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Setting the stage !
•  Tracking is crucial for collider physics experiments!

–  Charged particle momentum, particle flow, MET, b-tagging…!
•  Tracking is time-consuming !

–   Uses approximately 50% of the time to reconstruct one event!
•  At the LHC, the problem is only getting worse as higher 

instantaneous luminosities are reached !
–  Higher luminosity = more overlapping proton-proton collisions 

(pileup, PU) and increase in combinatorics to deal with!
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Event display, CMS 
2018 high PU run 
(PU 136)!



LHC Schedule!
•  Time to reconstruct one event 

increases exponentially with pileup!
•  In the HL-LHC, the average PU 

will be 200 (instantaneous 
luminosity of 5-7 x 1034 cm-2s-1)!

•  New solutions for tracking must be 
explored!
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Figure 1. CPU time per event
versus instantaneous luminosity,
for both full reconstruction and
the dominant tracking portion.
Simulated data with pile-up of
25 primary interactions per
event (PU25) corresponds to the
data taken during 2012, while
pile-up of 140 (PU140)
corresponds to the low end of
estimates for the HL-LHC era.

as Intels Xeon Phi and NVIDIA general-purpose graphics processing units (GPGPUs). In this
investigation we have followed a staged approach, starting with Intel Xeon and Xeon Phi Knights
Corner (KNC) architectures, an idealized detector geometry, and a series of simpler “warm-up”
exercises such as track fitting. This simplified problem domain was used to develop our tools,
techniques, and understanding of the issues scaling track finding to many cores. The warm-up
exercises let us develop useful components while also allowing the physicists to become familiar
with the computational tools and techniques, while the computational experts learned about the
problem domain. Armed with the results of those initial investigations, we are now addressing
more realistic detector geometries and event content, as well as adding new platforms. This
paper gives an overview of our progress to date and assesses the e↵ectiveness of our staged
approach.

2. Kalman Filter Tracking
Our targets for parallel processing are track reconstruction and fitting algorithms based on the
Kalman Filter [3] (KF). KF-based tracking algorithms are widely used to incorporate estimates
of multiple scattering directly into the trajectory of the particle. Other algorithms, such as
Hough Transforms and Cellular Automata [4][5], are more naturally parallelized. However,
these are not the main algorithms in use at the LHC today. The LHC experiments have an
extensive understanding of the physics performance of KF algorithms; they have proven to be
robust and perform well in the di�cult experimental environment of the LHC.

KF tracking proceeds in three main stages: seeding, building, and fitting. Seeding provides
the initial estimate of the track parameters based on a few hits in the innermost regions of the
detector; seeding is currently out of scope for our project. Track building projects the track
candidate outwards to collect additional hits, using the KF to estimate which hits represent the
most likely continuation of the track candidate. Track building is the most time consuming step,
as it requires branching to explore multiple candidate tracks per seed after finding compatible
hits on a given layer. When a complete track has been reconstructed, a final fit using the KF is
performed to provide the best estimate of the track’s parameters.

To take full advantage of parallel architectures, we need to exploit two types of parallelism:
vectorization and parallelization. Vector operations perform a single instruction on multiple data
(SIMD) at the same time, in lockstep. In tracking, branching to explore multiple candidates per



Hints at a solution!
•  Can no longer rely on frequency to keep growing exponentially!

–  Nothing for free anymore!
•  Since 2005, most of the gains in single-thread performance come 

from SIMD or vector operations!
–  Also starting to taper off!

•  Instead, number of logical cores continues to grow!
•  Need to rewrite our !

algorithms to take !
advantage of both    
parallelization and     
vectorization!
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Parallelized Kalman Filter Project!
!
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Code name: mkFit!
Matriplex Kalman Finder/Fitter!



Parallelized KF Tracking Project!
•  Ongoing project for 3+ years!
•  Mission: adapt traditional Kalman Filter (KF) tracking 

algorithms to maximize usage of vector units and multicore 
architectures!

•  Goal is to be useful in the CMS HLT!
–  Test algorithm online in Run 3!
–  Fully deploy algorithm in the HL-LHC!

•  Testing on Intel Xeon and Intel Xeon Phi!
–  Longer term: adapt algorithm for GPUs (not covered today)!

•  Focus is on track building!
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See project website      
for details:

http://trackreco.github.io/	



SciDAC Project !
•  Fermilab and U of Oregon are collaborating on mkFit as 

part of a 3-year SciDAC project!
•  Two prongs: !

–  Track reconstruction in collider experiments!
–  Reconstruction for neutrino experiments using liquid argon 

time projection chamber detectors!
•  Goals for both cases: !

–  Write faster code that takes advantage of parallel architectures!
–  Eventually incorporate the algorithms back into the 

experiment’s software frameworks !
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See SciDAC project website for details:!
http://computing.fnal.gov/hepreco-scidac4/ 	



Using the Kalman Filter!
Benefits of the Kalman Filter for 
track finding/fitting:!
•  Robust handling of multiple 

scattering, energy loss, and other 
material effects!

•  Widely used in HEP!
•  Demonstrated physics 

performance!
!
Two step process:!
1.  Propagate the track state from 

layer N-1 to layer N (prediction) !
2.  Update the state using the 

detector hit (measurement) on 
layer N!
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Predicted track state!
Detector measurement!
Updated track state!



Track building in a nutshell!
•  Start with a seed track !
•  Propagate track state to the next 

detector layer !
•  Find detector hits near projected 

intersection of track with layer!
–  Problem of combinatorics: could 

find 0 hits, 1 hit, or several hits !
•  Select best fit track-hit combinations 

as track candidates!
–  Update estimated state of all track 

candidates with new hit!
–  At each layer, the number of possible 

track candidates per seed increases!
•  Iterate!
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Parallelization and Vectorization!
•  Task scheduling is handled via TBB library from Intel!
•  Parallelization at multiple levels!

-  parallel for: N events in flight!
- parallel for: 5 regions in η in each event!

- parallel for: seed-driven batching, 16 or 32 seeds per 
batch!

•  Vectorized processing of individual track candidates where 
possible!
–  Using both compiler vectorization and the Matriplex library !
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Matriplex Library!
•  Custom library for vectorization of small matrix operations!
•  “Matrix-major” representation designed to fill a vector unit with n 

small matrices and operate on each matrix in sync!
•  Includes code generator to generate C++ code or intrinsics for 

matrix multiplication of a given dimension !
–  Can be told about known 0 and 1 elements matrices to reduce 

number of operations by up to 40%!
•  Used for all Kalman filter related operations!
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Integrating mkFit into CMS!
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Runtime Options!
MkFit algorithm can be used in multiple setups:!
1.  Standalone code!

–  Input: simple data format created by doing a memory dump of 
data structures (hits, seeds, sim and reco tracks)!

–  Useful for development and validation of compute performance !
2.  Integrated into offline CMSSW !
–  MkFit is compiled separately and used as an external package!
–  Input: data are pulled from CMSSW data structures and 

formatted into mkFit data structures. !
–  After building, mkFit tracks are reformatted into CMSSW 

track candidates!
–  Testing in offline reconstruction!
–  Testing in online (HLT) reconstruction - Work in progress!
!
!
!
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Data structure conversions are 

costly – need to find ways to 

mitigate this between algorithms!



CMS Iterative Tracking!
•  To reduce combinatorics, CMS 

performs track finding over 
several iterations!
–  Start with tracks that are easiest 

to find, end with the most 
difficult tracks!

–  Between each iteration remove 
hits that have been associated to 
a track!

•  mkFit focuses on initial iteration:!
–  Seed tracks with 4 hits and no 

beam-spot constraint!
–  Find most prompt tracks!

•  Could easily be extended to 
include other iterations!
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CMS Tracker!
•  CMS tracker uses silicon pixels and silicon strips!
•  Pixel region (closest to the beam pipe) used for seeding!

Example of a CMS endcap disk!
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CMS-2017 Geometry in mkFit !
•  Unlike CMSSW, choose not 

to deal with detector modules, 
only layers!
– Makes algorithm faster and 

more lightweight!
•  Geometry implemented as a 

plugin: core algorithm is 
entirely separate from 
detector geometry!

•  Track propagation to center 
of layer, then hit selection!

•  In overlap regions, only pick 
the single best hit!
•  Use CMSSW for the final fit 
because it has full geometry !
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Actual geometry used by MkFit!
Layer centroids!

!
!
!
!
!
!

Layer size!

CMS-2017 Geometry 
8 Mario Masciovecchio (UCSD), 7 November 2018 

•  Top: 
o  Layer centroids 
 

•  Bottom: 
o  Layer size 
o  Actual geometry 

used by mkFit 

•  Geometry is implemented as a plugin 
 

CMS-2017 Geometry 
8 Mario Masciovecchio (UCSD), 7 November 2018 

•  Top: 
o  Layer centroids 
 

•  Bottom: 
o  Layer size 
o  Actual geometry 

used by mkFit 

•  Geometry is implemented as a plugin 
 



Physics and Compute Performance!
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Efficiency of mkFit!
•  Shown here: algorithm-level efficiency for long (≥ 12 hit) tracks!
•  mkFit is at least as efficient as CMSSW, even for low pT tracks!

–  Crucial for accurate particle flow reconstruction!
•  Much of the effort in the last year has focused on achieving this 

important milestone!
•  Next steps: improve efficiency for short tracks. Development for this 

is already in progress!
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CMSSW!
!

MkFit!

TTBar PU 70!



Duplicate Removal!
•  In CMSSW, tracks are built sequentially !

–  Skip seeds that have already been included in a track candidate!
•   In mkFit, two step process to minimize duplicates:!

–  Dedicated seed cleaning before track finding!
–  Dedicated duplicate removal of track candidates after track 

finding !
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•  Second step not optimized, 
still able to reduce rate to 
< 2%!

•  Similar dedicated cleaning 
will be used to lower fake 
rate; not implemented yet!

IRIS HEP Topical Meeting!



Speedup vs # of Threads!
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•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!
•  Turbo boost disabled!

Number of Threads!

Intel Xeon!
 Skylake SKL (Gold 6130)!

Intel Xeon Phi !
Knight’s Landing KNL (7210)!

Excellent scaling at low threads – 
independent of exact architecture!
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Speedup vs size of vector units!
Algorithm uses vectorization successfully-     
60 - 70% of code is vectorized!!
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Intel Xeon SKL!

•  Results for track building only; does not include overhead!
•  Measured using standalone configuration, single event in flight!

Matriplex Vector Width (floats)!
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Speedup vs # of events in flight!
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Intel Xeon SKL!

Number of threads!

Can get speedups up to x25 using 
multiple events in flight!
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•  Results include time for full loop, including I/O, handling the seeds, etc !
•  Measured using standalone configuration!
•  Previous plots used only a single event in flight!



Integrated Timing Performance!
Technical Details!
•  Run mkFit within CMSSW!
•  mkFit used for building only!
•  Single-thread test using TTBar PU 50!
Results!
•  Track building is 4.3x faster!
•  40% of time is spent in data format 

conversions – actual track finding is 
7x faster !

•  Track building now takes less time 
than track fitting!

•  Even larger potential speedups if 
multiple threads are used!
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CMSSW!
!

MkFit!

* Measured on SKL, mkFit 
compiled with AVX-512, 
turbo boost disabled !



Conclusions!
•  Status of parallelized KF tracking (aka mkFit) is well advanced !
•  Physics performance comparable to CMSSW!
•  On a single thread, our core algorithm is seven times faster 

than offline CMSSW reconstruction (ignoring data conversions)!
•  Track building is now faster than track fitting!
•  Next milestone: test algorithm in HLT environment !
•  Future plans:!

–  Publish paper (later this year) documenting the algorithm to 
be tested in the CMS HLT!

–  Production release of Matriplex library !
–  Develop a GPU implementation of our algorithm!
!
!
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Backup!
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Track Finding Algorithms!
•  Standard algorithm!

–  If a hit matches, then the candidate track is cloned and the hit 
is added to the track. After looping over all of the hits, the set 
of candidates is sorted and the best N candidates are kept. !

•  Best hit !
–  No branching allowed. Select only the best hit from each layer.!

•  Clone engine!
–  Same as standard, but the amount of copying is reduced by 

adding hits and track metrics to a bookkeeping list instead of 
cloning the candidate. After looping over all of the hits, the 
list is sorted and only the best N candidates are cloned and 
kept.  !

–  Expect to have the same output as the standard algorithm!
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Key Differences wrt CMSSW!
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CMSSW! MkFit!

Seed 
Cleaning!

Build tracks sequentially and 
reject seeds that have already 
been included in a track candidate!

Everything is done in parallel. 
Apply seed cleaning before trying to 
build any tracks. Remove duplicates 
after track building!

Hit 
Position!

Reevaluate the hit position using 
the track direction!

Hit position is taken from local 
reconstruction and not updated!

Inactive 
modules!

Able to access the detector status 
database to make sure modules 
were active!

Cannot access DB so no knowledge 
of inactive modules!

Geometry ! Retains information about the 
detailed CMS geometry!

Knows only about layers, not 
detector modules!

Magnetic 
Field!

Parameterized magnetic field! Currently using flat field. Will 
eventually use parameterized field!

Module 
Overlaps!

Can pick up multiple hits while 
track building!

MkFit can only pick up one hit. We 
could pick up overlap hits during 
backward fit. Not implemented yet.!



Figures of Merit!
•  Different validation suites used for the two runtime options. 

Different choices and definitions made in order to achieve 
different goals (details on next slide)!

•  mkFit Validation: algorithm-level efficiency. !
–  Used for standalone configuration!
–  Goal is to make sure our algorithm is as efficient as CMSSW for 

long (≥ 10 hits) tracks. Serves as a starting point to evaluate 
mkFit’s performance.!

•  Multi-track Validation (MTV): absolute efficiency. !
–  Used for mkFit integrated into CMSSW!
–  Goal is to see the absolute performance of the tracking algorithm. 

Includes seed building efficiency.!
Efficiency: fraction of reference tracks matched to a reco track!
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Validation Definitions!
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mkFit validation! MTV!
Reference 
tracks!

•  SIM or CMSSW tracks 
with ≥ 12 layers 
(including 4 seed layers)!

•  SIM tracks must be 
matched to a seed!

SIM tracks satisfying!
•  pT > 0.9 GeV!
•  |eta| < 2.5 !
•  |dxy| < 3.5 cm !
No seed matching requirement!

To-be-
validated 
reconstructed 
tracks!

•  Reco. tracks with ≥ 10 
hits!

•  For mkFit tracks, 4 of 
the hits are required from 
the seed!

No additional requirements!

Matching 
criteria between 
ref. and reco. 
tracks!

Considered matched if ≥ 
50% of the hits are shared, 
excluding the seed!

Considered matched if > 75% of 
the clusters of the reco track 
contain charge induced by the 
reference track!



Architectures!

•  Intel Xeon Phi Knight’s Landing KNL (7210)!
–  64 physical cores, 256 logical cores, 1.3 GHz, AVX512 support!

•  Intel Xeon Skylake SKL (Gold 6130)!
–  32 physical cores, 64 logical cores, 2.1 GHz, AVX512 support!

•  Intel Xeon Sandy Bridge SNB (E5-2620)!
–  12 physical cores, 24 logical cores, 2.0 GHz, AVX2 support!
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