
As now we have the data from the November 2018 experimental run, I set
out to trawl through the data files and find some that can be compared to the
output my calculations produce. The theory I now use is a 2D (azimuthally
symmetric, z and r coordinates) pseudospectral code - I put a fairly detailed
description/derivation on arXiv.org 1. I assume a Gaussian beam (TEM00
mode) and a sech(t/τ) type temporal dependence of the field amplitude initially.
I will first discuss the initial parameters that my calculations need and how I
obtained these from the experimental data files, then provide tables with the
precise parameters. In these tables I will also indicate precisely which file I used
by name, without the initial “dataset” left off for brevity. Since each single
experimental data file contains the data of 10 consecutive measurements, I will
have to use mean values for my simulations, but I will indicate the uncertainty
of these parameters where it is over 1%. (I don’t have the resources to run
calculations for each single experimental parameter set - but I don’t think that
this is necessary either.)

Input parameters

The input parameters that I need for my simulations are the rubidium vapor
density N , the pulse energy E0, the pulse duration Tpulse (related to the τ in
the sech function as Tpulse = τ · 2 · acosh(

√
2) ), the beam diameter d0 of the

Gaussian beam at the beam waist (FWHM of intensity - this is related to the
beam waist parameter w0 as d0 = w0

√
2 · log(2)) ) and finally the location of the

beam waist z0 (in the absence of rubidium of course). Here are some comments
on each of these parameters.

• The easiest case by far is the vapor density N . They can be found in
the rbDens value variable of the data files, they are very stable (constant
accross the measurements) and almost the same at the two locations along
the cell. I will just use the mean value of the two locations, averaged over
the measurements.

• The initial pulse energy is also not problematic if we believe the calibration
of the data found in the Emeter04 variables, which is the input energy.
It can be considerably less than the “nickname” of the data files (e.g.
“ 120mJ”), but it is stable and we’ll trust Emeter04 as Josh suggested.

• Somewhat more problematic is the pulse duration Tpulse. The autocorre-
lator is placed after the cell, so it measures the output pulse length. We
can get an idea of the ingoing pulse length from the vacuum measure-
ments, but these are only available for four pulse energies, 20 mJ, 40 mJ,
80 mJ and 120 mJ. The variable autoCorrWid contains the τ of a sech
function fit to the autocorrelation signal and Tpulse can extracted from
that. Because there is a systematic change with pulse energy larger than
the measurement fluctuations (less energy results in a “shorter” pulse), I
used the four values measured in vacuum for the 20, 40, 80 and 120 mJ
pulses and used the mean of the neighbouring values for the 60 and 100
mJ pulses. Also I used the 20 mJ value for the 5-10 mJ pulses. I realized
later that this process is not very accurate because pulses tagged “100 mJ”
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sometimes have less than 90 mJ energy in reality so a proper calibration
curve should have been constructed and a proper linear interpolation be-
tween the known values used. However I wanted to stay consistent and not
change methodology on the run so the pulse durations are now the same
for the pulses named “100 mJ” regardless of the real measured energy.
Overall, pulse duration is a parameter that is not very accurate anyway,
they fluctuate from measurement to measurement even in the same set.
The measured values are set with red in the table and their uncertainty
indicated.

• Beam width and waist location parameters were obtained the following
way: I took the three virtual camera pictures Vcam3, Vcam4 and Vcam5
which are supposed to give us the energy distribution of the beam at the
entrance, center and exit of the cell in vacuum, removed the hot pixels and
fitted each with a simple azimuthally symmetric Gaussian distribution

I(x, y) = I0 exp
(
−2[(x− x0)2 + (y − y0)2]/w(z)2

)
.

Having obtained the three values w(0), w(5) and w(10), I used them in a
nonlinear fit again using the Gaussian beam formula

w(z) = w0

√
(1 + (z − z0)2/z2R)

to obtain the w0 and z0 parameters of the beam. (The other parameters,
I0, x0 and y0 are not used.) Again, I perfomed the fit for each of the 10
pulses in a series and then averaged over the values. w0 (and hence d0) is
fairly consistent but z0 fluctuates quite a bit because we are trying to tell
the waist location from three values close to it.

Finally, here is the table for the parameters of the first set of calculations.
The parameters have been rounded in the table (well within the limits of the
displayed experimental uncertainty).

Input parameters for the set of calculations with N = 2 · 1014

name N [1014/cm3] E0 [mJ] Tpulse [fs] d0 [mm] z0 [m] exp. data
5 01 1.887 4.84± 0.12 99.4 1.851± 0.024 8.35± 1.34 Rb2e14 5mJ
6 01 1.890 6.47± 0.20 99.4 1.850± 0.022 9.33± 1.52 Rb2e14 6mJ
10 01 1.886 10.22± 0.17 99.4 1.855± 0.029 8.57± 1.41 Rb2e14 10mJ
20 01 1.889 20.08± 0.37 99.4± 5.5 1.865± 0.047 8.31± 1.40 Rb2e14 20mJ
40 01 1.891 38.9± 0.66 115.21± 7.2 1.846± 0.025 8.46± 1.09 Rb2e14 40mJ
60 01 1.889 57.63± 0.97 119.45 1.844± 0.027 7.96± 1.21 Rb2e14 60mJ
80 01 1.887 77.07± 2.15 123.7± 4.3 1.880± 0.031 8.22± 1.30 Rb2e14 80mJ
100 01 1.888 95.83± 1.78 125.59 1.827± 0.027 7.48± 0.85 Rb2e14 100mJ
120 01 1.887 112.15± 1.89 127.47± 10.3 1.803± 0.04 6.71± 0.94 Rb2e14 120mJ

Computer output vs. experimental data

Outgoing pulse energy

Now comes the interesting part, comparing what was measured to what I cal-
culated. First and simplest, the measured energy of the transmitted pulse is
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considered. The comparison is complicated by the observation that the output
of the downstream energy meter (Emeter03 variable in the data files) is some-
times considerably higher for vacuum measurements than that of the input
energy meter to which we adjusted the input pulse energy of the computation.
The table below shows this:

Input and output energy for vacuum measurements.
name Emeter04 Emeter03 Emeter04/Emeter03

“Vac 20mJ” 20.54± 0.43 27.46± 0.62 0.748± 0.0046
“Vac 40mJ” 40.93± 0.69 47.45± 1.64 0.863± 0.019
“Vac 80mJ” 79.96± 0.91 81.69± 2.77 0.980± 0.028
“Vac 120mJ” 118.01± 1.89 115.12± 2.83 1.025± 0.018

Evidently there is systematic discrepancy much larger than the 1-3% mea-
surement to measurement error for the 20 and 40 mJ pulses propagating in
vacuum, but the cause is not clear. For now, I choose to use the data in this
table to construct a ’calibration curve’. I use the factors in the last column (and
interpolated values) to multiply the measured output energy so that ’vacuum’
measurements are scaled to Ein = Eout. The calibration curve is extrapolated
to 5-6 mJ energies as well and is shown below:
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Figure 1: Energy calibration curve for output energy meter. Red diamonds
mark the calibration points obtained from the vacuum measurements.
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Figure 2: Camera count per input energy.
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Figure 3: Camera count per input energy.
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Figure 4: Camera count per input energy.
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Figure 5: Camera count per input energy.

Finally, here is the output energy vs. input energy of the pulses for the
Rb2e14 set of simulations, the left panel is the entire set, the right panel is a
magnification of the lowest part of the plot. The errors of the experimental data
were calculated only from the measurement data set, they do not include the
error of the calibration factor.

Output energy of simulation and experiment
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Figure 6: Outgoing pulse energy vs. input pulse energy, left panel is the com-
plete plot, right panel is the lowest three points magnified.

E0 Eout exp. [mJ] Eout simulation [mJ]

4.84 0.206 0.110
6.47 0.221 0.169
10.22 0.72 0.83
20.08 4.56 6.68
38.89 15.64 21.75
57.63 30.56 38.34
77.07 47.26 55.14
95.83 65.59 73.43
112.15 82.45 89.60

Outgoing beam width

This another parameter that we can try to match between experiment and
calculation. To do this, we first have to calibrate the picture of the pickoff
camera. As I understand, cameras in the virtual line have no optics in front of
them, the size of the laser beam energy distribution can simply be calculated
by multiplying the pixel numbers by the 5.86 µm physical pixel size. On the
other hand, the exit plane is imaged onto the pickoff camera by some optical
elements. The pickoff camera calibration is based on the idea that in vacuum
the width measured on the pickoff camera and on Vcam5 should be the same.
Thus we fit a Gaussian (azimuthally symmetric) onto the two camera pictures
and define the ”calibration factor” as widthV cam5/widthpickoff . Because there
are ten measurements in each set, we again take the average of the calibration
factor and this quantity too will have an uncertainty as displayed below in the
table and the plot. Moreover, it turns out that the calibration factor is not the
same for all the vacuum measurements - it has an energy dependence that is
outside the statistical uncertainty. Therefore the picture I have envisioned about
the measurement is clearly too simplistic again, there are factors affecting the
picture of the pickoff camera other than simple geometrical optics. Nevertheless
I will progress by creating a calibration curve once more using the energies of
the vacuum meaurements, the calibration factors and interpolation. I will again
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extrapolate for low energy values.
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Figure 7: Calibration curve for distribution width for pickoff camera. Red
diamonds with error bars mark the calibration points obtained from the vacuum
measurements.

And finally here is the plot the measured and calulated beam diameters, the
measured values have errorbars:
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Figure 8: Measured and calculated beam diameters. The numbers are the
beam diameter of the azimuthally symmetric Gaussian beam that best fits the
distribution. The width of the beam on the virtual exit is also shown.
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Different plasma densities

I have repeated the calculations for two other plasma densities, using the same
method for obtaining the initial parameters of the input gaussian beam. I will
skip making a table here, I just present the output energy and output pulse
diameteter plots:

For the N = 7× 1014/cm3 measurement:
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Figure 9: Outgoing pulse energy vs. input pulse energy for theN = 7×1014/cm3

calculation
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Figure 10: Measured and calculated beam diameters. The numbers are the
beam diameter of the azimuthally symmetric Gaussian beam that best fits the
distribution. The width of the beam on the virtual exit is also shown.
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And the N = 1× 1015/cm3 measurement:
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Figure 11: Outgoing pulse energy vs. input pulse energy for the N = 7 ×
1014/cm3 calculation
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Figure 12: Measured and calculated beam diameters. The numbers are the
beam diameter of the azimuthally symmetric Gaussian beam that best fits the
distribution. The width of the beam on the virtual exit is also shown.

Discussion

The figures show that the simulation does reproduce qualitatively the tenden-
cies followed by the input energy and pulse width, but is quantitatively not
very good. The output energy is overestimated and the beam width is under-
estimated by a considerable factor. A qualitative explanation can of course be
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offered: the real experimental beam is not a Gaussian. Even if it could be con-
sidered azimuthally symmetric, a non-gaussian beam (e.g. a flattened gaussian)
will diverge more, diffract in a wider radius than the nicest zero order gaussian.
That means that the beam will be wider and more energy will be lost when
creating a wider plasma channel than that calculated by the simulation with a
zero order gaussian input.

The “breakthrough” can nevertheless be well identified when the output
energy starts increasing from some very small values. This is the place where
the beam width is the narrowest. The approximate location is the same for the
calculation and the measurement, but a more “dense” set of measurements with
respect to energy could give us a better picture.

There are a number of issues that prevent a precise comparison at the mo-
ment even if the calculation is repeated with a more realistic input (which I
intend to do anyway).

• The energy calibration of the output energy meter is somewhat ad-hoc, the
fact that it depends on the input energy and is not merely some geometric
factor suggests that there is something systematic we would have to take
into account.

• Using a Gaussian fit and taking its width is also not a simple question.
We have some very “non-gaussian” distributions, a nonlinear fit will some-
times converge to different parameters depending on the initial parameter
set. Maybe some parameter that is not a fit like a “half-energy radius” or
a “90% energy radius“ would be better (the radius around the maximum
which contains half or 90% of the pulse energy).

• I have in fact tried calibrating the width of the distribution on the pickoff
to that on the virtual exit a different way as well. I have integrated in one
direction and used a 1D Gaussian to fit the resulting linear distribution.
I got very different calibration factors for the x and y directions. When I
derived calibration factors from the x-direction of the virtual exit to the
y-direction of the pickoff and vice versa (as if the image on the pickoff
was rotated by 90 degrees) I got two factors which were much closer, but
still quite different. Their average was very close to the calibration factors
produced with the 2D fit, but it does suggest that apart from rotational
transformations there must also be an amount of ”skewness“ somewhere.

• The difference between the measurement and the calculation is best where
the vapor is less dense - which suggests that maybe I should repeat cal-
culations with denser vapor (stonger nonlinearity) with more stringent
accuracy requirements.
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Figure 13: Gaussian beam fit normalized residuals.

Figure 14: Flattened Gaussian beam fit, N=6 normalized residuals.
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