
http://trackreco.github.io/ !
http://computing.fnal.gov/hepreco-scidac4/ 	

mkFit Project: Speeding up particle track
reconstruction using a vectorized and
parallelized Kalman Filter algorithm!

G. Cerati1, P. Elmer3, B. Gravelle5,!
M. Kortelainen1, S. Krutelyov4, S. Lantz2,!

M. Masciovecchio4, K. McDermott2, B. Norris5, A.
Reinsvold Hall1, D. Riley2, M. Tadel4,
P. Wittich2, F. Würthwein4, A. Yagil4 !

1. FNAL 2. Cornell 3. Princeton 4. UCSD 5. Oregon!
A. Hall! IRIS HEP Topical Meeting! 1!

Setting the stage !
•  Tracking is crucial for collider physics experiments!

–  Charged particle momentum, particle flow, MET, b-tagging…!
•  Tracking is time-consuming !

–  Uses approximately 50% of the time to reconstruct one event!
•  At the LHC, the problem is only getting worse as higher

instantaneous luminosities are reached !
–  Higher luminosity = more overlapping proton-proton collisions

(pileup, PU) and increase in combinatorics to deal with!

A. Hall! IRIS HEP Topical Meeting! 2!

Event display, CMS
2018 high PU run
(PU 136)!

LHC Schedule!
•  Time to reconstruct one event

increases exponentially with pileup!
•  In the HL-LHC, the average PU

will be 200 (instantaneous
luminosity of 5-7 x 1034 cm-2s-1)!

•  New solutions for tracking must be
explored!

A. Hall! IRIS HEP Topical Meeting! 3!

Figure 1. CPU time per event
versus instantaneous luminosity,
for both full reconstruction and
the dominant tracking portion.
Simulated data with pile-up of
25 primary interactions per
event (PU25) corresponds to the
data taken during 2012, while
pile-up of 140 (PU140)
corresponds to the low end of
estimates for the HL-LHC era.

as Intels Xeon Phi and NVIDIA general-purpose graphics processing units (GPGPUs). In this
investigation we have followed a staged approach, starting with Intel Xeon and Xeon Phi Knights
Corner (KNC) architectures, an idealized detector geometry, and a series of simpler “warm-up”
exercises such as track fitting. This simplified problem domain was used to develop our tools,
techniques, and understanding of the issues scaling track finding to many cores. The warm-up
exercises let us develop useful components while also allowing the physicists to become familiar
with the computational tools and techniques, while the computational experts learned about the
problem domain. Armed with the results of those initial investigations, we are now addressing
more realistic detector geometries and event content, as well as adding new platforms. This
paper gives an overview of our progress to date and assesses the e↵ectiveness of our staged
approach.

2. Kalman Filter Tracking
Our targets for parallel processing are track reconstruction and fitting algorithms based on the
Kalman Filter [3] (KF). KF-based tracking algorithms are widely used to incorporate estimates
of multiple scattering directly into the trajectory of the particle. Other algorithms, such as
Hough Transforms and Cellular Automata [4][5], are more naturally parallelized. However,
these are not the main algorithms in use at the LHC today. The LHC experiments have an
extensive understanding of the physics performance of KF algorithms; they have proven to be
robust and perform well in the di�cult experimental environment of the LHC.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides
the initial estimate of the track parameters based on a few hits in the innermost regions of the
detector; seeding is currently out of scope for our project. Track building projects the track
candidate outwards to collect additional hits, using the KF to estimate which hits represent the
most likely continuation of the track candidate. Track building is the most time consuming step,
as it requires branching to explore multiple candidate tracks per seed after finding compatible
hits on a given layer. When a complete track has been reconstructed, a final fit using the KF is
performed to provide the best estimate of the track’s parameters.

To take full advantage of parallel architectures, we need to exploit two types of parallelism:
vectorization and parallelization. Vector operations perform a single instruction on multiple data
(SIMD) at the same time, in lockstep. In tracking, branching to explore multiple candidates per

Hints at a solution!
•  Can no longer rely on frequency to keep growing exponentially!

–  Nothing for free anymore!
•  Since 2005, most of the gains in single-thread performance come

from SIMD or vector operations!
–  Also starting to taper off!

•  Instead, number of logical cores continues to grow!
•  Need to rewrite our !

algorithms to take !
advantage of both
parallelization and
vectorization!

A. Hall! IRIS HEP Topical Meeting! 4!

Parallelized Kalman Filter Project!
!

A. Hall! IRIS HEP Topical Meeting! 5!

Code name: mkFit!
Matriplex Kalman Finder/Fitter!

Parallelized KF Tracking Project!
•  Ongoing project for 3+ years!
•  Mission: adapt traditional Kalman Filter (KF) tracking

algorithms to maximize usage of vector units and multicore
architectures!

•  Goal is to be useful in the CMS HLT!
–  Test algorithm online in Run 3!
–  Fully deploy algorithm in the HL-LHC!

•  Testing on Intel Xeon and Intel Xeon Phi!
–  Longer term: adapt algorithm for GPUs (not covered today)!

•  Focus is on track building!

A. Hall! IRIS HEP Topical Meeting! 6!

See project website
for details:

http://trackreco.github.io/	

SciDAC Project !
•  Fermilab and U of Oregon are collaborating on mkFit as

part of a 3-year SciDAC project!
•  Two prongs: !

–  Track reconstruction in collider experiments!
–  Reconstruction for neutrino experiments using liquid argon

time projection chamber detectors!
•  Goals for both cases: !

–  Write faster code that takes advantage of parallel architectures!
–  Eventually incorporate the algorithms back into the

experiment’s software frameworks !

A. Hall! IRIS HEP Topical Meeting! 7!

See SciDAC project website for details:!
http://computing.fnal.gov/hepreco-scidac4/ 	

Using the Kalman Filter!
Benefits of the Kalman Filter for
track finding/fitting:!
•  Robust handling of multiple

scattering, energy loss, and other
material effects!

•  Widely used in HEP!
•  Demonstrated physics

performance!
!
Two step process:!
1.  Propagate the track state from

layer N-1 to layer N (prediction) !
2.  Update the state using the

detector hit (measurement) on
layer N!

A. Hall! IRIS HEP Topical Meeting! 8!

Predicted track state!
Detector measurement!
Updated track state!

Track building in a nutshell!
•  Start with a seed track !
•  Propagate track state to the next

detector layer !
•  Find detector hits near projected

intersection of track with layer!
–  Problem of combinatorics: could

find 0 hits, 1 hit, or several hits !
•  Select best fit track-hit combinations

as track candidates!
–  Update estimated state of all track

candidates with new hit!
–  At each layer, the number of possible

track candidates per seed increases!
•  Iterate!

A. Hall! IRIS HEP Topical Meeting! 9!

Parallelization and Vectorization!
•  Task scheduling is handled via TBB library from Intel!
•  Parallelization at multiple levels!

-  parallel for: N events in flight!
- parallel for: 5 regions in η in each event!

- parallel for: seed-driven batching, 16 or 32 seeds per
batch!

•  Vectorized processing of individual track candidates where
possible!
–  Using both compiler vectorization and the Matriplex library !

A. Hall! IRIS HEP Topical Meeting! 10!

Matriplex Library!
•  Custom library for vectorization of small matrix operations!
•  “Matrix-major” representation designed to fill a vector unit with n

small matrices and operate on each matrix in sync!
•  Includes code generator to generate C++ code or intrinsics for

matrix multiplication of a given dimension !
–  Can be told about known 0 and 1 elements matrices to reduce

number of operations by up to 40%!
•  Used for all Kalman filter related operations!

A. Hall! IRIS HEP Topical Meeting! 11!

Integrating mkFit into CMS!

A. Hall! IRIS HEP Topical Meeting! 12!

Runtime Options!
MkFit algorithm can be used in multiple setups:!
1.  Standalone code!

–  Input: simple data format created by doing a memory dump of
data structures (hits, seeds, sim and reco tracks)!

–  Useful for development and validation of compute performance !
2.  Integrated into offline CMSSW !
–  MkFit is compiled separately and used as an external package!
–  Input: data are pulled from CMSSW data structures and

formatted into mkFit data structures. !
–  After building, mkFit tracks are reformatted into CMSSW

track candidates!
–  Testing in offline reconstruction!
–  Testing in online (HLT) reconstruction - Work in progress!
!
!
!

A. Hall! IRIS HEP Topical Meeting! 13!

Runtime Options!
MkFit algorithm can be used in multiple setups:!
1.  Standalone code!

–  Input: simple data format created by doing a memory dump of
data structures (hits, seeds, sim and reco tracks)!

–  Useful for development and validation of compute performance !
2.  Integrated into offline CMSSW !
–  MkFit is compiled separately and used as an external package!
–  Input: data are pulled from CMSSW data structures and

formatted into mkFit data structures. !
–  After building, mkFit tracks are reformatted into CMSSW

track candidates!
–  Testing in offline reconstruction!
–  Testing in online (HLT) reconstruction - Work in progress!
!
!
!

A. Hall! IRIS HEP Topical Meeting! 14!

Data structure conversions are

costly – need to find ways to

mitigate this between algorithms!

CMS Iterative Tracking!
•  To reduce combinatorics, CMS

performs track finding over
several iterations!
–  Start with tracks that are easiest

to find, end with the most
difficult tracks!

–  Between each iteration remove
hits that have been associated to
a track!

•  mkFit focuses on initial iteration:!
–  Seed tracks with 4 hits and no

beam-spot constraint!
–  Find most prompt tracks!

•  Could easily be extended to
include other iterations!

A. Hall! IRIS HEP Topical Meeting! 15!

Sim. track prod. vertex radius (cm)
0 10 20 30 40 50 60

Tr
ac

ki
ng

 e
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2
=35)〉PU〈 event tracks (tt

 > 0.9 GeV,
T

p
| < 2.5η|

Initial
+HighPtTriplet
+LowPtQuad
+LowPtTriplet
+DetachedQuad
+DetachedTriplet
+MixedTriplet
+PixelLess
+TobTec
+JetCore
+Muon inside-out
+Muon outside-in

 13 TeVCMS Simulation preliminary

CMS Tracker!
•  CMS tracker uses silicon pixels and silicon strips!
•  Pixel region (closest to the beam pipe) used for seeding!

Example of a CMS endcap disk!

A. Hall! IRIS HEP Topical Meeting! 16!

CMS-2017 Geometry in mkFit !
•  Unlike CMSSW, choose not

to deal with detector modules,
only layers!
– Makes algorithm faster and

more lightweight!
•  Geometry implemented as a

plugin: core algorithm is
entirely separate from
detector geometry!

•  Track propagation to center
of layer, then hit selection!

•  In overlap regions, only pick
the single best hit!
•  Use CMSSW for the final fit
because it has full geometry !

A. Hall! IRIS HEP Topical Meeting! 17!

Actual geometry used by MkFit!
Layer centroids!

!
!
!
!
!
!

Layer size!

CMS-2017 Geometry
8 Mario Masciovecchio (UCSD), 7 November 2018

•  Top:
o  Layer centroids

•  Bottom:
o  Layer size
o  Actual geometry

used by mkFit

•  Geometry is implemented as a plugin

CMS-2017 Geometry
8 Mario Masciovecchio (UCSD), 7 November 2018

•  Top:
o  Layer centroids

•  Bottom:
o  Layer size
o  Actual geometry

used by mkFit

•  Geometry is implemented as a plugin

Physics and Compute Performance!

A. Hall! IRIS HEP Topical Meeting! 18!

Efficiency of mkFit!
•  Shown here: algorithm-level efficiency for long (≥ 12 hit) tracks!
•  mkFit is at least as efficient as CMSSW, even for low pT tracks!

–  Crucial for accurate particle flow reconstruction!
•  Much of the effort in the last year has focused on achieving this

important milestone!
•  Next steps: improve efficiency for short tracks. Development for this

is already in progress!

A. Hall! IRIS HEP Topical Meeting! 19!

CMSSW!
!

MkFit!

TTBar PU 70!

Duplicate Removal!
•  In CMSSW, tracks are built sequentially !

–  Skip seeds that have already been included in a track candidate!
•  In mkFit, two step process to minimize duplicates:!

–  Dedicated seed cleaning before track finding!
–  Dedicated duplicate removal of track candidates after track

finding !

A. Hall! 20!

•  Second step not optimized,
still able to reduce rate to
< 2%!

•  Similar dedicated cleaning
will be used to lower fake
rate; not implemented yet!

IRIS HEP Topical Meeting!

Speedup vs # of Threads!

A. Hall! IRIS HEP Topical Meeting! 21!

•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!
•  Turbo boost disabled!

Number of Threads!

Intel Xeon!
 Skylake SKL (Gold 6130)!

Intel Xeon Phi !
Knight’s Landing KNL (7210)!

Excellent scaling at low threads –
independent of exact architecture!

30!
25!
20!
15!
10!
5!
0!Sp

ee
du

p
pe

r
ev

en
t!

10 20 30 40 50 60 !
Number of Threads!

80!
70!
60!
50!
40!
30!
20!
10!
0!Sp

ee
du

p
pe

r
ev

en
t!

50 100 150 200 250!

Speedup vs size of vector units!
Algorithm uses vectorization successfully-
60 - 70% of code is vectorized!!

A. Hall! IRIS HEP Topical Meeting! 22!

Intel Xeon SKL!

•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!

Matriplex Vector Width (floats)!
2 4 6 8 10 12 14 16 !

16!
14!
12!
10!
8!
6!
4!
2!
0!Sp

ee
du

p
pe

r
ev

en
t!

Speedup vs # of events in flight!

A. Hall! IRIS HEP Topical Meeting! 23!

Intel Xeon SKL!

Number of threads!

Can get speedups up to x25 using
multiple events in flight!

30!
25!
20!
15!
10!
5!
0!Sp

ee
du

p
pe

r
ev

en
t!

Number of threads!
10 20 30 40 50 60 !

•  Results include time for full loop, including I/O, handling the seeds, etc !
•  Measured using standalone configuration!
•  Previous plots used only a single event in flight!

Integrated Timing Performance!
Technical Details!
•  Run mkFit within CMSSW!
•  mkFit used for building only!
•  Single-thread test using TTBar PU 50!
Results!
•  Track building is 4.3x faster!
•  40% of time is spent in data format

conversions – actual track finding is
7x faster !

•  Track building now takes less time
than track fitting!

•  Even larger potential speedups if
multiple threads are used!

A. Hall! IRIS HEP Topical Meeting! 24!

CMSSW!
!

MkFit!

* Measured on SKL, mkFit
compiled with AVX-512,
turbo boost disabled !

Conclusions!
•  Status of parallelized KF tracking (aka mkFit) is well advanced !
•  Physics performance comparable to CMSSW!
•  On a single thread, our core algorithm is seven times faster

than offline CMSSW reconstruction (ignoring data conversions)!
•  Track building is now faster than track fitting!
•  Next milestone: test algorithm in HLT environment !
•  Future plans:!

–  Publish paper (later this year) documenting the algorithm to
be tested in the CMS HLT!

–  Production release of Matriplex library !
–  Develop a GPU implementation of our algorithm!
!
!

A. Hall! IRIS HEP Topical Meeting! 25!

Backup!

A. Hall! IRIS HEP Topical Meeting! 26!

Track Finding Algorithms!
•  Standard algorithm!

–  If a hit matches, then the candidate track is cloned and the hit
is added to the track. After looping over all of the hits, the set
of candidates is sorted and the best N candidates are kept. !

•  Best hit !
–  No branching allowed. Select only the best hit from each layer.!

•  Clone engine!
–  Same as standard, but the amount of copying is reduced by

adding hits and track metrics to a bookkeeping list instead of
cloning the candidate. After looping over all of the hits, the
list is sorted and only the best N candidates are cloned and
kept. !

–  Expect to have the same output as the standard algorithm!

A. Hall! IRIS HEP Topical Meeting! 27!

Key Differences wrt CMSSW!

A. Hall! IRIS HEP Topical Meeting! 28!

CMSSW! MkFit!

Seed
Cleaning!

Build tracks sequentially and
reject seeds that have already
been included in a track candidate!

Everything is done in parallel.
Apply seed cleaning before trying to
build any tracks. Remove duplicates
after track building!

Hit
Position!

Reevaluate the hit position using
the track direction!

Hit position is taken from local
reconstruction and not updated!

Inactive
modules!

Able to access the detector status
database to make sure modules
were active!

Cannot access DB so no knowledge
of inactive modules!

Geometry ! Retains information about the
detailed CMS geometry!

Knows only about layers, not
detector modules!

Magnetic
Field!

Parameterized magnetic field! Currently using flat field. Will
eventually use parameterized field!

Module
Overlaps!

Can pick up multiple hits while
track building!

MkFit can only pick up one hit. We
could pick up overlap hits during
backward fit. Not implemented yet.!

Figures of Merit!
•  Different validation suites used for the two runtime options.

Different choices and definitions made in order to achieve
different goals (details on next slide)!

•  mkFit Validation: algorithm-level efficiency. !
–  Used for standalone configuration!
–  Goal is to make sure our algorithm is as efficient as CMSSW for

long (≥ 10 hits) tracks. Serves as a starting point to evaluate
mkFit’s performance.!

•  Multi-track Validation (MTV): absolute efficiency. !
–  Used for mkFit integrated into CMSSW!
–  Goal is to see the absolute performance of the tracking algorithm.

Includes seed building efficiency.!
Efficiency: fraction of reference tracks matched to a reco track!

A. Hall! IRIS HEP Topical Meeting! 29!

Validation Definitions!

A. Hall! IRIS HEP Topical Meeting! 30!

mkFit validation! MTV!
Reference
tracks!

•  SIM or CMSSW tracks
with ≥ 12 layers
(including 4 seed layers)!

•  SIM tracks must be
matched to a seed!

SIM tracks satisfying!
•  pT > 0.9 GeV!
•  |eta| < 2.5 !
•  |dxy| < 3.5 cm !
No seed matching requirement!

To-be-
validated
reconstructed
tracks!

•  Reco. tracks with ≥ 10
hits!

•  For mkFit tracks, 4 of
the hits are required from
the seed!

No additional requirements!

Matching
criteria between
ref. and reco.
tracks!

Considered matched if ≥
50% of the hits are shared,
excluding the seed!

Considered matched if > 75% of
the clusters of the reco track
contain charge induced by the
reference track!

Architectures!

•  Intel Xeon Phi Knight’s Landing KNL (7210)!
–  64 physical cores, 256 logical cores, 1.3 GHz, AVX512 support!

•  Intel Xeon Skylake SKL (Gold 6130)!
–  32 physical cores, 64 logical cores, 2.1 GHz, AVX512 support!

•  Intel Xeon Sandy Bridge SNB (E5-2620)!
–  12 physical cores, 24 logical cores, 2.0 GHz, AVX2 support!

A. Hall! IRIS HEP Topical Meeting! 31!

