

Neutron Decay – Standard Model and Beyond

Humboldt Kolleg **Discoveries and Open Puzzles in Particle Physics and Gravitation** Kitzbühel, Austria (June 23 – 28 2019)

Kazimierz Bodek

Marian Smoluchowski Institute of Physics, Jagiellonian University in Kraków

Outline

- U Why study the neutron?
- \Box Neutron β -decay in SM
- Disputes about neutron lifetime
- \Box Search for BSM physics with neutron β -decay
- Neutron β-decay correlations in low magnetic field with electron tracking

□ Summary

Why study the free neutron?

□ Main goal of Particle Physics: Establish consistent picture of Nature's fundamental interactions **"ENERGY frontier"**

High Energy PP:

• Operates at TeV scale (10¹² eV)

 \Rightarrow study of 2nd (s, c, μ , ν_{μ}) and 3rd (b, t, τ , ν_{τ}) particle families

Low Energy PP (e.g. with neutrons):

- Operates at neV scale (10⁻⁹ eV) \Rightarrow study of 1st (u, d, e, v_e) particle family
- Reveals respectable sensitivity:
 - $\Delta E/E \sim 10^{-11} \div 10^{-13} (\Delta E \sim 10^{-23} \text{ eV})$ – Energy:
 - Momentum: $\Delta p/p \sim 10^{-10} \div 10^{-11}$
 - Spin polarization: $\Delta s/s \sim 10^{-7}$
- Fundamental neutron physics provides more than **20** observables reach in information which is difficult to achieve (or not achievable at all) in other fields of Particle Physics

"PRECISION frontier"

Why study the free neutron?

Neutron in astrophysics:

Primordial Nucleosynthesis:

• ⁴He abundance Y_p is sensitive to:

$$\Delta Y_p / Y_p = +0.72 \ \Delta \tau_n / \tau_n \qquad \Delta Y_p / Y_p = +0.17 \ \Delta N_v / N_v$$
$$\Delta Y_p / Y_p = +0.039 \ \Delta \eta / \eta$$

- Stellar nucleosynthesis:
 -
o Neutrino flux (CNO cycle) depends on g_A most accurately extracted from n-decay

$$^{8}\mathrm{B} \rightarrow ^{8}\mathrm{Be} + e^{+} + v_{e}$$

• s-process (production of nuclides heavier than ⁵⁶Fe need n-capture cross sections $\Delta \Phi / \Phi = -5.2 \Delta \alpha / \alpha$

$$\Delta \Phi_8 / \Phi_8 = -5.2 \Delta g_A / g_A$$

 Interesting neutron physics can be extensively tested in the variety of nuclear processes involved in nucleosynthesis

Cold neutrons (CN)

Cold neutrons:

$$E_{\rm kin}^{\rm CN} \sim 5 {
m meV},$$

$$v^{\rm CN} \sim 1 \text{ km/s}$$

CN production via moderation of thermal neurons:

- Cold sources: moderators made of liquid hydrogen or deuterium operated at 20 K
- Cold moderators are typically inserted close to reactor core or to spallation target

Facility	Pulsed	Time-averaged neutron capture flux [10 ⁹ n/cm ² /s]	
ANNI (ESS)	Yes	40	(calculated, see Appendix 3)
PF1B (ILL)	No	20	
MEPHISTO (FRM II)	No	18	(calculated [Kle14], under construction)
NG-6 (NIST)	No	2	(decommissioned and replaced by NG-C)
NG-C (NIST)	No	<mark>8</mark> .3	[Wie14]
FunSpin (PSI)	No	1	(polarized, replaced by BOA)
FnPB (SNS)	Yes	1.4	(at 1.4 MW)
FP12 (LANSCE)	Yes	0.1	
NOP (J-PARC)	Yes	1.2/MW	(calculated [Ari12])

Ultra-cold neutrons (UCN)

□ Ultra-cold neutrons – can be stored in material or magnetic traps

$$E_{\rm kin} < V_{\rm F} - \mathbf{\mu}_{\rm n} \cdot \mathbf{B} + mgh$$

$$V_{\rm F} = \frac{2\pi\hbar}{m} bN$$

 $V_{\rm F}$ – Fermi pseudo-potential, b – scattering length, N- number density

- $V_{\rm F}({\rm Be})$ $\leftrightarrow E_{\rm kin} = 252 \text{ neV},$ • $v^{UCN} < 8 \text{ m/s},$ • $\mu_n B(1 \text{ T}) \leftrightarrow E_{\text{kin}} = 60 \text{ neV},$ • $T^{\text{UCN}} < 4 \text{ mK}.$
- $mgh(1 \text{ m}) \leftrightarrow E_{kin} = 100 \text{ neV}$

- $\lambda^{UCN} > 50 \text{ nm}$
- **UCN** production via moderation of CN:
 - Earth gravitational field and/or scattering from turbine blades (ILL)
 - Super-thermal process e.g. in solid D₂ (PSI, LANL, GUM) or super-fluid He (ILL; in development)

UCN sources – performance comparison

From G. Bison, et al., PHYSICAL REVIEW C 95, 045503 (2017)

FIG. 29. Measured largest UCN density in the standard storage bottle at a given UCN source plotted versus the measured storage time constant. The measurement conditions are explained in the text. The PF2 value is without safety foil, which is not a standard user configuration. Errors on the UCN density are smaller than symbol size.

FIG. 30. Calculated ratio of measured UCN density in horizontal and vertical extraction, "h/v ratio", versus UCN density measured in vertical extraction for the given source in a 2 s storage measurement. Labels are explained in the text. Errors are smaller than symbol size.

Neutron β-decay

Neutron decay from PDG2019

n DECAY MODES

	Mode	Fraction (Γ _i /Γ)	Confidence level		
Γ ₁ Γ ₂ Γ ₃	$pe^-\overline{\nu}_e$ $pe^-\overline{\nu}_e\gamma$ hydrogen-atom $\overline{\nu}_e$	$egin{array}{cccc} 100 & \% \ [a] & (& 9.2 \pm 0.7) imes 100 \ < & 2.7 & imes 100 \end{array}$)3)3 95%		
Charge conservation (Q) violating mode					
• 4	rrere a		0070		

[a] This limit is for γ energies between 0.4 and 782 keV.

Neutron β-decay in Standard Model

In the Standard Model, at tree level, only two parameters survive:

$$H = \frac{G_{\rm F}}{\sqrt{2}} V_{ud} \quad \overline{p} \left\{ \gamma_{\mu} \left(1 + \lambda \gamma_5 \right) + \frac{\mu_{\rm p} - \mu_{\rm n}}{2m_{\rm p}} \sigma_{\mu\nu} q^{\nu} \right\} n \quad \overline{e} \gamma^{\mu} \left(1 - \gamma_5 \right) v_{\rm e}$$

$$\lambda_{ud}$$
 – CKM matrix element $\lambda \equiv \frac{g_A}{g_V}$ – axial-to-vector coupling constant ratio

- **\Box** V_{ud} , λ can be extracted from:
 - Neutron lifetime

f – phase space factor $\delta_{\rm R}$ – radiative correction (model independent) $\Delta_{\rm R}$ – radiative correction (model dependent)

udu

 Differential decay rates: angular distribution of decay products (correlation coefficients)

Neutron β -decay correlations

Depending on the initial state and measured quantities for the decay products, one can define various differential rates and split them into terms depending on momenta and spins (in lowest order) [J.D. Jackson et al.: Phys. Rev. 106 (1957) 517]

$$\begin{split} \omega(\langle \mathbf{J}_{n} \rangle) & E_{e} \Omega_{e} \Omega_{v}) \cdot dE_{e} d\Omega_{e} d\Omega_{v} \quad \propto \\ & \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{v}}{E_{e} E_{v}} + b \frac{m_{e}}{E_{e}} + \langle \mathbf{J}_{n} \rangle \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{v}}{E_{v}} + D \frac{(\mathbf{p}_{e} \times \mathbf{p}_{v})}{E_{e} E_{v}} \right) \right] \cdot dE_{e} d\Omega_{e} d\Omega_{v} \\ & \omega(\langle \mathbf{J}_{n} \rangle \mathbf{\sigma} \mid E_{e} \Omega_{e}) \cdot dE_{e} d\Omega_{e} \quad \propto \quad \left[1 + \ldots + R \frac{(\mathbf{p}_{e} \times \mathbf{\sigma}) \cdot \langle \mathbf{J}_{n} \rangle}{E_{e}} + \ldots \right] \cdot dE_{e} d\Omega_{e} \\ & a = \frac{1 - \lambda^{2}}{1 + 3\lambda^{2}}, \quad b = 0, \quad A = -2 \frac{\lambda (1 + \lambda)}{1 + 3\lambda^{2}}, \quad B = -2 \frac{\lambda (1 - \lambda)}{1 + 3\lambda^{2}}, \quad D = 0, \quad R = 0 \end{split}$$

Overdetermination is advatageous in suppressing systematic errors

Neutron lifetime experiments

"Beam" experiment

- Decay rate Γ
- Neutron flux Φ weighted by flight time in the decay volume ($\propto 1/v$)
- Effective decay volume

"Bottle" experiment

Stored UCN in:

Material vessels

$$N_1/N_2 = \exp\left[-\left(t_1 - t_2\right)/\tau\right]$$

$$t/\tau = \ln\left(N_0/N\right)$$

Magnetic bottles/traps

Counting charged decay products

Neutron decay experiments – problems

Generation "Beam"

- Absolute determination of neutron fluence
- Accurate determination of fiducial volume

"Material bottle"

 Energy dependent wall collision loss mechanism (UCN energy spectrum evolution)

"Magnetic bottle/trap"

- Marginally trapped UCN complicated particle orbits
- Spin-flip losses

Modular trap structure allows for changing trap lengths (control of decay volume)

"Beam" experiment at NIST

Precision efficiency of ⁶Li flux monitor: 0.058 % (A.T. Yue, et al., Metrologia 55, 460 (2018))

$$\tau_n = (887.7 \pm 2.3) \,\mathrm{s}$$

A.T. Yue, et al., PTL 111, 222501 (2013)

"Bottle" experiment

Gravitrap I PNPI/ILL

$$\tau_{\rm LOSS}^{-1} = \eta(T)\gamma(E)$$

Gravitrap experiment A.Serebrov et al. , Phys Lett B 605, (2005) 72-78 **878.5 ± 0.8 s**

Neutron lifetime experiments: "Beam" vs. "Bottle"

Consequences for light element abundances in early Universe

Consequences for light element abundances in early Universe

CKM unitarity – testing SM

Unitarity condition requires:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

$$\begin{pmatrix} d_{\mathrm{W}} \\ s_{\mathrm{W}} \\ b_{\mathrm{W}} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

□ V_{ub} is small ($V_{ub} = 3.6(7) \times 10^{-3}$) so the unitarity test involves essentially only V_{ud} and V_{us}

\Box V_{ud} from:

 Nuclear super-allowed β-decays: sophisticated nuclear structure calculations, some problems with *Q*-values

- **From pion** β**-decay**: theoretically cleanest, statistically not competitive
- **From neutron** β**-decay**: theoretically clean
 - 1. Neutron decay lifetime
 - 2. Neutron β -asymmetry *A* (PERKEO II)
 - 3. Neutron β -decay (PDG 2015 + PERKEO II)
 - 4. CKM Unitarity
 - 5. $O^+ \rightarrow O^+$ nuclear transitions

CKM unitarity – testing SM

Unitarity condition requires:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

$$\begin{pmatrix} d_{\mathrm{W}} \\ s_{\mathrm{W}} \\ b_{\mathrm{W}} \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

□ V_{ub} is small ($V_{ub} = 3.6(7) \times 10^{-3}$) so the unitarity test involves essentially only V_{ud} and V_{us} A Surprov (2016) PERKEO III

\Box V_{ud} from:

 Nuclear super-allowed β-decays: sophisticated nuclear structure calculations, some problems with *Q*-values

- **From pion** β**-decay**: theoretically cleanest, statistically not competitive
- **From neutron** β**-decay**: theoretically clean
 - 1. Neutron decay lifetime
 - 2. Neutron β -asymmetry *A* (PERKEO II)
 - 3. Neutron β -decay (PDG 2015 + PERKEO II)
 - 4. CKM Unitarity
 - 5. $O^+ \rightarrow O^+$ nuclear transitions

Neutron dark decay ?

Fornal & Grinstein, PRL 120 (2018) Dark Matter Interpretation of the Neutron Decay Anomaly

 $Br(n \to p + anything) \approx 99\%$

From strong bounds on bound proton stability and nuclear masses:

9Be is stable if:

937.900 MeV < $m_\chi < 939.565$ MeV

 $\begin{array}{l} n & \rightarrow \chi + \gamma \\ n & \rightarrow \chi + e^+ e^- \\ n & \rightarrow \chi + \phi \\ n & \rightarrow \dots \end{array}$

UCN: Sun *et al.*, arXiv:1803.10890 [nucl-ex]

UCN: Tang *et al.*, arXiv:1802.01595 [nucl-ex]

25

Neutron dark decay – constraints from Astrophysics and Nuclear Physics

- McKeen, Nelson, Reddy & Zhou, *Neutron stars exclude light dark baryons*, arXiv:1802.08244 [hep-ph]
- Baym, Beck, Geltenbort & Shelton, Coupling neutrons to dark fermions to explain the neutron lifetime anomaly is incompatible with observed neutron stars, arXiv:1802.08282 [hep-ph]
- □ Motta, Guichon & Thomas, *Implications of neutron star properties for the existence of light dark matter*, J. Phys. G 45 05LT01 (2018)
- □ Cline & Cornell, *Dark decay of the neutron*, arXiv:1803.04961 [hep-ph] $[n \rightarrow \chi + A']$
- Karananas & Kassiteridis, Small-scale structure from neutron dark decay, arXiv:1805.03656 [hep-ph] [may resolve small-scale problems in ΛCDM]
- Pfutzner & Riisager, *Examining the possibility to observe neutron dark decay in nuclei*, PRC 97, 042501(R) (2018)

Q Riisager et al., ¹¹*Be*(βp), a quasi-free neutron decay?, PLB 732, 305 (2014)

¹¹Be
$$\rightarrow$$
 ¹⁰Be + $\chi + \phi$ Br (¹¹Be \rightarrow ¹⁰Be +?) $\approx 8 \times 10^{-6}$

Ongoing and planned τ_n experiments

Gravitrap II

NIST UCN (Ioffe magn. Trap)

PENeLOPE Halbach grav. trap

J-PARC, "Beam"type, TPC

Ongoing and planned τ_n experiments

Neutron β-decay correlations

\Box For decay of polarized neutrons of (polarization $\langle J \rangle / J$):

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \sim 1 + \boldsymbol{a}\frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{b}\frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[\mathbf{A} \ \frac{\mathbf{p}}{E_{e}} + \mathbf{B} \ \frac{\mathbf{q}}{E_{\nu}} + \mathbf{D} \ \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{\nu}} \right] + \dots$$

- \mathbf{p} electron momentum \mathbf{q} neutrino momentum
- σ electron spin sensing direction

Coefficients a, b, ..., W are functions of λ

J.D. Jackson et al., Phys. Rev. 106, 517 (1957); J.D. Jackson et al., Nucl. Phys. 4, 206 (1957); M.E. Ebel et al., Nucl. Phys. 4, 213 (1957)

Neutron β-decay correlations

\Box For decay of polarized neutrons of (polarization $\langle J \rangle / J$):

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \sim 1 + \boldsymbol{a}\frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{b}\frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[\mathbf{A} \cdot \frac{\mathbf{p}}{E_{e}} + \mathbf{B} \cdot \frac{\mathbf{q}}{E_{\nu}} + \mathbf{D} \cdot \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{\nu}} \right] + \dots$$

$$+ \sigma \left[\mathbf{G} \cdot \frac{\mathbf{p}}{E_{e}} + \mathbf{H} \cdot \frac{\mathbf{q}}{E_{\nu}} + \mathbf{K} \cdot \frac{\mathbf{p}}{E_{e} + m_{e}} \cdot \frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{\nu}} + \mathbf{L} \cdot \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{\nu}} + \mathbf{N} \cdot \frac{\langle \mathbf{J} \rangle}{J} \right]$$

$$+ \sigma \cdot \left[\mathbf{Q} \cdot \frac{\mathbf{p}}{E_{e} + m_{e}} \cdot \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}}{E_{e}} + \mathbf{R} \cdot \frac{\langle \mathbf{J} \rangle}{J} \times \frac{\mathbf{p}}{E_{e}} + \mathbf{S} \cdot \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{\nu}} + \mathbf{T} \cdot \frac{\mathbf{p}}{E_{e}} \cdot \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{q}}{E_{\nu}} \right]$$

$$+ \sigma \cdot \left[\mathbf{U} \cdot \frac{\mathbf{q}}{E_{\nu}} \cdot \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}}{E_{e}} + \mathbf{V} \cdot \frac{\mathbf{q}}{E_{\nu}} \times \frac{\langle \mathbf{J} \rangle}{J} + \mathbf{W} \cdot \frac{\mathbf{p}}{E_{e} + m_{e}} \cdot \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{\nu}} \right]$$

 \mathbf{p} – electron momentum \mathbf{q} – neutrino momentum

 σ – electron spin sensing direction

Coefficients a, b, ..., W are functions of λ

J.D. Jackson et al., Phys. Rev. 106, 517 (1957); J.D. Jackson et al., Nucl. Phys. 4, 206 (1957); M.E. Ebel et al., Nucl. Phys. 4, 213 (1957)

30

Neutron β -decay correlations worldwide

Experiment	Correlation and anticipated precision	Location and status
aSPECT	a (3×10 ⁻⁴)	FRM-2 (ongoing)
aCORN	a (5×10 ⁻⁴)	NIST (ongoing)
Nab/aBBa/PANDA	a (~10 ⁻⁴), b (3×10 ⁻⁴), A, B, C (~10 ⁻⁴)	SNS (planned)
emiT	$D(\sim 10^{-4})$ – measured	NIST (completed)
PERC	<i>a</i> , <i>b</i> , <i>A</i> (3×10 ⁻⁵), <i>B</i> , <i>C</i> , <i>D</i> (?)	FRM-2 (ongoing)
PERKEO	A (2×10 ⁻⁴), B, C (2×10 ⁻³) – measured	ILL (ongoing)
UCNA	A (2.5×10 ⁻³)	LANL (ongoing)
UCNB	<u>B</u> (<10 ⁻³)	LANL (ongoing)
nTRV	N, R (~10 ⁻²) - measured	PSI (completed)
BRAND	$a, A, B, D, H, L, N, R, S, U, V(\sim 5 \times 10^{-4})$	ILL (in preparation), ESS (planned)

 Review on the interrelations between decay coefficients can be found e.g. in D. Dubbers and M.G. Schmidt, Rev. Mod. Phys. 83 (2011) 1111-1171.

□ Up to date sensitivity analysis of new experiments given by S. Baessler at NORDITA Workshop, 10-14 Dec 2018 "*Particle Physics with Neutrons at the ESS*" – available on-line.

Transverse electron polarization in neutron decay – quest for BSM

☐ If only transverse electron polarization can be observed:

$$\frac{d^{3}\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\nu}} \sim 1 + \boldsymbol{a} \frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{b} \frac{m_{e}}{E_{e}} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[\boldsymbol{A} \frac{\mathbf{p}}{E_{e}} + \boldsymbol{B} \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{D} \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{\nu}} \right] \\ + \boldsymbol{\sigma}_{\perp} \cdot \left[\boldsymbol{H} \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{L} \frac{\mathbf{p}}{E_{e}} \times \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{N} \frac{\langle \mathbf{J} \rangle}{J} + \boldsymbol{R} \frac{\langle \mathbf{J} \rangle}{J} \times \frac{\mathbf{p}}{E_{e}} \right] \\ + \boldsymbol{\sigma}_{\perp} \cdot \left[\boldsymbol{S} \frac{\langle \mathbf{J} \rangle}{J} \frac{\mathbf{p}}{E_{e}} \cdot \frac{\mathbf{q}}{E_{\nu}} + \boldsymbol{U} \frac{\mathbf{q}}{E_{\nu}} \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}}{E_{e}} + \boldsymbol{V} \frac{\mathbf{q}}{E_{\nu}} \times \frac{\langle \mathbf{J} \rangle}{J} \right]$$

□ All correlation coefficients can be expressed as **combinations** of real and imaginary parts of exotic (**scalar** and **tensor**) couplings:

$$X = X_{\rm SM} + X_{\rm FSI} + c_{\rm ReS} \operatorname{Re} S + c_{\rm ReT} \operatorname{Re} T + c_{\rm ImS} \operatorname{Im} S + c_{\rm ImT} \operatorname{Im} T$$

 $\mathbf{S} = \frac{C_s + C_s'}{C_v}, \quad \mathbf{T} = \frac{C_T + C_T'}{C_A}, \quad c_{\text{Re}S}, c_{\text{Re}T}, c_{\text{Im}S}, c_{\text{Im}T} - \text{functions of } \lambda = C_A/C_v \text{ and kinematical quantities}$

Sensitivity factors for scalar and tensor couplings (leading order, no recoil, point charge)

	$\mathbf{SM}\left(\lambda ight)$	FSI (λ)	c(ReS)	c(Re <i>T</i>)	c(ImS)	$c(Im\mathcal{T})$
a	-0.1048	0	-0.1714 [†]	0.1714 [†]	-0.0007	+0.0012
b	0	0	+0.1714	+0.8286	0	0
A	-0.1172	0	0	0	-0.0009	+0.0014
В	+0.9876	0	-0.1264	+0.1945	0	0
D	0	0	+0.0009	-0.0009	0	0
H	+0.0609	0	-0.1714	+0.2762	0	0
L	0	-0.0004	0	0	+0.1714	-0.2762
N	+0.0681	0	-0.2176	+0.3348	0	0
R	0	+0.0005	0	0	-0.2176	+0.3348
S	0	-0.0018	+0.2176	-0.2176	0	0
U	0	0	-0.2176	+0.2176	0	0
V	0	0	0	0	-0.2176	+0.2172

* Kinematical factor averaged over electron kinetic energy $E_{\rm k}$ = (200,783) keV

[†] $(|C_{s}|^{2}+|C'_{s}|^{2})/2$ instead of ReS and $(|C_{T}|^{2}+|C'_{T}|^{2})/2$ instead of ReT, respectively

Impact of H, L, N, R, S, U and V measurement with anticipated accuracy of 5×10^{-4}

- Constraints on ReS and ReT contributions will be comparable to that obtained from Fierz term (spectrum shape) with ∆b < 10⁻³ but with completely different systematics
- Similar accuracy is expected for ImS and ImT contribution (TRV effects)
- In order to be competitive with HE searches, new n-decay correlation coefficient measurements should improve by 1 order of magnitude

Electron spin analysis

Mott scattering:

- Analyzing power caused by spin-orbit force
- Parity and time reversal conserving (electromagnetic process)
- Sensitive exclusively to the transverse polarization

Obstacles for electron polarization measurements

Momentum rotation in external electric field

- In uniform field step of 30 kV, incident energy of 100 keV and angle of 45°, momentum vector rotates by about 12°
- Effect decreases with increasing energy and decreasing angle of incidence
- Effect cancels in symmetric barrier or if symmetrically sampled (left-right)

"*g*-2 effect"

 7 mrad per revolution de-synchronization between spin and momentum

Electron polarization can be determined only in well controlled electric field and in low magnetic field

37

ep/n separators coupled to magnetic spectrometers

G. Konrad et al., J. Phys.: Conf. Series **340** (2012) 012048

Electron tracking, vertex reconstruction (HE like approach)

- Unavoidable for electron spin analysis in Mott scattering for diffused and weak decay sources like e.g. cold neutron beam
- Allows for direct measurement of geometry factors
- Reduces gamma background in electron energy detector
- Allows for implementation of corrections based on parameter maps (e.g. effective Sherman function corrected for target thickness variation and for angle of incidence)
- Allows for accurate gain balance of large plastic scintillators
- Improves diagnostics of beam in fiducial volume

K. Bodek, "Neutron Decay – Standard Model and Beyond"

nTRV@PSI "V-track" events - on-line display

39

BRAND project

□ Systematic exploration of electron spin dependent correlations: *H*, *L*, *N*, *R*, *S*, *U*, *V*

Principle of vertex reconstruction with 3-body kinematics

40

Timeline

	BRAND I	BRAND II	BRAND III			
Site	ILL Grenoble	ILL Grenoble	ESS Lund			
Time	me 3 years 3 - 4 years		5-6 years			
Pressure	Ambient	<300 mbar	<300 mbar			
Mott target	Pb (Au)	Pb (Au)	Depleted U			
Coverage of azimuthal angle	1/6	Full	Full			
Statistical precision (goal)						
A	0.0008	0.00008	0.000016			
a, B, D	0.005	0.0005	0.0001			
<i>R</i> , <i>N</i>	0.01	0.001	0.0002			
H, L, S, U, V	0.02	0.002	0.0003			
Systematic errors (goal)						
R, N, H, L, S, U, V	0.002	0.001	0.0004			

Summary and outlook

Neutron observables:

Test directly SM and search for TeV scale physics beyond SM

The dream scenario:

 LHC finds BSM particle(s) on-shell and β-decay has to confirm it in observables (off-shell corrections)

Given Series Fundamental neutron research is:

- Important for Particle Physics
- Addressed in several labs worldwide
- Promising as new installations (CN-beams, UCN) are under construction

New results:

Expected soon from variety of ongoing and planned projects

Backup slides

BRAND Collaboration

Presently BRAND collaboration consists of:

- JU Krakow: K. Bodek¹⁾, D. Rozpedzik, J. Zejma¹⁾, K. Lojek, M. Perkowski, M. Kolodziej: *e*- and *p*-detectors, front end electronics and DAQ, simulations
- INP PAS Krakow: A. Kozela¹⁾, K. Pysz & Co.: mechanical structure, vacuum window, MWDC tracker, Mott target, Slow Control
- ILL Grenoble: T. Soldner: polarized CN beam and infrastructure, vacuum
- KU Leuven: N. Severijns¹, L. De Keukeleere.: guiding magnetic field
- ¹⁾ Members of nTRV@PSI

 NCSU Raleigh: A. Young: pe-converter film

•••

BRAND phase-1 (ILL) funded by NCN (OPUS-15)

45

EFT approach in β -decay

LE-HE competition: CMS results

Electrons and missing transverse energy (MET) channel

$\sigma(pp \to e + \text{MET} + X)$

46

 \mathcal{L}_{eff}

EFT approach in β -decay (cont.)

Model independent EFT parameters

- V. Cirigliano et al., Nucl. Phys. B 830 (2010)
- T. Bhattacharya et al., Phys. Rev. D 85 (2012)
- V. Cirigliano et al., JHEP 1302 (2013)
- M. Gonzalez-Alonso et al., Ann. Phys. 525 (2013)
- M. Gonzalez-Alonso et al., Phys. Rev. Lett. 112 (2014)

 \Box Valid also for $\pi^{\pm} \rightarrow \pi^0 e^{\pm} \nu$

Low-energy simplifications:

- Neglect RH neutrinos $\tilde{\epsilon}_{L,R,S,P,T} = 0$
- Pseudo-scalar contribution (non-relativistic limit) – $\epsilon_P = 0$

$$\mathcal{L}_{\text{eff}} = -\frac{G_F V_{ud}}{\sqrt{2}} \left[(1+\epsilon_L) \ \bar{e}\gamma_\mu (1-\gamma_5)\nu_e \cdot \bar{u}\gamma^\mu (1-\gamma_5)d \right. \\ \left. + \ \tilde{\epsilon}_L \ \bar{e}\gamma_\mu (1+\gamma_5)\nu_e \cdot \bar{u}\gamma^\mu (1-\gamma_5)d \right. \\ \left. + \ \epsilon_R \ \bar{e}\gamma_\mu (1-\gamma_5)\nu_e \cdot \bar{u}\gamma^\mu (1+\gamma_5)d \right. \\ \left. + \ \tilde{\epsilon}_R \ \bar{e}\gamma_\mu (1+\gamma_5)\nu_e \cdot \bar{u}d + \ \tilde{\epsilon}_S \ \bar{e}(1+\gamma_5)\nu_e \cdot \bar{u}d \right. \\ \left. + \ \epsilon_P \ \bar{e}(1-\gamma_5)\nu_e \cdot \bar{u}\gamma_5d - \ \tilde{\epsilon}_P \ \bar{e}(1+\gamma_5)\nu_e \cdot \bar{u}\gamma_5d \right. \\ \left. + \ \epsilon_T \ \bar{e}\sigma_{\mu\nu} (1-\gamma_5)\nu_e \cdot \bar{u}\sigma^{\mu\nu} (1-\gamma_5)d \right. \\ \left. + \ \tilde{\epsilon}_T \ \bar{e}\sigma_{\mu\nu} (1+\gamma_5)\nu_e \cdot \bar{u}\sigma^{\mu\nu} (1+\gamma_5)d \right] + \text{h.c.} .$$

$$= -\frac{G_F V_{ud}}{\sqrt{2}} \left[1 + \operatorname{Re}\left(\epsilon_L + \epsilon_R\right)\right] \times \\ \times \left\{\bar{e}\gamma_{\mu}(1-\gamma_5)\nu_e \cdot \bar{u}\gamma^{\mu}\left[1-(1-2\epsilon_R)\gamma_5\right]d \\ + \epsilon_S \ \bar{e}(1-\gamma_5)\nu_e \cdot \bar{u}d \\ + \ \epsilon_T \ \bar{e}\sigma_{\mu\nu}(1-\gamma_5)\nu_e \cdot \bar{u}\sigma^{\mu\nu}(1-\gamma_5)d\right\} + \text{h.c.}$$

Nucleon-level effective couplings

Lee-Yang effective Lagrangian (leading order, low momentum transfer):

$$\begin{aligned} -\mathcal{L}_{n \to pe^- \bar{\nu}_e} &= \bar{p} n \left(C_S \bar{e} \nu_e - C'_S \bar{e} \gamma_5 \nu_e \right) \\ &+ \bar{p} \gamma^\mu n \left(C_V \bar{e} \gamma_\mu \nu_e - C'_V \bar{e} \gamma_\mu \gamma_5 \nu_e \right) \\ &+ \bar{p} \sigma^{\mu\nu} n \left(C_T \bar{e} \sigma_{\mu\nu_e} \nu_e - C'_T \bar{e} \sigma_{\mu\nu} \gamma_5 \nu_e \right) \\ &- \bar{p} \gamma^\mu \gamma_5 n \left(C_A \bar{e} \gamma_\mu \gamma_5 \nu_e - C'_A \bar{e} \gamma_\mu \nu_e \right) \\ &+ \bar{p} \gamma_5 n \left(C_P \bar{e} \gamma_5 \nu_e - C'_P \bar{e} \nu_e \right) + \text{h.c.} \end{aligned}$$

$$\begin{aligned} C_i &= \frac{G_F}{\sqrt{2}} V_{ud} \overline{C}_i \\ \langle p | \bar{u} \Gamma d | n \rangle = g_\Gamma \bar{\psi}_p \Gamma \psi_n \end{aligned}$$

□ Effective nucleon-level couplings can be expressed in parton-level parameters: $\overline{C}_{\alpha} = a_{\alpha} (\epsilon_{\alpha} + \tilde{\epsilon}_{\alpha})$

$$\overline{C}_{V} = g_{V} (1 + \epsilon_{L} + \epsilon_{R} + \tilde{\epsilon}_{L} + \tilde{\epsilon}_{R}) \qquad \overline{C}_{S}^{\prime} = g_{S} (\epsilon_{S} - \tilde{\epsilon}_{S})
\overline{C}_{V}^{\prime} = g_{V} (1 + \epsilon_{L} + \epsilon_{R} - \tilde{\epsilon}_{L} - \tilde{\epsilon}_{R}) \qquad \overline{C}_{S}^{\prime} = g_{S} (\epsilon_{S} - \tilde{\epsilon}_{S})
\overline{C}_{A} = -g_{A} (1 + \epsilon_{L} - \epsilon_{R} - \tilde{\epsilon}_{L} + \tilde{\epsilon}_{R}) \qquad \overline{C}_{P}^{\prime} = g_{P} (\epsilon_{P} - \tilde{\epsilon}_{P})
\overline{C}_{A}^{\prime} = -g_{A} (1 + \epsilon_{L} - \epsilon_{R} + \tilde{\epsilon}_{L} - \tilde{\epsilon}_{R}) \qquad \overline{C}_{T}^{\prime} = 4 g_{T} (\epsilon_{T} + \tilde{\epsilon}_{T})
\overline{C}_{T}^{\prime} = 4 g_{T} (\epsilon_{T} - \tilde{\epsilon}_{T})$$

Form factors are the key ingredients for translation of hadron-level coupling constants to parton-level parameters

EFT approach in β -decay (cont.)

 \Box g_A from experiment (Lattice QCD still not accurate):

$$g_A \to g_A \operatorname{Re}\left[\frac{1+\epsilon_L-\epsilon_R}{1+\epsilon_L+\epsilon_R}\right] \approx g_A \left[1-2\operatorname{Re}(\epsilon_R)\right] + \mathcal{O}\left(\epsilon_i^2\right)$$

□ 6 parameters left for probing:

- $\epsilon_L + \epsilon_R$ can be absorbed in V_{ud} (CKM unitarity tests)
- Real parts of ϵ_S and ϵ_T
- Imaginary parts of $\epsilon_R \epsilon_S$ and ϵ_T

□ FF from Lattice QCD calculation

Modest knowledge of g_S and g_T is still sufficient for present accuracy level of experimental observables

	$oldsymbol{g}_{\mathrm{S}}$	$oldsymbol{g}_{ extsf{T}}$
Adler et al.'1975	0.60(40)	1.45(85)
PNDME 2011	0.80(40)	1.05(35)
LHPC 2012	1.08(32)	1.04(02)
PNDME 2013	0.66(24)	1.09(05)

Electrons and missing transverse energy (MET) channel

```
\sigma(pp \to e + \text{MET} + X)
```

- **□** Underlying partonic process is the same as in β-decay $(\bar{u}d \rightarrow e\bar{\nu})$
- □ If BSM particles are too heavy to be produced on-shell → EFT analysis appropriate
- Express weak scale Lagrangian in terms of EFT parameters and calculate cross section

$$\sigma(m_T > \overline{m}_T) = \sigma_W \Big[\Big| 1 + \epsilon_L^{(v)} \Big|^2 + |\tilde{\epsilon}_L|^2 + |\epsilon_R|^2 \Big] -2 \sigma_{WL} \operatorname{Re} \Big(\epsilon_L^{(c)} + \epsilon_L^{(c)} \epsilon_L^{(v)*} \Big) + \sigma_R \Big[|\tilde{\epsilon}_R|^2 + |\epsilon_L^{(c)}|^2 \Big] + \sigma_S \Big[|\epsilon_S|^2 + |\tilde{\epsilon}_S|^2 + |\epsilon_P|^2 + |\tilde{\epsilon}_P|^2 \Big] + \sigma_T \Big[|\epsilon_T|^2 + |\tilde{\epsilon}_T|^2 \Big]$$

LE-HE competition

 \square Benefits for β -decay analysis from better determination of g_s and g_T FF

	$\langle p ar{u}d n angle$	$\langle p \bar{u}\sigma_{\mu\nu}\gamma_5 d n\rangle$	M. Canadaa Alaaaa (2016)
	$oldsymbol{g}_{\mathrm{S}}$	$oldsymbol{g}_{ extsf{T}}$	M. Gonzalez-Alonso (2016)
Adler et al.'1975	0.60(40)	1.45(85)	neutron (future)
PNDME 2011	0.80(40)	1.05(35)	0.01
LHPC 2012	1.08(32)	1.04(02)	nuclei
RQCD 2014	1.02(35)	1.01(02)	0.00 LHC
PNDME 2013/15	0.72(32)	1.02(08)	×
ETMC 2015/17	0.93(33)	1.00(03)	-0.01
CVC	1.02(11)	-	
PNDME 2016/18	1.02(10)	0.99(03)	-0.02 pion
JLQCD'18	0.88(11)	1.08(10)	-0.004 - 0.002 0.000 0.002 0.004 Re(ϵ_T)

TRV tests

True TRV tests require (i) reversal of motion and (ii) exchange of initial and final states

In particle decay exchange of initial and final states is impossible Particle decay:

□ If interaction violates TR symmetry: $\Gamma(a) \neq \Gamma(b)$

D- and **R**-correlations

In ordinary neutron decay, two observables are particularly interesting

 $\mathbf{D} \sim \langle \mathbf{J} \rangle / J \cdot (\mathbf{p}_{e} \times \mathbf{p}_{v}) \qquad \mathbf{R} \sim \langle \mathbf{J} \rangle / J \cdot (\mathbf{p}_{e} \times \boldsymbol{\sigma})$

 $\frac{d\Gamma}{dE_{e}d\Omega_{e}d\Omega_{\bar{v}}} = S\left(E_{e}\right) \left[1 + a\frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\bar{v}}}{E_{e}E_{\bar{v}}} + b\frac{m_{e}}{E_{e}} + \left|\frac{\langle \mathbf{J} \rangle}{J}\right| \cdot \left(A\frac{\mathbf{p}_{e}}{E_{e}} + B\frac{\mathbf{p}_{\bar{v}}}{E_{\bar{v}}} + D\frac{\mathbf{p}_{e} \times \mathbf{p}_{\bar{v}}}{E_{e}E_{\bar{v}}}\right)\right]$

 $\begin{array}{c} \square \ \mathbf{R} \text{-correlation (C-even, P-odd, T-odd)} \\ \frac{d\Gamma}{dE_e d\Omega_e} = S\left(E_e\right) \left[1 + b \frac{m_e}{E_e} + A \frac{\langle \mathbf{J} \rangle}{J} \cdot \frac{\mathbf{p}_e}{E_e} + G \frac{\mathbf{p}_e \cdot \mathbf{\sigma}}{E_e} + \left[\frac{\langle \mathbf{J} \rangle}{J} \cdot \left(2 \frac{\mathbf{p}_e}{E_e} \frac{\mathbf{p}_e \cdot \mathbf{\sigma}}{E_e} + N \mathbf{\sigma} + \mathbf{R} \frac{\mathbf{p}_e \times \mathbf{\sigma}}{E_e} \right) \right] \\ \frac{d\Gamma}{dE_e d\Omega_e} = S\left(E_e\right) \left[1 + b \frac{m_e}{E_e} + \left[\frac{\langle \mathbf{J} \rangle}{J} \cdot \left(A \frac{\mathbf{p}_e}{E_e} + N \mathbf{\sigma}_{\perp} + \mathbf{R} \frac{\mathbf{p}_e \times \mathbf{\sigma}_{\perp}}{E_e} \right) \right]; \quad \mathbf{\sigma}_{\perp} \perp \mathbf{p}_e \end{array}$

D-correlation

D

J.D. Jackson et al., Phys. Rev. 106, 517 (1957); J.D. Jackson et al., Nucl. Phys. 4, 206 (1957); M.E. Ebel et al., Nucl. Phys. 4, 213 (1957)

□ For left-handed V-A interactions $(C_V = C'_V, C_A = C'_V)$, defining $\lambda = C_A/C_V$, neglecting terms quadratic in C_S and C_T , point charge, no recoil:

$$D = D_{\gamma} + D_{FSI} \approx D_{\gamma} + 1.2 \times 10^{-5}$$

$$D_{\gamma} \approx \frac{1}{1+3|\lambda|^{2}} \left\{ -2 \frac{\operatorname{Im}(C_{V}C_{A}^{*})}{|C_{V}|^{2}} + \frac{\operatorname{Im}(C_{S}C_{T}^{*} + C'_{S}C'_{T}^{*})}{|C_{V}|^{2}} \right\}$$

$$+ \frac{\alpha m}{p_{e}} \frac{1}{1+3|\lambda|^{2}} \operatorname{Re}\left(\lambda^{*} \frac{C_{T}^{*} + C'_{T}}{C_{A}^{*}} - \lambda^{*} \frac{C_{S} + C'_{S}}{C_{V}}\right)$$

 10^{-5}

$$D_{\mathcal{Y}} \approx \frac{1}{1+3|\lambda|^2} \Big\{ 2\sin\phi_{AV} + \operatorname{Im} \Big(S^+ T^{+*} + S^- T^{-*} \Big) \Big\}; \quad S^{\pm} = \frac{C_S \pm C'_S}{C_V}, \ T^{\pm} = \frac{C_T \pm C'_T}{C_A} \Big\}$$
$$D_{\mathcal{Y}}^{VA} \approx 0.435 \, \sin\phi_{AV}$$

54

V-correlation

