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3 The muon anomalous magnetic moment: discrepancy between SM and experiment
3 Hadronic contributions: hadronic vacuum polarization and hadronic light-by-light

¥ Novel approach based on dispersion relations for a data-driven determination of
hadronic light-by-light contribution: basic features and first numerical results

¥ Summary and outlook
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¥ Anomalous magnetic moments of leptons ay have played a central role in the
history of particle physics by contributing to establish quantum electrodynamics

§ - V- _96_2
e = gy — S Ay =
 A m 2
f// \V

¥ Dirac’s relativistic theory of spin-1/2 particles predicts g; = 2

In the Standard Model (SM), radiative corrections are responsible for gy # 2

> 3 aiXp = 0.00115965218073(28) [0.24 ppb] Hanneke, Fogwell, Gabrielse (2008)

leads to an extremely precise determination of the fine structure constant
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¥ The experimental world average for a,, is dominated by the BNL E821 result

CLZXP = 0.001 16592091(63) [0.54 ppm] Bennett et al. (2006)

Wa — Wspin — Weyclotron — — Ay

momentum

¥ Muon anomalous magnetic moment is particularly interesting:

P> more sensitive than a. to weak and strong interaction effects
and New Physics scales (Aay oc m2/M?)

exp _ o°M 30 : open puzzle

P discrepancy aj, y



Introduction

"—'—"

The result of the BNL E821 experiment vs SM prediction

X 10" Aa, x 10 P — aiM ~ 30
BNL E821 116 592 091 63 )
QED O(«) 116 140 973.21 0.03
QED O(a?) 413217.63 0.01
QED O(c?) 30141.90 0.00
QED O(a?) 381.01 0.02
QED O(a) 5.09 0.01
QED total 116 584 718.85 0.04
EW 153.6 1.0
LO HVP 6 949 43
NLO HVP —98 1
NNLO HVP 12.4 0.1
LO HLbL 116 40
NLO HLbL 3 2
Hadronic total 6982 59

(Theory total 116 591 855 59 )
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Sommerfield 1957
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The result of the BNL E821 experiment vs SM prediction

11 11
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Hadronic total 6982 59

Theory total 116 591 855 59
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Jegerlehner (2015)

New experiment (FNAL E989) expected to improve the precision by a factor of 4

P> crucial and timely to scrutinize SM prediction, theory uncertainties
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FNAL BNL CERN III CERN II CERN I
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|

LO
Ath
QED 6th

8th

10th

hadronic VP LO
NLO

NNLO

hadronic LbLL
weak LO
HO

B
!

=3 SM predictions
wcertainty

New Physics 7

SM prediction

L IIIIIII| L
1073 1071 10! 103 10° 107 109
ay, in units 10~

Paradigmatic example of precision experiments
at the infensity frontier: look for deviations
from the SM due to quantum (virtual) effects




Hadronic vacuum polarization
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¥ The crucial limiting factor in the accuracy of SM predictions for a, is control over
hadronic contributions, responsible for most of the theory uncertainty

¥ The most precise determination of the LO-HVP relies on a dispersive approach:
P> Gauge invariance: z’/d4az e"T™0IT{j5™ ()75 (0)}0) = —(¢°gur — quav) 11(q7)

parameterized in terms of a single scalar function of one kinematic variable



Hadronic vacuum polarization
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¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

¥ The most precise determination of the LO-HVP relies on a dispersive approach:

P> Gauge invariance: z’/d% e"T™0IT{j5™ ()75 (0)}0) = —(¢°gur — quav) 11(q7)

P> Analyfticity: 1" (¢*) = II(¢*) — I1(0) ¢ /OO ds I IT(s)
4

T 4r m2  S(s—q? — i)

discontinuity along a branch cut corresponding to physical processes
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¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty
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P> Unitarity (optical theorem):

x otot(eTe” — hadrons)

hadrons hadrons



Hadronic vacuum polarization
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¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

¥ The most precise determination of the LO-HVP relies on a dispersive approach:

P> Gauge invariance: z’/d4az e"T™0IT{j5™ ()75 (0)}0) = —(¢°gur — quav) 11(q7)
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P> Unitarity (optical theorem):

ImII(s) = ﬁ(s) Oiot(€Te” — hadrons) =



Hadronic vacuum polarization

¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

¥ LO-HVP is obtained by integrating the hadronic R-ratio weighted with a
perturbative QED kernel:

_ 1 raN2 [ ds .
abo HVP:§ (_) [l %% K(s) Rhad ()

2 S
m’?’l’

dominated by the low-energy region (in particular mm contribution)

¥ Dedicated e¢te program (Belle II, BES-III, KLOE, BaBar, SND, CMD-3, SND, KEDR)
with the goal to improve the presently quoted sub-percent accuracy



Hadronic vacuum polarization
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¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contfributions, responsible for most of the theory uncertainty

¥ LO-HVP is obtained by integrating the hadronic R-ratio weighted with a
perturbative QED kernel :

_ 1 raN2 [ ds .
aEO HVP:§ (_) [l %% K(s) Rhad ()

2 S
m’?’l’

dominated by the low-energy region (in particular mm contribution)

¥ Recent world-wide efforts for a lattice QCD determination of the LO-HVP

Several collaborations (RBC/UKQCD, HPQCD/FNAL/MILC, BMW, ETM, CLS-Mainz):
physical pion mass ensembles, disconnected contributions, QED and strong isospin breaking corrections,
finite volume and continuum extrapolations. Quoted uncertainties are presently about 2 percent



Hadronic light-by-light
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

hadrons

aﬂLbL in 10— 11 units

Contribution . BPP HKS

KN MV BP PdRV ~ N/JN
70 n,n 85+13  82.7+6.4 83+12 114#+10 — 114413 99416
7, K loops —19+13 —4.548.1 — - — —19419 —19+13
7, K loops + other subleading in N, — — — 0410 — — —
axial vectors 2.54+1.0 1.7+1.7 — 22+5 — 15+10 2245
scalars —6.842.0 — — — — —7+7 —-T7£2
quark loops 21+3 9.7+11.1 — — — 2.3 21+ 3
total | 83432  89.6+15.4 | 80440 136425 110440 105426 116439

Two global evaluations: Bijnens, Pallante, Prades (1995, 1996) and Hayakawa, Kinoshita, Sanda (1995, 1996)

KN = Knecht, Nyffeler; MV = Melnikov, Vainshtein; PdRV = Prades, de Rafael, Vainshtein; IN= Jegerlehner, Nyffeler
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

hadrons

aﬂLbL in 10— 11 units

(

Contribution BPP HKS KN MV BP 1 PdRV N/JN
7r0, n,n 85+13 82.7+6.4 83+12 114410 — 1144+13 99+16
7, K loops —19+13 —4.5+8.1 — — — —19+19 —19+13 Jegerlehner (2015)
7, K loops + other subleading in N, — — — 0410 — — —
axial vectors 2.54+1.0 1.7+1.7 — 22+ 5 — 15+10 @ — =~ 843
scalars —6.842.0 — — — — —T7+£7 —T7%2
quark loops 21+3 9.7+11.1 — — — 2.3 21+ 3
total 83+32 89.6+15.4  804+40 136425 110-+40| 105+26 <«—— 102139

The two most often quoted estimates: Prades, de Rafael, Vainshtein (2009) and Jegerlehner, Nyffeler (2009)



Hadronic light-by-light
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

hadrons

Quoted uncertainties are guesstimates!

P a reliable uncertainty estimate for HLbL is still an open issue

¥ How to reduce model dependence? Recent strategies for an improved determination:

P lattice QCD: first computations at physical pion masses with leading
disconnected contributions performed (with large systematic errors due to
finite volume and finite lattice spacing) RrRBc/uUKQCD (Blum et al., 2015-2017)

Mainz lattice group: pion-pole contribution (Gerardin, Meyer, Nyffeler, 2019)

B dispersion theory to make the evaluation as data-driven as possible



Dispersive approach to HLbL
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3 Exploits fundamental principles:

hadrons
P> gauge invariance and crossing symmetry

P> unitarity and analyticity

to relate HLbL to experimentally accessible quantities

¥ Much more challenging task than for the hadronic vacuum polarization due to the
complexity of the HLbL tensor, which is the key object of our analysis

¥ Defines and relates single contributions to HLbL to form factors and cross sections

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015), JHEP 1704 + PRL 118 (2017)
Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014)
Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)



HLbL tensor and master formula
e ——

T2 (q1, g2, 43) = —i / d'z dtydz e\ TRV OIT{GE (2) jen (y)om (2)78m (0)}]0)

¥ Lorentz covariance: 138 structures that are redundant due to Ward identities

¥ Derived 54 generating Lorentz structures that are manifestly gauge invariant and
crossing symmetric. The scalar functions 1I; are free of kinematic singularities and
zeros: their analytic structure is dictated by dynamics only

1" (q1, g2, g3) ZT“”A" s,t,u; )

¥ Obtained a general master formula:

HLbL 3772/ dQ1/ ng/ dT\/1—72Q3QQZT Q1,Q2,7) I1;(Q1, Q2,7)



Contributions to a.HLbL
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¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s
s—M:?

+ + — ds’ + = du

Ii(s, t,u) = ct +
(5, tu) =q u—Mz T Japp2 s’ — s T Jans2 u —u

Pion 1 /OO Im II¢ (s, t,u/) 1 /OO Im, ITE (s £, )

¥ The lightest intermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO UV O

N

one-pion intermediate state :

—
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¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s
s—M:?

+ + — ds’ + = du

Ii(s, t,u) = ct +
(5, tu) =q u—Mz T Japp2 s’ — s T Jans2 u —u
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¥ The lightest intermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO

UV O

\

two-pion intermediate state in both channels :

\—




Contributions to a.HLbL
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¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s
s—M:?

+ + — ds’ + = du

Ii(s, t,u) = ct +
(5, tu) =q u—Mz T Japp2 s’ — s T Jans2 u —u

Pion 1 /OO Im II¢ (s, t,u/) 1 /OO Im, ITE (s £, )

¥ The lightest intermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO UV O

two-pion state only in the direct channel:

N




Contributions to a.HLbL
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¥ Unitarity in direct and crossed channel (poles and branch cuts)

t
pi;s
s—M:?

+ + — ds’ + = du

Ii(s, t,u) = ct +
(5, tu) =q u—Mz T Japp2 s’ — s T Jans2 u —u

Pion 1 /OO Im II¢ (s, t,u/) 1 /OO Im, ITE (s £, )

¥ The lightest intermediate states dominate (in agreement with models)

3 HLbL tensor can be split up into contributions with different topologies:

Moy = TI7 P90 L% L

UV AO UV O

higher intermediate states: ongoing work




Numerical results for dispersive a,H.bL 5

Info on pion fransition form factor: azo_Pde = 62.6755 x 1071

Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

m—box

Info on pion vector form factor: a, = —15.9(2) x 1071

Colangelo, Hoferichter, MP, Stoffer (2017)

Info on helicity partial waves for Y*7y* — 7
with S-wave mrm rescattering effects:

al_g = —8(1) x 107"

A more precise, data-driven SM evaluation of HLbL is feasible!



Outlook for dispersive a,HLbL
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Ongoing and future work:

¥ rescattering contributions for higher partial waves to account for prominent
features in the cross sections for photon-photon to two mesons

3 contributions from higher intermediate states

¥ systematic study of all short-distance constraints on HLbL

Will lead to a more precise SM evaluation of the muon g-2: timely!



Summary and outlook

¥ The discrepancy between SM prediction and experimental determination of the
muon anomalous magnetic moment is an open puzzle: new physics?

¥ Theoretical uncertainties are dominated by hadronic contributions

¥ Hadronic vacuum polarization can be accurately determined using a data-driven
approach based on dispersion relations
Ongoing work: improved experimental input, better understanding of role of
correlated uncertainties and systematic errors.
Alternative determinations: lattice QCD, MUonE experiment (see talk by A. Primo)

¥ For the hadronic light-by-light contribution, a data-driven dispersive approach
with reliable uncertainties is feasible.
Ongoing work: refined analysis of two-meson intermediate states, study of higher
intermediate states and asymptotic constraints from OPE and perturbative QCD.
Complementary information from lattice QCD
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A roadmap for HLbL

Pion transition form factor
2 2
Fﬂ-O,.Y*,.Y* (ql’ q2)

Pion vector
form factor F{}

Partial waves for
,Y*,Y* g ete” wete nrr
Gion polarizabilitie

Artwork by M. Hoferichter



The HLbL tensor
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¥ The fully off-shell HLbL tensor :

27 (q1, g2, 43) = —i / d'z dtydtz e\ TRV OIT{GE (2) jin (y)dom (2)78m (0)}0)

¥ Mandelstam variables:

s=(p+@)t=(@+a¢) u=(@+q¢)

HLbL

.+ qa — 0 afterwards

¥ In order to extract a



Lorentz structure of HLbL tensor
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3 Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

H/,u/)\a _ g,ul/g)\a Hl + gu)\gyo H2 + guagl/A H3

+ > ad Tyt Y ¢PGa G+ Y 9" diar 1T

k=1,2.4 j=1,34 —1,3.4
1=1,2,3 1=1,2,3 k::1,2 4

A M1 o717 vo 1 A TT8 Ao W v 79

+ Z 9 4; 4 Hzl+ E : g qzquzk‘+ Z 9 4; 4; Hzg
1=2,3,4 i=2,3,4 1=2,3,4
[=1,2,3 k=1,2,4 j=1,3,4

3 In 4 space-time dimensions there are 2 linear relations among these 138 structures

Eichmann, Fischer, Heupel, Williams (2014)

3 Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

¥ This set of functions is hugely redundant: Ward identities imply 95 linear relations
among these scalar functions (kinematic zeros)



Lorentz structure of HLbL tensor

W
¥ Following Bardeen and Tung (1968) - "BT”- we contracted the HLBL tensor with

Ko v A O
iy =g - 2O po— o i

q1 g2 q3 * 44

P> 95 structures project to zero
¥ 1/¢1-¢2 and 1/¢s - ¢4 poles eliminated by taking linear combinations of structures

¥ This procedure introduces kinematic singularities in the scalar functions:
degeneracies in these BT Lorentz structures, e.g. as ¢ -¢2 = 0,¢3-q1 — 0

Z CZTIQLV)\G = q - Q2XZHV>\U + g3 - q4y;/,w)\a
k



Lorentz structure of HLbL tensor
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¥ Following Tarrach (1975) we extended BT set to incorporate X7, Y}’
to obtain a ("BTT") generating set of structures even for ¢, ¢ — 0, g3 - qs — 0

12 (q1, g2, 43) ZTW“ 5,t,u; )

.

P> Lorentz structures are manifestly gauge invariant

B crossing symmetry is manifest (only 7 genuinely different structures, the
remaining ones being obtained by crossing)

P the BTT scalar functions are free of kinematic singularities and zeros:
their analytic structure is dictated by dynamics only.
This makes them suitable for a dispersive freatment



Master formula for a HtbL
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HLbL
¥ FromII,,», to a, :

By expanding the photon-muon vertex function around ¢, = 0,

a, "t = - Tr ((p + mp) v, 771 + mp)T g™ (p))
48m,,
Aldin, Brodsky, Dufner, Kinoshita (1970)
where p° = m? and

HLDL () _ 6 d'qy d'qa , P+d, +m)  P—dy, )
Foo™(p) = / eni et wral—m2) o-g@?E_md

1 0

X ILxo(91,92,94 — q1 — q2)
?q2 (g1 + ¢2)2 0gf "

q4+=0



Master formula for a HtbL
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¥ FromII,, ., to aHLbL

By expanding the photon-muon vertex function around ¢, = 0,

P = o T ((p 4 m) BN T )

¥ Since there are no kinematic singularities in the BTT scalar functions,
the limit ¢4 — 0 can be taken explicitly

HLbL _ € / d*q1 d'qo 1 1 1
: 48my, ) (2m)* (2m)* ¢iq5(q1 + q2)? (P + q1)? —m2 (p — q2)? —m?

< Tr ((wmuw PP+ )V + )7 (p = gy + )

X Z (WT/ZV)\O- d1,42,44 — 41 — QQ))

1,(q1, 92, —q1 — q2)
q4=0



Master formula for apH'-b'-
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¥ We obtained a general master formula

3

" o ’ 12 B
/ e / 40, [ drv/1—r2QG2 Y T, Ca, TI(O1. o, )
=1

Q)7 = —q; are Euclidean momenta and Q; - Q2 = Q, Q2 7 : space-like kinematics
Generalization of the formula for the pion pole by Knecht and Nyffeler (2002)

We determined the integration kernels 7; .
The scalar functions II; are linear combinations of the BTT II,

Our goal: dispersive representation of HLbL scalar functions at fixed photon
virtualities to be evaluated at the reduced kinematics in the master formula,

S = _Q3 _Q% o 2Q1Q27- — an t = _an U = _Q%7
@G =-0Q G=-03 @G=-0Qi=-0Q7-201Q21—Q3, ¢ =0



The pion-pole contribution

R e ——————

¥ From the unitarity relation with only m0 intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( F,«y0 and Fo«yr0 , input for our analysis)

0 2 3 > > ! =’ 168
ap P = / dQ / dQ / dry/'1=72Q3Q3 (T1(Q1, Q2. )T P*(Q1, @2, 7) + Ta(Q1, Q2 TG P(Q1, Qa, 7))
37T 0 0 -1

with

ﬁwo-pole B Fﬂow*v* (— %, —Q%)Fﬂ.o,y*,y* (—Q§, O) ﬁ?ro—pole B f}ro,y*,y* (— %, —Q%)fﬁo,y*,y* (—Q%, O)




The pion-pole contribution

¥ From the unitarity relation with only m0 intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( F,«y0 and Fo«yr0 , input for our analysis)

¥ These form factors can be reconstructed dispersively using

B> pion vector form factor

» ~* — 37 amplitude

P elastic mm scattering amplitude

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

0
— CLZ —pole _ 62.613% x 10711 Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

¥ Pseudoscalar poles with higher masses can be treated analogously



Pion-box contribution

W

¥ Defined by simultaneous two-pion cuts in two channels

¥ Contribution to scalar functions as dispersive integral of double spectral functions

:_/ds’dt St/t’zt)_k(tﬁu)—l—(sﬁu)

¥ Dependence on ¢- carried by the pion vector FFs for each off-shell photon

¥ one-loop SQED projected onto the BTT structures fulfills the same Mandelstam
representation of the pion box, the only difference being the pion vector FFs :

|
|
N RN S
X ! ! R R
R - -1
| | I - ol
! | ! | T
- I I
L | -




Numerics for the pion-box contribution

¥ The only input: pion vector form factor in the space-like region

1

0.9

« NA7
08— Qur fit
07— VMD

0.6 4 Volmer et al.
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rad

0.4r
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0.2

0.1
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s [GeV?]

¥ Numerical results: o] "> =—-15.9(2) x 107" vs aff P VMP ~ 05 x 1071

¥ Rapid convergence: Qma = {1,1.5}GeV = a7 = {95,99}% of full result
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¥ Two-pion cut only in the direct channel:

The remaining mirm contribution

LH cut due fo multi-particle intermediate
states in the crossed channel neglected

¥ Unitarity relates this contribution to the subprocess v*y*) — 7r

By generalizing previous analyses of vy — mm and yy* — 7w Moussallam et al. (2010, 2013)
our goal is a dispersive reconstruction (based on analyticity, unitarity and crossing)
of helicity partial waves for v*y* — T Colangelo, Hoferichter, MP, Stoffer (2014)

The solution of the resulting coupled set of dispersion
relations involves elastic mm phase shifts, which allows fo ...
for the summation of nm rescattering effects in the
direct channel (effects of resonances coupling to )




The remaining mirm contribution

w—-_'

¥ Contribution to aj, """ from v*7* — 77 helicity partial waves :
L
J 2 2 2 U(S) N
Im h++,++(3; 7,95 G35,0) = 16 ——hj ++(S q1 CI2)hJ ++ (85 q3,0) :
Lo

projecting onto BTT basis determines Im II;, from which 1I; for master formula.
Our framework holds for arbitrary partial waves.

¥ We solved dispersion relations for v*y* — mm S-waves taking:

P> pion pole as only LH singularity and phenomenological it phase shifts

ay*tin 107" units
wm,m-pole LHGC 11
A 1GeV 1.5GeV 2GeV oo a, j—0 = —8(1) x 10
fo(500) —— /= —9.2 —9.5 —9.3 -88

| =2 2.0 1.3 1.1 0.9




