}v_{e}$	Unknown		

27/06/2019

 $\Lambda_c^+ \rightarrow p K^{\circ}_{S}$ and $\Lambda_c^+ \rightarrow p K^+ \pi^-$ signal extraction in p-Pb **Recent results**

Signal extracted via an 0 invariant-mass analysis.

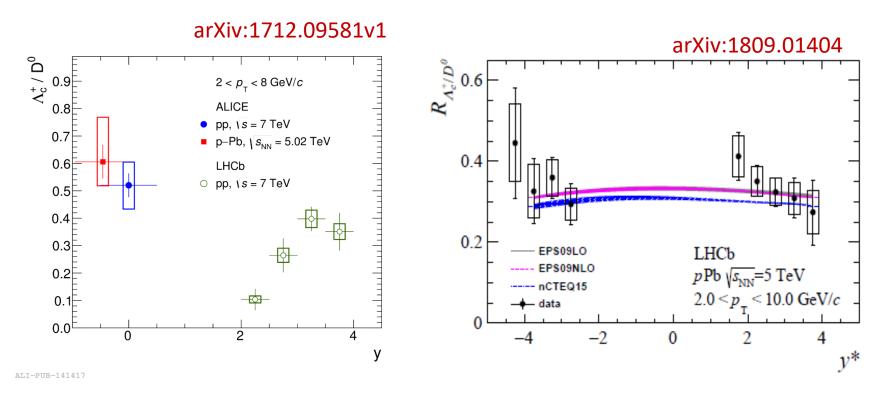
from RunI

Decay topology selection and 0 Multivariate approach (Boosted Decision Tree) used.

Signal extracted in 1-24 GeV/cWider and finer binning with Ο respect to Run I.

https://arxiv.org/abs/1712.09581

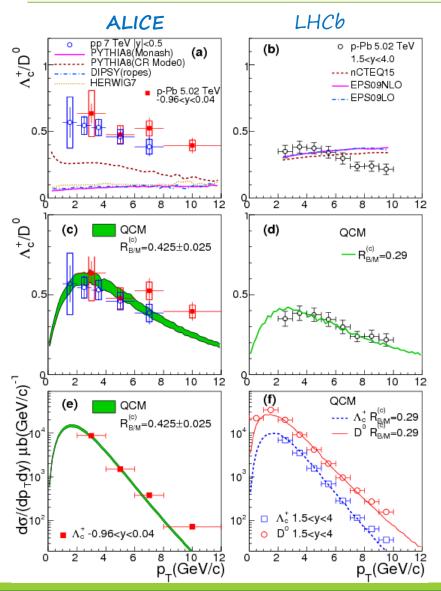
27/06/2019


Results from Run 1

- $(\Lambda_{c}^{+}/D^{0})_{pp} = 0.543 \pm 0.061 \text{ (stat)} \pm 0.160 \text{ (syst)}.$
- \circ (Λ_{c}^{+}/D^{0})_{p-Pb} = 0.603 ± 0.060 $^{+0.159}_{-0.087}$ (syst)

 Λ_c^+ / D^o ratio higher than previous measurements in e⁺e⁻ and ep, and at lower centre-of-mass energies:

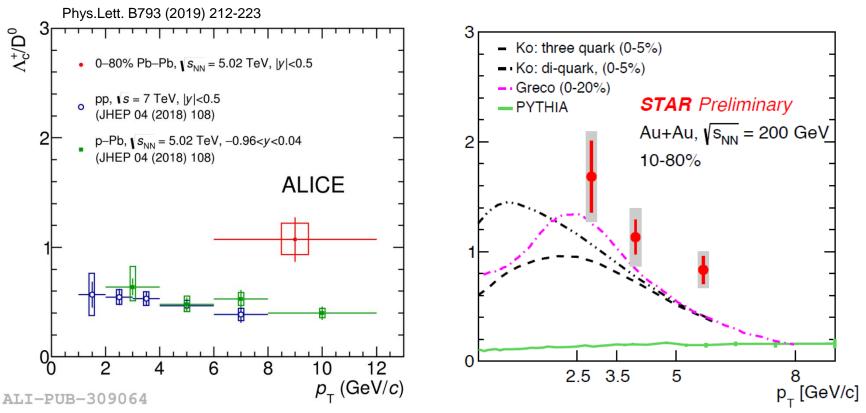
	$\Lambda_c^+/D^0 \pm stat. \pm syst.$	System	\sqrt{s} (GeV)	Notes
CLEO	$0.119 \pm 0.021 \pm 0.019$	ee	10.55	
ARGUS	0.127 ± 0.031	ee	10.55	
LEP average	$0.113 \pm 0.013 \pm 0.006$	ee	91.2	
ZEUS DIS	$0.124 \pm 0.034 \substack{+0.025 \\ -0.022}$	ep	320	$1 < Q^2 < 1000 \text{ GeV}^2,$ $0 < p_{\rm T} < 10 \text{ GeV}/c, 0.02 < y < 0.7$
ZEUS γp, HERA I	$0.220 \pm 0.035 ^{+0.027}_{-0.037}$	ep	320	$130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2,$ $p_{\mathrm{T}} > 3.8 \text{ GeV}/c, \eta < 1.6$
ZEUS γp HERA II	$0.107 \pm 0.018 ^{+0.009}_{-0.014}$	ер	320	$130 < W < 300 \text{ GeV}, Q^2 < 1 \text{ GeV}^2,$ $p_{\text{T}} > 3.8 \text{ GeV}/c, \eta < 1.6$


 Λ_{c}^{+} / D° ratio vs LHCb

- \cap Λ_c^+/D^0 in p-Pb collisions recently measured by the LHCb experiment shows a flatter trend with rapidity, differently from pp results.
- Tendency for higher values at midrapidity (ALICE) than forward and backward rapidity (LHCb).

27/06/2019

Theorists at work after our paper



Hai-hong Li et al., arXiv:1712.08921

- Predictions using hadronization via recombination model reproduce ALICE results at central rapidity and the LHCb ones at forward rapidity in p-Pb collisions. <u>LHCb-CONF-2017-005</u>
- R^(c)_{B/M} relative production of single-charm baryons to single-charm mesons, treated as parameter of the model.
- Initial p_{T} distributions of light and charm quarks are input of the models.

27/06/2019

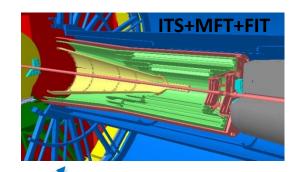
First measurement of Λ_c production in Pb-Pb \bigoplus_{RLICE}

- $\circ \Lambda_{c}^{+}/D^{0}$ higher (2 σ) than that in pp and p-Pb collisions.
- Λ_c^+/D^0 results described by model calculations including only coalescence. Catania: Eur.Phys.J.C (2018) 78:348
- Λ_c^+/D^0 in $6 < p_T < 12$ GeV/c similar to STAR values in 3-6 GeV/c.

ALICE upgrade

111111111

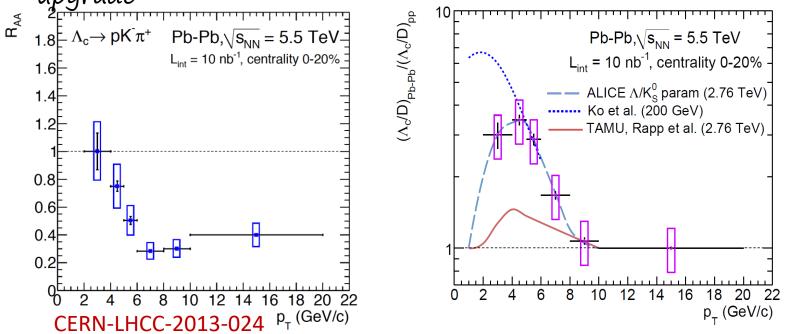
Data taking will start in 2021


- Significant upgrade forseen, aiming at:
 - Improve impact parameter resolution by a factor 3
 - Improve vertexing and tracking at low p_{T}
 - 50 kHz interaction rate in Pb-Pb (now < 10 kHz)

How?

- New smaller radius beam pipe
- New inner tracking system:
 - high resolution, low material budget
- Upgrade of the readout systems of most subdetectors to copy with the high rate
- New Muon Forward Tracker (MFT)

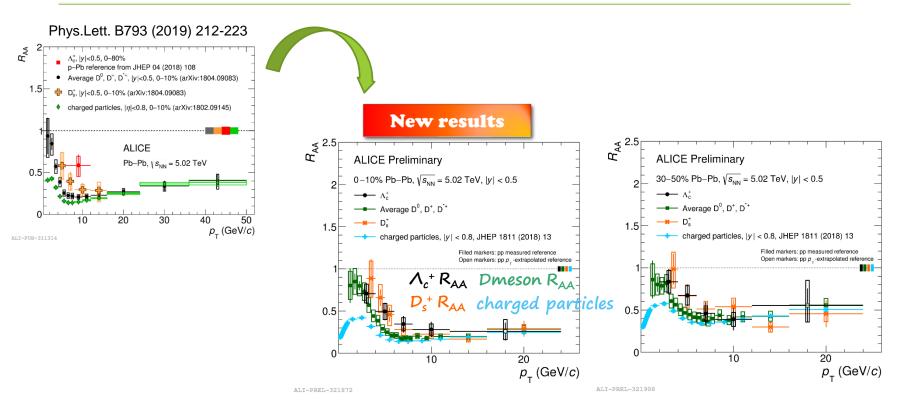
Main physics goal of the ALICE upgrade:


Charm and beauty-hadron measurements down to very low p_{T}

27/06/2019

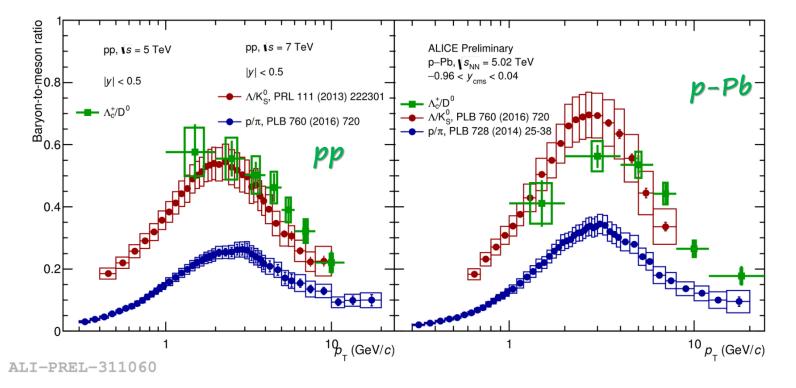
ALICE upgrade

 Λ_c⁺ measurement in Pb-Pb collisions: one of the main goal of the ALICE
 upgrade



- Λ_c^+/D^0 baryon/meson ratio and Λ_c^+ baryon R_{AA} will be measured in charm sector with the upgraded ITS.
- Improvement in spatial resolution allows for a cleaner vertex identification.

$\Lambda_{c}^{+}R_{AA}$


- Hint for a nuclear modification factor smaller for central collisions.
- Suggested hierarchy $\Lambda_c^+ R_{AA} >$ (non strange) *D*-meson $R_{AA} >$ charged particles R_{AA}
- Comparison with D_s⁺ not straightforward, due to still high uncertanties

27/06/2019

Results for Λ_c^+/D^o

 Λ_{c}^{+}/D^{o} vs Λ/K^{o}_{s} vs p/π

- Decreasing trend from $p_T = 4 \text{ GeV}/c$ observed in pp and p-Pb collisions.
- Similar trend to baryon-to-meson ratio in the light-flavour sector.
 - baryon-to-meson ratio independent of quark content?

Total cross section

arxiv: 1901.07979, D meson production at 5 TeV

	Extr. factor to $p_{\rm T} > 0$	$d\sigma/dy _{ y <0.5}$ (µb)
D^0	$1.0000\substack{+0.0003\\-0.0000}$	$447 \pm 20(\text{stat}) \pm 30(\text{syst}) \pm 9(\text{lumi}) \pm 5(\text{BR})$
D ⁺	$1.28\substack{+0.35\\-0.09}$	$184 \pm 13(\text{stat}) \pm 13(\text{syst}) \pm 4(\text{lumi}) \pm 6(\text{BR})^{+50}_{-13}(\text{extrap})$
D*+	$1.24\substack{+0.34\\-0.08}$	$178 \pm 15(\text{stat}) \pm 14(\text{syst}) \pm 4(\text{lumi}) \pm 2(\text{BR})^{+48}_{-12}(\text{extrap})$
D_s^+	$2.35_{-0.66}^{+0.78}$	$95 \pm 9(\text{stat}) \pm 10(\text{syst}) \pm 2(\text{lumi}) \pm 3(\text{BR})^{+31}_{-26}(\text{extrap})$

 $\Lambda_{c}^{+} = 245 \pm 14 \text{ (stat.)} \pm 9 \text{ (syst.)} \begin{array}{c} +33 \\ -12 \end{array} \text{ (extrap)}$

= 245 \pm 14 (stat.) \pm 9 (syst.) $^{+60}_{-30}$ (extrap)

Considering the Λ_c extrapolated cross section,

 $f(c \ge D^0) = 0.389 + 0.033 (stat.) + 0.085 - 0.070 (syst.)$

 $f(c \ge D^0) = 0.389 + 0.030 (stat.) + 0.094 - 0.059 (syst.)$

~ 20% lower than the value used in the previous total $c\bar{c}$ cross section (0.542 ± 0.024)

 $c\bar{c}$ cross section per unit of rapidity at mid-rapidity calculated in <u>arXiv:1702.00766</u> by dividing the prompt D⁰-meson cross section by the f(c->D⁰)

 $d\sigma_{pp,7\,TeV}^{c\bar{c}}/dy\Big|_{|y|<0.5} = 954 \pm 69\,(\text{stat}) \pm 74\,(\text{syst}) \pm 33\,(\text{lumi}) \pm 42\,(\text{FF}) \pm 31\,(\text{rap.shape})\,\,\mu\text{b}\,.$

@5TeV:

Total cross section ~ 1149 + -33 (stat.) + -94(syst.) + 162 - 116 (extrap.) $\sim 1149 + -33$ (stat.) + -94(syst.) + 135 - 81 (extrap.)

summing the hadron cross sections with the uncertaities

21/02/2019