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OUTLINE - following this strategy

This does not replace a full course (i.e. ≈ 60 hours, some additional

material in backup slides, details in bibliography)

Also, it cannot be treated systematically without special relativity.

The main topics discussed:

Basic electromagnetic phenomena, to arrive at:

Maxwell’s equations

Lorentz force, charged particles in electromagnetic fields

Electromagnetic waves in vacuum

Electromagnetic waves in conducting media, waves in RF cavities

and wave guides

Special Relativity should come in here to sort out some issues



Variables, notations and units used in this lecture

Formulae use SI units throughout.

~E(~r, t) = electric field [V/m]
~H(~r, t) = magnetic field [A/m]
~D(~r, t) = electric displacement [C/m2]
~B(~r, t) = magnetic flux density [T]

q = electric charge [C]

ρ(~r, t) = electric charge density [C/m3]
~I, ~j(~r, t) = current [A], current density [A/m2]

µ0 = permeability of vacuum, 4 π · 10−7 [H/m or N/A2]

ǫ0 = permittivity of vacuum, 8.854 ·10−12 [F/m]

c = speed of light in free space, 299792458.0 [m/s]

h = Planck constant, 6.62607 ·10−34 [J s]



FAQ: do we really need Maxwell’s equations (instead of explaining the phenomena) ?

- They are fairly abstract and use some advanced mathematics, but they do not

really say what is happening to fields and particles

- However they provide a (very successful) framework to model the observations,

but cannot really call it a ”theory”).

- Some early attempts tried to explain fields as some kind of ”gear wheels” or

some ”stress” between some kind of material (would still be compatible with

Maxwell)

What is needed is a set of concepts to conveniently ”describe” the effects in

mathematical terms to arrive at:

A formulation, to figure out the characteristics of a solution of a problem,

without actually solving it.

Maxwell’s equations do exactly that job !



- ELECTROSTATICS -

Electrostatics deals with:

- Charges Q

- (Static) Electric fields ~E generated by the charges



Recap: vectors and vector calculus define a special vector ∇

called the ”gradient”: ∇ def
= (

∂

∂x
,

∂

∂y
,

∂

∂z
)

Can be used like any other vector (e.g. in vector and scalar products),

for example on a vector ~F (x, y, z) or a scalar function φ(x, y, z):

∇ · ~F =
∂

∂x
F1 +

∂

∂y
F2 +

∂

∂z
F3 =

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

∇× ~F =

(
∂F3

∂y
− ∂F2

∂z
,

∂F1

∂z
− ∂F3

∂x
,

∂F2

∂x
− ∂F1

∂y

)

∇φ = (
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z
)

A very versatile object ...



Consider it an operator-in-waiting (for something to work on ..)

Depending how it is used in products the results are very different:

∇ · ~F is a scalar ( e.g. ”density” of a source, see later)

∇ φ is a ”honest” vector ( e.g. electric field ~E, force )

∇× ~F is a pseudo-vector

Works also on matrices (of course) and on itself (e.g.):

∇ · ∇ (also written as ∆)

∇× (∇× ~F ) = ∇ · (∇ · ~F ) − ∆~F

etc. all kind of contraptions ...



Two operations with ∇ acting on vectors have special names:

DIVERGENCE (scalar product of ∇ with a vector):

div(~F )
def
= ∇ · ~F =

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

Physical significance: measure of something ”coming out”

CURL (vector product of ∇ with a vector):

curl(~F )
def
= ∇× ~F =

(

∂F3

∂y
− ∂F2

∂z
,

∂F1

∂z
− ∂F3

∂x
,

∂F2

∂x
− ∂F1

∂y

)

Physical significance: measure of something ”circulating”



Example: Coulomb field of an isolated charge Q

A local charge Q (e.g. a particle in a beam) generates an electric

field ~E according to:

~E(x, y, z) =
Q

4πǫ0

~r

r3
~r = (x, y, z)

Absolute value depends on :

∣
∣
∣
∣

~r

r3

∣
∣
∣
∣

=
1

r2

Field lines pointing away or towards the charge : ~r

Charges are pushed or attracted along the field lines

Expect that div ~E should be relevant



We can do the (non-trivial∗) computation of the divergence:

div ~E = ∇ ~E =
dEx

dx
+

dEy

dy
+

dEz

dz
=

ρ

ǫ0

(negative charges) (positive charges)

∇ · ~E < 0 ∇ · ~E > 0

Divergence related to charge density ρ∗∗ generating the field ~E

Charge density ρ is charge per volume∗∗∗: ρ =
Q

V
=⇒

∫∫∫

ρ dV = Q

∗ see later
∗∗ sometime called ”source density”
∗∗∗ becomes important later



Counting charges and field lines (a simple pictorial form)

Surface integrals: integrate (adding up) field vectors passing through a surface S

(or area A), we obtain the Flux

Φ =
N
∑

i

~E =
Q

ǫ0

Intuitively: count ”arrows”, how many (N) and how long Qi (strong fields)

The surface can also be wrapped up (closed) to encompass a volume, e.g.:

  



Replace individual charges by charge density:

qi =⇒ ρ(x, y, z) i.e. charge per unit volume dV

For a charge density the sum is replaced by an integral of ~E through the surface

element d ~A:

Φ =
N
∑

i

~E

∫

S

~E d ~A



 and

∫

V

ρ dV = Q





The volume V is the one enclosed by the surface S

This holds for any arbitrary (closed) surface S, and:

Does not matter how the particles are distributed inside the volume

Does not matter whether the particles are moving (for this part)

Does not matter whether the particles are in vacuum or material



Using this vector calculus (here you have to believe me) :

∫

S

~E · d ~A =

∫

V

∇ ~E · dV

︸ ︷︷ ︸

Gauss′ formula

(relates surface and volume integrals)

∇ ~E =
ρ

ǫ0
written as divergence : div ~E

ΦE =
∫

S

~E · d ~A =
∫

V

ρ

ǫ0
· dV =

Q

ǫ0
= ΦE

Flux of electric field ~E through any closed surface is proportional to net electric

charge Q enclosed in the region (Gauss’ Theorem).

Written with charge density ρ we have:

div ~E = ∇ · ~E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

ρ

ǫ0



Simplest possible example: flux from a charge q

   

+q

dA
E

A charge q generates a field ~E according to (Coulomb):

~E =
q

4πǫ0

~r

r3

Enclose it by a sphere: ~E = const. on a sphere (area is 4π · r2):
∫

sphere

~E · d ~A =
q

4πǫ0

∫

sphere

dA

r2
=

q

ǫ0

Surface integral through sphere A is charge inside the sphere (any radius, any shape)

Exercise: compute the surface integral for the cube, the result will be interesting



Once more to remember: Gauss’ theorem to evaluate flux integral:

dA

F

enclosed volume (V)

closed surface (A)

∫∫

A

~E · d ~A =
∫∫∫

V

∇ · ~E · dV or

∫∫

A

~E · d ~A =
∫∫∫

V

div ~E · dV

Integral through closed surface

(flux) is integral of divergence

in the enclosed volume

Surface integral related to the divergence from the enclosed volume

Sum (integral) of all sources inside the volume gives the flux out of this

region



Arrive at: Maxwell’s first equation using Gauss’s

density ρ and charge Q :

∫

V

ρ

ǫ0
· dV =

Q

ǫ0

∫

A

~E · d ~A =

∫

V

∇ · ~E · dV

︸ ︷︷ ︸

Gauss theorem

=
Q

ǫ0
=





∫

V

ρ

ǫ0
· dV





Written with charge density ρ we get Maxwell’s first equation:

Maxwell (I): div ~E = ∇ · ~E =
ρ

ǫ0

The higher the charge density: The larger the divergence of the field



Some calculations of DIV and CURL: simplest possible charge distribution - point

charge

~E =
q

4πǫ0
· ~r

r3

What are div ~E and curl ~E for a point charge ?

First step: compute all derivatives (used for DIV and CURL)

∂E(x,y,z)

∂(x,y,z)



∂Ex

∂x
=

Q

4πǫ0

(

1

R3
− 3x2

R5

)

∂Ex

∂y
=

−3Q

4πǫ0

xy

R5

∂Ex

∂z
=

−3Q

4πǫ0

xz

R5

∂Ey

∂x
=

−3Q

4πǫ0

xy

R5

∂Ey

∂y
=

Q

4πǫ0

(

1

R3
− 3y2

R5

)

∂Ey

∂z
=

−3Q

4πǫ0

yz

R5

∂Ez

∂x
=

−3Q

4πǫ0

xz

R5

∂Ez

∂y
=

−3Q

4πǫ0

yz

R5

∂Ez

∂z
=

Q

4πǫ0

(

1

R3
− 3z2

R5

)



∂Ex

∂x
=

Q

4πǫ0

(

1

R3
− 3x2

R5

)

∂Ex

∂y
=

−3Q

4πǫ0

xy

R5

∂Ex

∂z
=

−3Q

4πǫ0

xz

R5

∂Ey

∂x
=

−3Q

4πǫ0

xy

R5

∂Ey

∂y
=

Q

4πǫ0

(

1

R3
− 3y2

R5

)

∂Ey

∂z
=

−3Q

4πǫ0

yz

R5

∂Ez

∂x
=

−3Q

4πǫ0

xz

R5

∂Ez

∂y
=

−3Q

4πǫ0

yz

R5

∂Ez

∂z
=

Q

4πǫ0

(

1

R3
− 3z2

R5

)

div ~E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
=

Q

4πǫ0

(

3

R3
− 3

R5
(x2 + y2 + z2)

)



∂Ex

∂x
=

Q

4πǫ0

(

1

R3
− 3x2

R5

)

∂Ex

∂y
=

−3Q

4πǫ0

xy

R5

∂Ex

∂z
=

−3Q

4πǫ0

xz

R5

∂Ey

∂x
=

−3Q

4πǫ0

xy

R5

∂Ey

∂y
=

Q

4πǫ0

(

1

R3
− 3y2

R5

)

∂Ey

∂z
=

−3Q

4πǫ0

yz

R5

∂Ez

∂x
=

−3Q

4πǫ0

xz

R5

∂Ez

∂y
=

−3Q

4πǫ0

yz

R5

∂Ez

∂z
=

Q

4πǫ0

(

1

R3
− 3z2

R5

)

curl ~E = (
∂Ez

∂y
− ∂Ey

∂z
,

∂Ex

∂z
− ∂Ez

∂x
,

∂Ey

∂x
− ∂Ex

∂z
) = (0, 0, 0)

(there is nothing circulating around a point charge)



In general: Because there is nothing circulating (curl ~E = 0) one can

derive the field ~E from a scalar electrostatic potential φ(x, y, z), i.e.:

~E = − grad φ = −∇φ = − (
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
)

then we have

∇ ~E = −∇2φ = − (
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
) =

ρ(x, y, z)

ǫ0

This is called Poisson’s equation

All we need is φ to get the fields Example



A very important example: 3D Gaussian distribution

ρ(x, y, z) =
Q

σxσyσz

√
2π

3 exp

(

− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)

(σx, σy, σz r.m.s. sizes)

φ(x, y, z, σx, σy, σz) =
Q

4πǫ0

∫

∞

0

exp(− x2

2σ2
x+t

− y2

2σ2
y+t

− z2

2σ2
z+t

)
√

(2σ2
x + t)(2σ2

y + t)(2σ2
z + t)

dt

For a derivation, see e.g. W. Herr, Beam-Beam Effects,

in Proceedings CAS Zeuthen, 2003, CERN-2006-002, and references therein.



This gives the compact formulae for the fields:

Ex =
ne

2ǫ0
√

2π(σ2
x − σ2

y)
Im






erf







x + iy
√

2(σ2
x − σ2

y)






− e

(

−
x2

2σ2
x

+
y2

2σ2
y

)

erf







x
σy
σx

+ iy σx
σy

√

2(σ2
x − σ2

y)













Ey =
ne

2ǫ0
√

2π(σ2
x − σ2

y)
Re






erf







x + iy
√

2(σ2
x − σ2

y)






− e

(

−
x2

2σ2
x

+
y2

2σ2
y

)

erf







x
σy
σx

+ iy σx
σy

√

2(σ2
x − σ2

y)













wherer erf is the complex error function

These formulae are often used to evaluate the forces due to beam-beam effects



Very important in practice:

Poisson’s equation in Polar coordinates, i.e. 2D (r, ϕ)

1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2
∂2φ

∂ϕ2
= − ρ

ǫ0

Poisson’s equation in Cylindrical coordinates (r, ϕ, z)

1

r

∂

∂r

(

r
∂φ

∂r

)

+
1

r2
∂2φ

∂ϕ2
+

∂2φ

∂z2
= − ρ

ǫ0

Poisson’s equation in Spherical coordinates (r, θ, ϕ)

1

r2
∂

∂r

(

r2
∂φ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂φ

∂θ

)

+
1

r2 sin θ

∂2φ

∂ϕ2
= − ρ

ǫ0



Spherical coordinates sound like a good choice for local charges, e.g. point charges

What are div and curl ??

div ~E(r, θ, ϕ) =
1

r2
∂

∂r
(r2Er) +

1

r sin θ

∂

∂θ
(sin θEθ) +

1

r sin θ

∂Eϕ

∂ϕ

(very useful !)

curl ~E(r, θ, ϕ) =
êr

r sin θ

(
∂(Eϕ sin θ)

∂θ
− ∂Eθ

∂ϕ

)

+

êθ
r

(
1

sin θ

∂Er

∂ϕ
− Eϕ

∂r
(rEϕ

)

+
êϕ
r

(
∂(rEθ)

∂r
− ∂Er

∂θ

)

Note: êθ, êr, êϕ are the corresponding orthogonal unit vectors

(useful, but no so much used !)



Try it on a point charge

~E = −∇Ψ(r) =
Q

4πǫ0
· ~r

r3

div ~E(r, θ, ϕ) =
1

r2
∂

∂r
(r2Er) +

1

r sin θ

∂

∂θ
(sin θEθ)

︸ ︷︷ ︸

≡ 0

+
1

r sin θ

∂Eϕ

∂ϕ
︸ ︷︷ ︸

≡ 0

Only the radial component is non-zero:

then : div ~E(r, θ, ϕ) =
1

r2
∂

∂r
(r2Er)

div ~E(r, θ, ϕ) =
1

r2
∂

∂r

(
r2 ·Q
4πǫ0r2

)

=
1

r2
∂

∂r

(
Q

4πǫ0

)

= ???

(non-trivial indeed ...)



What about magnetic fields ? ...
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They have the direction (by definition): magnetic field lines from

North to South
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Field lines of ~B are always closed
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Magnets (e.g. compass) are pushed or attracted along the field lines

What about divergence of magnetic fields ?



Enclose it again by a surface - the result is found immediately:

∫ ∫

A

~B d ~A =

∫ ∫ ∫

V

∇ ~B dV = 0

Volume (thus dV) is never = 0

∇ ~B = div ~B = 0

What goes into the closed surface also goes out

Maxwell’s second equation: ∇ ~B = div ~B = 0

Physical significance: (probably) no Magnetic Monopoles



Enter Faraday: allow changing flux through an area

static flux : Ω =

∫

A

~B · d ~A changing flux :
∂Ω

∂t
=

∫

A

∂( ~B)

∂t
· d ~A

NS

static
NS

v

I

I

NS

v

I

I

Moving the magnet changes the flux: more or fewer passing through the

area (use a conducting coil, e.g. wedding ring) =⇒

Induces a circulating (curling) electric field ~E in the coil which ”pushes”

charges around the coil =⇒

Moving charges: Current I in the coil (observe its direction ..)



Experimental evidence:

It does not matter whether the magnet or the coil is moved (same

direction of induced current):

NS

v

I

I

NS

v



Experimental evidence:

It does not matter whether the magnet or the coil is moved (same

direction of induced current):

NS

v

I

I

NS

v

If you think it is obvious - no :

This was the reason for Einstein to develope special relativity !!!

Again: Maxwell different in the two systems (see lecture on Relativity)



Formally: A changing flux Ω through an area A produces circular electric

field ~E, ”pushing” charges =⇒ a current I

−∂Ω

∂t
=

∂

∂t

flux Ω
︷ ︸︸ ︷∫

A

~B · d ~A =

∮

C

~E · d~r

︸ ︷︷ ︸

pushed charges

Flux can be changed by:

- Change of magnetic field ~B with time t (e.g. transformers)

- Change of area A with time t (e.g. dynamos)

How to count ”pushed charges”





∫

C

~E · d~r is a line integral







Line integrals sum up ”pushes” along lines or curves:

E
dr

1

2

”lines” can be open or closed

Sum along all line elements d~r

2∫

1

~E · d~r or
∫

C

~E · d~r

E dr

C



Everyday example ..

Line integrals: sum up ”pushes” along the two Lines/Routes

Optimize: e.g. fuel consumption, time of flight (saves 1 hour !)

Like surface integral, the closed line integral
∫

C

~E · d~r can be re-written:



Used in the following: Stoke’s theorem
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Line Integral of a vector field ∮

C

~E · d~r =
∫∫

A

∇× ~E · d ~A or

∮

C

~E · d~r =
∫∫

A

curl ~E · d ~A

obviously : div ~E = 0

Summing up all vectors inside the area: net effect is the sum along the

closed curve

measures something that is circulating (”curling”) inside and how

strongly



Use this theorem for a coil enclosing a closed area

∫

A

− ∂ ~B

∂t
d ~A =

∫

A

∇× ~E d ~A =

∮

C

~E · d~r
︸ ︷︷ ︸

Stoke′s formula

∫

A

− ∂ ~B

∂t
d ~A =

∫

A

∇× ~E d ~A

︸ ︷︷ ︸

same Integration

Re-written: changing magnetic field through an area induces circulating

electric field around the area (Faraday)

Maxwell’ 3rd equation −∂ ~B

∂t
= ∇× ~E = curl ~E



Next: Maxwell’s fourth equation (part 1) ...

From Ampere’s law, for example current density ~j:
∫

A

∇× ~B d ~A =

∮

C

~B · d~r =

∫

A

µ0
~j d ~A

~j : ”amount” of charges through area ~A
∫

A

µ0
~j d ~A = µ0 I (total current)

Static electric current induces circular magnetic field (e.g. in magnets)

Using the same argument as before (the same integral formula):

∇× ~B = µ0
~j



An important application:

For a static electric current I in a single (infinitely long) wire we get

Biot-Savart law (using the area of a circle A = r2 · π, we can easily do

the integral):

induced magnetic
field

current

~B =
µ0

4π

∮

~j · ~r · d~r
r3

~B =
µ0

2π

~j

r

Application: magnetic field calculations in wires



Maxwell’s fourth equation (part 2) ...

Charging capacitor: Current enters left plate - leaves from right plate,

builds up an electric field between plates produces a ”current”

during the charging process
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Q(t) = C · Vb · (1 − exp(−t/RC)) and I(t) =
Vb

R
exp(−t/RC)



Part 2: Maxwell’s fourth equation

Charging capacitor: Current enters left plate - leaves from right plate,

builds up an electric field between plates produces a ”current”

during the charging process

jd jd

E

+Q −Q

+

+

++

+

+
+

+

−

−

− −

−

− −

−

Displacement Current :

~jd =
d ~E

dt

This is not a current from charges moving through a wire

This is a ”current” from time varying electric fields

Once charged: fields are constant, (displacement) ”current” stops



Cannot distinguish the origin of a current - apply Ampere’s law to jd

Displacement current jd produces magnetic field, just like

”real currents” do ...

jd jd

E B

+Q −Q

+

+

++

+

+
+

+

−

−

− −

−

− −

−

Time varying electric field induces time varying circular magnetic

field (using the current density ~jd)

∇× ~B = µ0
~jd = ǫ0µ0

d ~E

dt



Bottom line:

Magnetic fields ~B can be generated by two different ”currents”:

∇× ~B = µ0
~j (electrical current)

∇× ~B = µ0
~jd = ǫ0µ0

∂ ~E

∂t
(displacement current)

or putting them together to get Maxwell’s fourth equation:

∇× ~B = µ0(~j + ~jd) = µ0
~j + ǫ0µ0

∂ ~E

∂t

or in integral form:

∫

A

∇× ~B · d ~A =

∫

A

(

µ0
~j + ǫ0µ0

∂ ~E

∂t

)

· d ~A



Summary: Maxwell’s Equations

∫

A

~E · d ~A =
Q

ǫ0
∫

A

~B · d ~A = 0

∮

C

~E · d~r = −
∫

A

(

d ~B

dt

)

· d ~A

∮

C

~B · d~r =

∫

A

(

µ0
~j + µ0ǫ0

d ~E

dt

)

· d ~A

Written in Integral form



Summary: Maxwell’s Equations

∇ ~E =
ρ

ǫ0

∇ ~B = 0

∇× ~E = −d ~B

dt

∇× ~B = µ0
~j + µ0ǫ0

d ~E

dt

Written in Differential form (my preference)



V.G.F.A.Q:

Why : Why Not :

div ~E =
ρ

ǫ0

∫

A

~E · d ~A =
Q

ǫ0

curl ~E = −d ~B

dt

∮

C

~E · d~r = −
∫

A

(

d ~B

dt

)

· d ~A

div ~B = 0

∫

A

~B · d ~A = 0

curl ~B = µ0
~j + µ0ǫ0

d ~E

dt

∮

C

~B · d~r =

∫

A

(

µ0
~j + µ0ǫ0

d ~E

dt

)

· d ~A



div ~E =
ρ

ǫ0
something ( ~E) flowing out

∫

A

~E · d ~A =
Q

ǫ0
???

curl ~E = −d ~B

dt
something ( ~E) circulating

∮

C

~E · d~r = −
∫

A

(

d ~B

dt

)

· d ~A ???



Maxwell’s Equations - compact

1. Electric fields ~E are generated by charges and proportional

to total charge

2. Magnetic monopoles do (probably) not exist

3. Changing magnetic flux generates circular electric

fields/currents

4.1 Changing electric flux generates circular magnetic fields

4.2 Static electric current generates circular magnetic fields



Changing fields: Powering and self-induction

- If the current is not static:

- Primary magnetic flux ~B changes with changing current

Induces an electric field, resulting in a current and induced

magnetic field ~Bi

Induced current will oppose a change of the primary current

If we want to change a current to ramp a magnet ...



Ramp rate defines required Voltage:

U = −L
∂I

∂t

Inductance L in Henry (H)

Example:

- Required ramp rate: 10 A/s

- With L = 15.1 H per powering sector

Required Voltage is ≈ 150 V



Surprise - as is always the case:

Units: Gauss law Ampere/Maxwell

SI ∇ ~E =
ρ

ǫ0
∇× ~B = µ0

~j + µ0ǫ0
d ~E

dt

Electro-static (ǫ0 = 1) ∇ ~E = 4πρ ∇× ~B =
4π

c2
~j +

1

c2
d ~E

dt

Electro-magnetic (µ0 = 1) ∇ ~E = 4πc2ρ ∇× ~B = 4π~j +
1

c2
d ~E

dt

Gauss cgs ∇ ~E = 4πρ ∇× ~B =
4π

c
~j +

1

c

d ~E

dt

Lorentz ∇ ~E = ρ ∇× ~B =
1

c
~j +

1

c

d ~E

dt

Also: ~BGauss =

√
4π

µ0

~BSI ρGauss =
ρSI

√
4πǫ0

and so on .....



That’s not all Electromagnetic fields in material

In vacuum:
~D = ǫ0 · ~E, ~B = µ0 · ~H

In a material:
~D = ǫr · ǫ0 · ~E = ǫ0 ~E + ~P

~B = µr · µ0 · ~H = µ0
~H + ~M

Origin: ~Polarization and ~Magnetization

ǫr( ~E,~r, ω) ǫr is relative permittivity ≈ [1− 105]

µr( ~H,~r, ω) µr is relative permeability ≈ [0(!)− 106]

(i.e.: linear, isotropic, non-dispersive)



Polarization ~P : displacement of charges in non-conducting material

−
−
−
−
−
−
−
−

+
+
+
+
+
+

+
+
+

+

−

E

Appears as electric dipole

~P = ξe · ~E (ξe is electric susceptibility)

Dielectric displacement follows: ~D = (1 + 4πξe) ~E = ǫ · ~E



Magnetism: occurence of circular currents of atomic electrons

Classification of magnetic material properties:

Diamagnetism repelled µ < 1 ξm < 0 typical: ξm ≈ − 10−7

Paramagnetism aligned µ > 1 ξm > 0 typical: ξm ≈ + 10−7

Ferromagnetism aligned µ ≫ 1 ξm ≫ 0 typical: ξm ≈ + 106

Diamagnetism: Atoms and molecules without magnetic moment

Paramagnetism: Atoms and molecules with magnetic moment

Ferromagnetism: Saturation magnetization occur within microscopic

domains (Weiss domains)



Magnetism in ferromagnetic: not rigorous - just to get an idea ...

no  field weak field strong field

domain walls

Unmagnetized Iron: spontaneous magnetization around seeds, leading to

”Weiss domains”

Randomly oriented domains cancel out

With external fields: domain walls move - domains in direction of external

field ”grow”! They do not align (although this is sometimes said)!

Magnetic field follows : ~B = (1 + 4πξm) ~H = µ · ~H



Once more: Maxwell’s Equations

∇ ~D = ρ

∇ ~B = 0

∇× ~E = −d ~B

dt

∇× ~H = ~j +
d ~D

dt

(a.k.a. Macroscopic Maxwell equations)



Something on potentials (needed in lecture on Relativity):

In general: Scalar Potentials are related to static field conditions, Vector Potentials are

related to dynamic field conditions

Electric fields can be derived from a (scalar) potential φ:

~E = − ~∇ · φ

Magnetic fields can be derived from a (vector) potential ~A:

~B = ~∇ × ~A = curl ~A

Combining Maxwell(I) + Maxwell(III):

~E = − ~∇ · φ −
∂ ~A

∂t

Fields can be written as derivatives of scalar and vector potentials Φ(x, y, z) and ~A(x, y, z)

But watch out and remember for later: ~∇ · ... versus ~∇ × ... !

(absolute values of potentials Φ and ~A can not be measured ..)



The Coulomb potential of a static charge q is written as:

Ψ(~r) =
1

4πǫ0
· q

|~r − ~rq|

[

or

∫
1

4πǫ0
· ρ(~rq)

|~r − ~rq|

]

where ~r is the observation point∗ and ~rq the location of the charge

The vector potential is linked to the current ~j:

∇2 ~A = µ0
~j

The knowledge of the potentials allows the computation of the

fields see lecture on relativity (fields of moving charges)

∗ a shameless lie: one cannot observe/measure a potential (only fields) !



Accelerator magnets Multipole expansion

If Ψ is periodic∗) in θ, the components in cylindrical coordinates are:

Br(θ, r) = −
(

∂Ψ

∂r

)

=
∞
∑

n=1

C(n)

(

r

Rref

)n−1

sin(n(θ − αn)) and

Bθ(θ, r) = −
(

1

r

)(

∂Ψ

∂θ

)

=
∞
∑

n=1

C(n)

(

r

Rref

)n−1

cos(n(θ − αn))

C(n) is the strength of the 2n-pole component of the total field

Rref is a reference radius (LHC: 17 mm for 28 mm aperture, typical ratio)

αn is a constant (related to the orientation of the 2n component)

∗) a good assumption for accelerator magnets



The n-th component in Br(r, θ) has n South poles and n North poles

as a function of the azimuthal angle θ

This implies (for any n):

θS =
π

2n
+ αn;

5π

2n
+ αn;

9π

2n
+ αn; ... (South poles)

θN =
3π

2n
+ αn;

7π

2n
+ αn;

11π

2n
+ αn; ... (North poles)

A focusing Quadrupole (n = 2, α2 = 0):

θS = 45deg; 225 deg; 405 deg; ..... (South poles)

θN = 135deg; 315 deg; 495 deg; ..... (North poles)

(What if: α2 =
π

2
or α2 =

π

4
???)



north

north

north

north south

south

south

south

southnorth

northsouth

north south

A little exercise: what are n, Θ, αn ?



If Cartesian coordinates are preferred, starting from:

Bx(θ, r) = Br cos θ − Bθ sin θ =
∞
∑

n=1
C(n)

(

r

Rref

)n−1

sin[(n− 1)θ − nαn)]

By(θ, r) = Br sin θ + Bθ cos θ =
∞
∑

n=1
C(n)

(

r

Rref

)n−1

cos[(n− 1)θ − nαn)]

or defined as complex field∗ :

~B(z) = By(x, y) + iBx(x, y) =
∞
∑

n=1
[C(n) exp(−inαn)]

(

z

Rref

)n−1

then one gets a ”physical” picture:

C(n) exp(−inαn) = (2n pole)normal + i(2n pole)skew = bn + ian

Example: for α2 =
π

4
6= 0 b2 = 0, a2 = 1

∗ Euler: z = x + iy = r · exp(iθ) = r(cos(θ) + i sin(θ))



Finally replacing C(n) exp(−inαn) by (bn + ian) (and some confusion):

By + iBx =
∞
∑

n=0
(bn + i · an)

(

r

Rref

)n

(U.S. convention)

By + iBx =
∞
∑

n=1
(bn + i · an)

(

r

Rref

)n−1

(European and LHC convention)

more physical significance (and more confusion):

bn+1 =
Rn

ref

n!

(

∂nBy

∂xn

)

[ = bn (U.S.) ]

an+1 =
Rn

ref

n!

(

∂nBx

∂xn

)

[ = an (U.S.) ]



Lorentz force on charged particles

So far: Lorentz force is added to Maxwell equations !

From experience and experiments, can not be derived/understood

without Relativity (but then it comes out easily, see lecture !)

Moving (~v) charged (q) particles in electric ( ~E) and magnetic ( ~B) fields

experience the Lorentz force ~f :

~f = q · ( ~E + ~v × ~B)

for the equation of motion we get (using Newton’s law);

d

dt
(m~v) = ~f = q · ( ~E + ~v × ~B)



Motion in electric fields

.
qFE E

F

q
.

~v ⊥ ~E ~v ‖ ~E

Assume no magnetic field:

d

dt
(m~v) = ~f = q · ~E

Force always in direction of field ~E, also for particles at rest.



Motion in magnetic fields

Without electric field :
d

dt
(m~v) = ~f = q · ~v × ~B

Force is perpendicular to both, ~v and ~B

No force on particles at rest - do we understand that ?

Or is it just a empirical story to get the right answer ?



Motion in magnetic fields

Without electric field :
d

dt
(m~v) = ~f = q · ~v × ~B

Force is perpendicular to both, ~v and ~B

No force on particles at rest - do we understand that ?

Or is it just a empirical story to get the right answer ?

Yes, but see next lecture ...



Important application:

Tracks from particle collisions, lower energy particles have smaller

bending radius, allows determination of momenta ..

Q1: what is the direction of the magnetic field ???

Q2: what is the charge of the incoming particle ???



Practical units:

B [T ] · ρ [m] =
p [eV/c]

c [m/s]

Example LHC:

B = 8.33 T, p = 712 eV/c ρ = 2804 m

More - bending angle α of a dipole magnet of length L:

α =
B [T ] · L [m] · 0.3

p [GeV/c]

Example LHC:

B = 8.33 T, p = 7000 GeV/c, L = 14.3 m α = 5.11 mrad



... and some really strong magnetic fields

Example : CXOUJ164710.2− 45516

Diameter : 10 − 20 km

Field : ≈ 1012 Tesla

As accelerator : ≈ 1012 TeV

Very fast time varying electromagnetic fields - γ-ray bursts up to 1040 W

(sun: ≈ 4 · 1026 W)

Punchline:

Grand Unification (world formula) may show up near 1012 TeV



Time Varying Fields - (Maxwell 1864)

electric
field

electric
field

electric
field

magnetic
field

magnetic
field

magnetic
field

AC current

propagation
direction  of

Time varying magnetic fields produce circular electric fields

Time varying electric fields produce circular magnetic fields

Can produce self-sustaining, propagating fields (i.e. waves)

Rather useful picture in the classical framework, but ...



In vacuum: only fields, no charges (ρ = 0), no current (j = 0) ...

From Maxwell’s (III and IV) and some educated guess:

∇× (∇× ~B) = ∇2 ~E = −∇× (
∂ ~B

∂t
) = − ∂

∂t
(∇× ~B)

=⇒ ∇2 ~E =
∂

∂t

(

µ0ǫ0
∂ ~E

∂t

)

= µ0ǫ0
∂2 ~E

∂t2

∇2 ~E = µ0 · ǫ0 ·
∂2 ~E

∂t2
=

1

c2
∂2 ~E

∂t2
(correspondingly for ~B)

Equation for a wave with speed: c =
1√

µ0 · ǫ0

It has a different form for a resting and a moving system !!!

see lecture on Special Relativity why and how it saves the day ...



Electromagnetic waves

~E = ~E0e
i(ωt−~k·~x)

~B = ~B0e
i(ωt−~k·~x)

Important quantities :

~k = (propagation vector)

λ = (wave length, 1 cycle)

ω = (frequency · 2π)
~k · ~k =

ω2

c2
(Dispersion Relation)

Magnetic and electric fields are transverse to direction of propagation:
~E ⊥ ~B ⊥ ~k

Short wave length → high frequency → high energy



Spectrum of Electromagnetic waves

Example: yellow light ≈ 5 · 1014 Hz (i.e. ≈ 2 eV !)

LEP (SR) ≤ 2 · 1020 Hz (i.e. ≈ 0.8 MeV !)

gamma rays ≥ 3 · 1020 Hz (1 MeV to 10 TeV !)

(For estimates using temperature: 2.71 K ≈ 0.00023 eV )



Modulated wave: Group velocity and Phase velocity
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phase velocity
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carrier wave :

vp =
ω

k
(phase velocity)

wave packet :

vg =
∂ω

∂k
(group velocity)

Wave packet can be considered as superposition of a number of

harmonic waves

Carrier wave moves at phase velocity, can be larger the c

Wave packet moves at group velocity, carries information

vp and vg may or may not be equal depends on ”dispersion relation”



Energy in electromagnetic waves (in brief, details in [2, 3, 4]):

define Poynting vector : ~S =
1

µ0

~E × ~B (in direction of propagation)

”Energy flux”: energy crossing a unit area, per second [
J

m2s
]

In free space: energy is shared between electric and magnetic field

The energy density U would be:

UEB =
1

2

(

ǫ0E
2 +

1

µ0
B2

)

Some example: B = 5·10−5 T ( = 0.5 Gauss)

UB ≈ 1 mJ/m3 (corresponds to ≈ 1016 γs at visible light)

Classical Electrodynamics is a very good approximation ..



Waves interacting with material

Need to look at the behaviour of electromagnetic fields at

boundaries between different materials (air-glass, air-water,

vacuum-metal, ...).

Have to consider two particular cases:

Ideal conductor (i.e. no resistance), apply to:

- RF cavities

- Wave guides

Conductor with finite resistance, apply to:

- Penetration and attenuation of fields in material (skin depth)

- Impedance calculations

Can be derived from Maxwell’s equations, here only the results !



Boundary conditions: air/vacuum and conductor

A simple case ( ~E-fields on a conducting surface):

En

n

n n n

E E
E

nE

vector normal to boundary:

Field parallel to surface E‖ cannot exist (it would move charges and we

get a surface current): E‖ = 0

Only a field normal (orthogonal) to surface En is possible



Extreme case: surface of ideal conductor

For an ideal conductor (i.e. no resistance) the tangential electric field

must vanish Corresponding conditions for normal magnetic fields. We

must have:

~Et = 0, ~Bn = 0

This implies:

Fields at any point in the conductor are zero.

Only some field patterns are allowed in waveguides and RF cavities

A very nice lecture in R.P.Feynman, Vol. II

Now for Boundary Conditions between two different regions



Boundary conditions for electric fields

ε1 ε2µ1 µ2

Material   1 Material   2

E

E

t

n

ε1 ε2µ1 µ2

Material   1 Material   2

D

D

t

n

Assuming no surface charges (proof e.g. [3, 5])∗:

From curl ~E = 0:

tangential ~E-field continuous across boundary (E1
t = E2

t )

From div ~D = ρ:

normal ~D-field continuous across boundary (D1
n = D2

n)

∗
with surface charges, see backup slides



Boundary conditions for magnetic fields

ε1 ε2µ1 µ2

Material   1 Material   2

n

tH

H

ε1 ε2µ1 µ2

Material   1 Material   2

B

B

t

n

Assuming no surface currents (proof e.g. [3, 5])∗:

From curl ~H = ~j:

tangential ~H-field continuous across boundary (H1
t = H2

t )

From div ~B = 0:

normal ~B-field continuous across boundary (B1
n = B2

n)

∗
with surface current, see backup slides



Summary: boundary conditions for fields

Electromagnetic fields at boundaries between different materials with

different permittivity and permeability (ǫ1, ǫ2, µ1, µ2).

(E1
t = E2

t ), (E1
n 6= E2

n) or : ( ~E2 − ~E1) × ~n = 0

(D1
t 6= D2

t ), (D1
n = D2

n) or : ( ~D2 − ~D1) · ~n = ρsurface

(H1
t = H2

t ), (H1
n 6= H2

n) or : ( ~H2 − ~H1) × ~n = ~Jsurface

(B1
t 6= B2

t ), (B1
n = B2

n) or : ( ~B2 − ~B1) · ~n = 0

where ~n is the unit vector pointing into medium 2

(derivation deserves its own lectures, just believe it)

They determine: reflection, refraction and refraction index n.



Waves in material Index of refraction: n

Speed of electromagnetic waves in vacuum: c =
1

√
µ0 · ǫ0

n =
Speed of light in vacuum

Speed of light in material
=

c

vp

For water n ≈ 1.33

Depends on wavelength

n ≈ 1.32 − 1.39

some others ice: 1.31

alcohol: 1.36

sugar solution: 1.49

glass: 1.51

(propose an experiment !)



Reflection and refraction angles related to the refraction index n and n’:

µ’ε ’n’ = 

µεn  = 

z

x

reflected  wave
incident  wave

refracted  wave

β

α

sin α

sin β
=

n
′

n
= tan αB

If light is incident under angle αB [3]:

Reflected light is linearly polarized perpendicular to plane of incidence

(Application: fishing air-water gives αB ≈ 53o)



Polarization of EM waves (Classical Picture !):

The solutions of the wave equations imply monochromatic plane waves:

~E = ~E0e
i(~k·~r−ωt) ~B = ~B0e

i(~k·~r−ωt)

As defined, consider only electric field, re-written using unit vectors in

the plane transverse to propagation: ~ǫ1 ⊥ ~ǫ2

Two Components: ~E1 = ~ǫ1E1 ei(
~k·~r−ωt) ~E2 = ~ǫ2E2 ei(

~k·~r−ωt)

~E = ( ~E1 + ~E2) = (~ǫ1E1 + ~ǫ2E2) ei(
~k·~r−ωt)

With a relative phase φ between the two directions:

~E = ~ǫ1E1 ei(
~k·~r−ωt) + ~ǫ2E2 ei(

~k·~r−ωt+φ)



Ey Ey

EyEy

Ey

Ex Ex

Ex Ex

Ex

linear : E2 = 0 or E1 = 0

circular : φ ± π

2

elliptical : φ e.g.
π

4



Polarized light - why is it interesting:

Produced (amongst others) in Synchrotron light machines (linearly and circularly

polarized light, adjustable) blue sky (!), reflections (e.g. water surface)

Accelerator and other applications:

Polarized light reacts differently with charged particles

Radio communication, capacity doubling

Beam diagnostics, medical diagnostics (blood sugar, ..)

Inverse FEL

3-D motion pictures, LCD display, cameras (reduce glare)

Outdoor activities (e.g. Fishing, driving a car through a rainy night, ... )

...

Less classical, in Quantum Electro Dynamics: photons with spin +1 or -1



Practical application:

Some of the light is reflected

Some of the light is transmitted and refracted

For αB, can be largely supressed using polarised glasses



Extreme case: ideal conductor

For an ideal conductor (i.e. no resistance) we must have:

~E‖ = 0, ~Bn = 0

otherwise the surface current becomes infinite

This implies:

All energy of an electromagnetic wave is reflected from the surface

of an ideal conductor.

Fields at any point in the ideal conductor are zero.

Only some fieldpatterns are allowed in waveguides and RF cavities

A very nice lecture in R.P.Feynman, Vol. II



Examples: cavities and wave guides

Rectangular, conducting cavities and wave guides (schematic) with

dimensions a× b× c and a× b:
x

y

z

a

b

c

x

y

z

a

b

RF cavity, fields can persist and be stored (reflection !)

Plane waves can propagate along wave guides, here in z-direction

(here just the basics, many details in ”RF Systems” by Frank Tecker)



Fields in RF cavities - as reference

Assume a rectangular RF cavity (a, b, c), ideal conductor.

Without derivations, the components of the fields are:

Ex = Ex0 · cos(kxx) · sin(kyy) · sin(kzz) · e−iωt

Ey = Ey0 · sin(kxx) · cos(kyy) · sin(kzz) · e−iωt

Ez = Ez0 · sin(kxx) · sin(kyy) · cos(kzz) · e−iωt

Bx =
i

ω
(Ey0kz − Ez0ky) · sin(kxx) · cos(kyy) · cos(kzz) · e−iωt

By =
i

ω
(Ez0kx − Ex0kz) · cos(kxx) · sin(kyy) · cos(kzz) · e−iωt

Bz =
i

ω
(Ex0ky − Ey0kx) · cos(kxx) · cos(kyy) · sin(kzz) · e−iωt
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dimension   a

’Modes’ in cavities - 1 transverse dimension

No electric field at boundaries, wave must have ”nodes” = zero

fields at the boundaries

Only modes which ’fit’ into the cavity are allowed

In the example: λ
2

= a

4
, λ

2
= a

1
, λ

2
= a

0.8

(then either ”sin” or ”cos” is 0)



Consequences for RF cavities

Field must be zero at conductor boundary, only possible if:

k2
x + k2

y + k2
z =

ω2

c2

and for kx, ky, kz we can write, (then they all fit):

kx =
mxπ

a
, ky =

myπ

b
, kz =

mzπ

c
,

The integer numbers mx,my,mz are called mode numbers, important for

design of cavity !

→ half wave length λ/2 must always fit exactly the size of the cavity.

(For cylindrical cavities: use cylindrical coordinates )



Wave guides and cavities are more likely to be circular:

Derivation using the Laplace equation in cylindrical coordinates, for a

derivation see e.g. [2, 3]:

Er = E0
kz
kr

J ′
n(kr) · cos(nθ) · sin(kzz) · e−iωt

Eθ = E0
nkz
k2
rr

Jn(kr) · sin(nθ) · sin(kzz) · e−iωt

Ez = E0 Jn(krr) · cos(nθ) · sin(kzz) · e−iωt

Br = iE0
ω

c2k2
rr

Jn(krr) · sin(nθ) · cos(kzz) · e−iωt

Bθ = iE0
ω

c2krr
J ′
n(krr) · cos(nθ) · cos(kzz) · e−iωt

Bz = 0

Homework: write it down for wave guides ..



Accelerating circular cavities

For accelerating cavities we need longitudinal electric field component

Ez 6= 0 and magnetic field purely transverse.

Er = 0

Eθ = 0

Ez = E0 J0(p01
r

R
) · e−iωt

Br = 0

Bθ = −iE0 J1(p01
r

R
) · e−iωt

Bz = 0

(pnm is the mth zero of Jn, e.g. p01 ≈ 2.405)

This would be a cavity with a TM010 mode: ω010 = p01 ·
c

R



Similar considerations lead to (propagating) solutions in (rectangular)

wave guides:

Ex = Ex0 · cos(kxx) · sin(kyy) · ei(kzz−ωt)

Ey = Ey0 · sin(kxx) · cos(kyy) · ei(kzz−ωt)

Ez = i · Ez0 · sin(kxx) · sin(kyy) · ei(kzz−ωt)

Bx =
1

ω
(Ey0kz − Ez0ky) · sin(kxx) · cos(kyy) · ei(kzz−ωt)

By =
1

ω
(Ez0kx − Ex0kz) · cos(kxx) · sin(kyy) · ei(kzz−ωt)

Bz =
1

i · ω (Ex0ky − Ey0kx) · cos(kxx) · cos(kyy) · ei(kzz−ωt)

This part is new: ei(kzz) =⇒ something moving in z direction

In z direction: No Boundary - No Boundary Condition ...



Consequences for wave guides

Similar considerations as for cavities, no field at boundary.

We must satisfy again the condition:

k2
x + k2

y + k2
z =

ω2

c2
=⇒ kz =

√

ω2

c2
− k2

x − k2
y

This leads to modes like (no boundaries in direction of propagation,

only kx and ky have to ”fit”):

kx =
mxπ

a
, ky =

myπ

b
, kz =

√

ω2

c2
−
(mxπ

a

)2

−
(myπ

b

)2

The numbers mx,my are called mode numbers for waves in wave guides !



Consequences for wave guides

Similar considerations as for cavities, no field at boundary.

We must satisfy again the condition:

k2
x + k2

y + k2
z =

ω2

c2
=⇒ kz =

√

ω2

c2
− k2

x − k2
y

This leads to modes like (no boundaries in direction of propagation,

only kx and ky have to ”fit”):

kx =
mxπ

a
, ky =

myπ

b
, kz =

√

ω2

c2
−
(mxπ

a

)2

−
(myπ

b

)2

The numbers mx,my are called mode numbers for waves in wave guides !

Should we worry about kz ?? Argument of root can become negative .. !



Propagation without losses requires kz to be real, i.e.:

ω2

c2
>
(mxπ

a

)2

+
(myπ

b

)2

ω > πc

√
(mx

a

)2

+
(my

b

)2

defines a (minimum) cut-off frequency ωc:

ωc =
π · c
a

(with a the longest side length of the wave guide)

Above cut-off frequency: propagation without loss

At cut-off frequency: standing wave

Below cut-off frequency: attenuated wave (it does not ”fit in”).

(if bored : try to compute vp and vg for the limits : ω → ∞ and ω → ωc)



Classification of modes:

Transverse electric modes (TE): Ez = 0 Hz 6= 0

Transverse magnetic modes (TM): Ez 6= 0 Hz = 0

Transverse electric-magnetic modes (TEM): Ez = 0 Hz = 0

(Not all of them can be used for acceleration ... !)

B

E

Note (here a TE mode) :

Electric field lines end at boundaries

Magnetic field lines appear as ”loops”



Other case: finite conductivity

Starting from Maxwell equation:

∇× ~B = µ~j + µǫ
d ~E

dt
=

~j
︷ ︸︸ ︷

σ · ~E
︸ ︷︷ ︸

Ohm′s law

+ µǫ
d ~E

dt

Wave equations:

~E = ~E0e
i(~k·~r−ωt), ~B = ~B0e

i(~k·~r−ωt)

We want to know k with this new contribution:

k2 =
ω2

c2
− iωσµ
︸ ︷︷ ︸

new



Consequence Skin Depth

Electromagnetic waves can now penetrate into the conductor !

For a good conductor σ ≫ ωǫ:

k2 ≈ − iωµσ k ≈
√

ωµσ

2
(1 + i) =

1

δ
(1 + i)

δ =

√

2

ωµσ
is the Skin Depth

High frequency waves ”avoid” penetrating into a conductor,

flow near the surface

Penetration depth small for large conductivity



”Explanation” - inside a conductor (very schematic)

IeIe

Ie Ie

HI

add current

subtract current

Eddy currents IE from changing ~H-field: ∇× ~E = µ0
d ~H

dt

Cancel current flow in the centre of the conductor I − Ie

Enforce current flow near the ”skin” (surface) I + Ie

Q: Why are high frequency cables thin ??



Attenuated waves - penetration depth
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Skin Depth versus frequency
Copper                

Gold                  
Stainless steel       

Carbon (amorphous)    

Waves incident on conducting

material are attenuated

Basically by the Skin depth :

(attenuation to 1/e)

δ =

√
2

ωµσ

Wave form:

ei(kz−ωt) = ei((1+i)z/δ−ωt) = e
−z
δ · ei( z

δ
−ωt)

Values of δ can have a very large range ..



Skin depth Copper (σ ≈ 6 · 107 S/m):

2.45 GHz: δ ≈ 1.5 µm, 50 Hz: δ ≈ 10 mm

Penetration depth Glass (strong variation, σ typically 6 · 10−13 S/m):

2.45 GHz: δ > km

Penetration depth Sushi (strong variation, σ typically 3 · 10−2 S/m):

2.45 GHz: δ ≈ 6 cm

Penetration depth Seawater (σ ≈ 4 S/m):

76 Hz: δ ≈ 25 - 30 m (Design an antenna !!, very low bandwidth)



Done list:

1. Review of basics and write down Maxwell’s equations

2. Electromagnetic fields in vacuum and in material

3. Add Lorentz force and motion of particles in EM fields

4. Electromagnetic waves in vacuum

5. Electromagnetic waves in conducting media

Waves in RF cavities

Waves in wave guides

Important concepts: mode numbers, cut-off frequency, skin

depth

But still a few (important) problems to sort out



What next:

We have to deal with moving charges in accelerators

Applied to moving charges Maxwell’s equations are not compatible with

observations of electromagnetic phenomena

Electromagnetism and laws of classical mechanics are inconsistent

Ad hoc introduction of Lorentz force

Electromagnetic ”wave” concept is fuzzy: no medium (more in lecture on

Special Relativity)

Needed: sort in out in a systematic framework

The fix: Special Relativity (next lecture)

Formulate Maxwell’s equations relativistically invariant

Problems solved (easily !) ...



- BACKUP SLIDES -



Relativity and electrodynamics

- Back to the start: electrodynamics and Maxwell equations

- Life made easy with four-vectors ..

- Strategy: one + three

Write potentials and currents as four-vectors:

Ψ, ~A ⇒ Aµ = (
Ψ

c
, ~A)

ρ, ~j ⇒ Jµ = (ρ · c, ~j)

What about the transformation of current and potentials ?



Transform the four-current like:














ρ′c

j′x

j′y

j′z















=















γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1





























ρc

jx

jy

jz















It transforms via: J ′µ = Λ Jµ (always the same Λ)

Ditto for: A′µ = Λ Aµ (always the same Λ)

Note: ∂µJ
µ =

∂ρ

∂t
+ ~∇~j = 0 (charge conservation)



Electromagnetic fields using potentials:

Magnetic field: ~B = ∇× ~A

e.g. the x-component:

Bx =
∂A3

∂y
− ∂A2

∂z
=

∂Az

∂y
− ∂Ay

∂z

Electric field: ~E = −∇Ψ − ∂ ~A

∂t

e.g. for the x-component:

Ex = − ∂A0

∂x
− ∂A1

∂t
= − ∂At

∂x
− ∂Ax

∂t

after getting all combinations ..



Electromagnetic fields described by field-tensor Fµν :

Fµν = ∂µAν − ∂νAµ =



























0
−Ex

c

−Ey

c

−Ez

c

Ex

c
0 −Bz By

Ey

c
Bz 0 −Bx

Ez

c
−By Bx 0



























It transforms via: F ′µν = Λ Fµν ΛT (same Λ as before)

(Warning: There are different ways to write the field-tensor Fµν ,

I use the convention from [1, 3, 5])



Transformation of fields into a moving frame (x-direction):

Use Lorentz transformation of Fµν and write for components:

E′
x = Ex B′

x = Bx

E′
y = γ(Ey − v ·Bz) B′

y = γ(By +
v
c2

· Ez)

E′
z = γ(Ez + v ·By) B′

z = γ(Bz − v
c2

· Ey)

Fields perpendicular to movement are transformed



Example Coulomb field: (a charge moving with constant speed)

γ = 1 γ >> 1

In rest frame purely electrostatic forces

In moving frame ~E transformed and ~B appears

How do the fields look like ?

Needed to compute e.g. radiation of a moving charge, wake

fields, ...



For the static charge we have the Coulomb potential (see lecture

on Electrodynamics) and ~A = 0

Transformation into the new frame (moving in x-direction) with

our transformation of four-potentials:

Ψ′

c
= γ(

Ψ

c
−Ax) = γ

Ψ

c

A′

x = γ

(

Ax − vΨ

c2

)

= −γ
v

c2
Ψ = − v

c2
Ψ′

i.e. all we need to know is Ψ′

Ψ′(~r) = γΨ(~r) = γ · 1

4πǫ0
· q

|~r − ~rq|

After transformation of coordinates, e.g. x = γ(x′ − vt′)

The resulting potentials can be used to compute the fields.



Watch out !!

We have to take care of causality:

The field observed at a position ~r at time t was caused at an

earlier time tr < t at the location ~r0(tr)

Ψ(~r, t) =
qc

|~R|c− ~R~v
~A(~r, t) =

q~v

|~R|c− ~R~v

The potentials Ψ(~r, t) and ~A(~r, t) depend on the state at retarted

time tr, not t

~v is the velocity at time tr and ~R = ~r − ~r0(tr) relates the

retarted position to the observation point.

Q: Can we also write a Four-Maxwell ?



Re-write Maxwell’s equations using four-vectors and Fµν :

∇ ~E =
ρ

ǫ0
and ∇× ~B − 1

c2
∂ ~E

∂t
= µ0

~J
1+3

∂µF
µν = µ0J

ν (Inhomogeneous Maxwell equation)

∇ ~B = 0 and ∇× ~E +
∂ ~B

∂t
= 0

1+3

∂γF
µν + ∂µF

νλ + ∂νF
λµ = 0 (Homogeneous Maxwell equation)

We have Maxwell’s equation in a very compact form,

transformation between moving systems very easy



How to use all that stuff ??? Look at first equation:

∂µF
µν = µ0J

ν

Written explicitly (Einstein convention, sum over µ):

∂µF
µν =

3
∑

µ=0

∂µF
µν = ∂0F

0ν + ∂1F
1ν + ∂2F

2ν + ∂3F
3ν = µ0J

ν

Choose e.g. ν = 0 and replace Fµν by corresponding elements:

∂0F
00 + ∂1F

10 + ∂2F
20 + ∂3F

30 = µ0J
0

0 + ∂x
Ex

c
+ ∂y

Ey

c
+ ∂z

Ez

c
= µ0J

0 = µ0 cρ

This corresponds exactly to:

~∇ · ~E =
ρ

ǫ0
(c2 = ǫ0µ0)



For ν = 1, 2, 3 you get Ampere’s law

For example in the x-plane (ν = 1) and the S frame:

∂yBz − ∂zBy − ∂t
Ex

c
= µ0J

x

after transforming ∂γ and Fµν to the S’ frame:

∂′

yB
′

z − ∂′

zB
′

y − ∂′

t

E′
x

c
= µ0J

′x

Now Maxwell’s equation have the identical form in S and S’

(In matter: can be re-written with ~D and ~H using

”magnetization tensor”)



Finally: since Fµν = ∂µAν − ∂νAµ

∂µF
µν = µ0J

ν

∂γF
µν + ∂µF

νλ + ∂νF
λµ = 0

We can re-write them two-in-one in a new form:

∂2Aµ

∂xν∂xν
= µ0J

µ

This contains all four Maxwell’s equations, and the only one

which stays the same in all frames !!

There are no separate electric and magnetic fields, just a frame

dependent manifestation of a single electromagnetic field

Quite obvious in Quantum ElectroDynamics !


