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1. Introduction

1.1. Literature

o S.Y. Lee: Accelerator Physics,
3" edition, World Scientific, New Yersey 2012, ISBN 978-981-4374-94-1

e Bryant/ Johnson: The Principles of Circular Accelerators and Storage Rings,
Cambridge University Press, Cambridge 2005, ISBN 978-0-521-61969-1

e Edwards / Syphers: An Introduction to the Physics of High Energy Accelerators,
John Wiley & Sons, New York 1992, ISBN 978-0-471-55163-8

o K. Wille: The physics of particle accelerators,
Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7

e H. Wiedemann: Particle Accelerator Physics,
4™ edition, Springer 2015, Berlin, ISBN 978-3-319-18316-9

e Chao / Tigner: Handbook of Accelerator Physics and Engineering,
27 edition, World Scientific, Singapore 2013, ISBN 987-4417-17-4
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e F. Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik,
2. Ausgabe, Springer 2008, Berlin, ISBN 978-3-540-75281-3
o K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen,
2. Uiberarb. und erw. Ausgabe, Teubner 1996, Stuttgart, ISBN 978-3-519-13087-1
e Rossbach / Schmiiser: Basic Course on Accelerator Optfics,

CAS 5" general accelerator physics course CERN 94-01
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1.2. Bending radius and beam rigidity

Particle guidance and focusing based on beam deflection by Lorentz force

F=gq- (E +7 X E)
Ultra-relativistic particles move with speed very close to speed of light!

Impact of magnetic fields is enhanced by enormous factor:

VrC = B=1Tesla < E=3-10°V/m

Only magnetic fields are used for beam deflection!

Bending radius from balance of forces (m =y, m,):

2
V

Blv: m—=gq-v-B p=mv=qpB
Yo,
Leads to the definition of the magnetic rigidity Bp !

In circular accelerators, the magnetic rigidity defines the momentum of the beam:

£:B,O:le 2 p:O.3GeV
q C
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Example LHC

e bending radius: p= 2.8 km
e magnetic field: B =28.3 Tesla

Magnetic rigidity: Bp=23.2-10° Tm
— momentum: p[GeV/c]=0.3- Bp
— kin. energy: E=pc=7TeV

Transverse Linear Beam Dynamics W. Hillert
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Beam Guidance

Beam Focusing
Correction of Chromatic Errors
Multipole expansion

Transverse Linear Beam Dynamics W. Hillert
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2. Magnets

2.1. General remarks on the calculation of magnetic fields

Maxwell’s Equations:

—

- /6 x H =] (coils)
S A
. VxH=0(gap) — H=-VO !

nc Magnets:

@ = const. defines the pole’s contour!

Magn. Induction from B = Lo 1L H

Taylor Expansion of the Magnetic Field:

2

OB
B(xy) = B0y + x—=(0y) + x* = 0.+

%/_/

- / - /
Vo Vv

Dipoles Quadrupoles Sextupoles
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2.2. Particle beam guidance

—

Deflection of particles — homogenous field: B =B,-e, =const.
Corresponding magnetic potential: O(x,y)=-B,-y

defining the pole’s profile to be flat and parallel: Dipole Magnets!

H. s |
(I) — +(I)O ._ - N ‘ l}:/—'—\
[ . parallel .l
| B poles i k
- _h _________________ ;_?!_ H'.] Hﬁ vy v h
(I) = _(I)O ‘J/ S ‘ w
H,

n-l=$H-ds= [ H,-d5s+ | H,, w | Ho|=|H| = |H|>|H,]|
gap yoke
BO:,uon—J, Curvature: K:iziBo—q’uon—l, [k]=m"
h p P p _h
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Dipole Magnets:

r_‘l-: I'!!'I

Iron dominated: Superconducting:
field determined by field determined by
geometry of poles geometry of coils
— 2 flat poles — j(P) ~ cosg@

Transverse Linear Beam Dynamics W. Hillert page 11
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2.3. Particle beam focusing

Restoring force, linearly increasing with increasing distance from the axis:

0B OB
B =—9-x, B =-—g-y with =——2>r=——2 —const.
» g x gy g Py dy
Corresponding potential: O(x,y)=g-x-y, solves V-B=—A® =0

defining the pole’s profile to four hyperbolic poles: Quadrupole Magnets!

iron yoke coils

n-l

hyperbolic
poles

2

() : :
y(x)=+—2= + 2 at a distance a = 20,/g from the axis.
g-Xx 2x
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The “restoring” force acting on the particles 1s

—

F:q.({'/xé)ZQVg'(Xéx_yéy)

A quadrupole magnet is therefore focusing only in one plane and defocusing in

the other; depending on the sign of g.

The g-parameter may be related to the current of the coils by evaluating the closed

loop integral n-I:CJSH-d§:jHO .d5 +jﬁE .d5 +}ﬁ0 ~d§z_[ﬁo d5,
0 1 2 0

Oneobtainswithﬁ-d§=£r-dr:
Hy
2-u -n-1 :
g= Ho 2” , normalized:
a

Quadrupole Strength

k

:1 :ZQIuOn] k -2
8| %]
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The focal length of a thin quadrupole magnet of length L can be derived from the de-

flection angle a of the particles beam and its relation to the quadrupole strength £,
L

X
tana =—
............................................................. > f
> L
tana = — = L'sz =1ng =xkL
R PP
f
— @Gives a better understanding of the quadrupole strength: % =k-L

Here we have assumed the length L to be short compared to the focal length f such
that R does not change significantly within the quadrupole magnetic field.

Transverse Linear Beam Dynamics W. Hillert page 14
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Strong Focusing:

Light optics:

Magnet optics:

Strong focusing
or
AG focusing

Quadrupole

Quadrupole

Simplest way:

FODO lattice

Detailed discussion later!
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Iron dominated: Superconducting:
field determined by field determined by
geometry of poles geometry of coils

— 4 hyperbolic poles — j(@) ~ cos2¢
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2.4. Correction of chromatic errors

Quadratic increase of magnetic fields increasing distance from the axis:
1, , , ~ O°B
B, =—g -(x —y ) with  g'=—=~=const.
2 o0x

1 .
Corresponding potential:  ®(x,y) = s g’( y =3x° y) , solves V:-B=—AD=0

Sextupole Magnets
' y .
iron Yle Six poles, profile

2
x<y>=in £ 20

3 gy
A X or using the aperture
a=360, /g
coils — /8
2 3
Y “ [ )C(y) == y— T a—
3 3y
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The g’ parameter may be related to the current of the coils in the well-known manner:

828 nl

8x2y B 6%?

g=

and we obtain for the transverse magnetic fields:

0D , oo 1 ,
BX(X,J/)Z—EZg xy and By(XJ):—E:Eg (xz—)/z)

We will therefore expect a coupling of particles motion in the horizontal and

vertical plane due to the y-dependence of the vertical field.

Normalizing g’ to the particles momentum, we obtain the sextupole strength

.6 nl
m=ig= 9K 3

P p a

. [m]=m

A simple understanding of the action of a sextupole will be given later!

Transverse Linear Beam Dynamics W. Hillert page 18
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2.5. Multipole expansion

General treatment by multipole expansion in polar coordinates:

B (r,4) = Boi[RL] : (bn sin(ng) —a, cos(n¢))
n=1 ref

n—1
B0 = 05| | (o snlod)hos(o)
n= ref
n—1
Contribution of multipole n:  |B| = \/Bz +B;, (Lj Ja. +b’

0

Generally: 2n-pole has 2nt/n symmetry, |B|, scales with 7.

n=1: dipole magnet
Classification:

n=2: quadrupole magnet

n=3: sextupole magnet b, #0: "upright” magnets

a #0: "skew'" magnets, rotated by 7z/n
n=4: octupole magnet ‘ g y 7/

n=>5: decapole magnet

Transverse Linear Beam Dynamics W. Hillert page 19



CERN Accelerator School: Introductory Course

Normal or upright magnets:

Normal R-Dipole Normal R-Quadrupole Normal R-Sextupole
y

1

0

-1 0 1 x

Skew or rotated magnets:
Skew R-Dipole

y
1

from Zolkin, Timofey, Phys.Rev.Accel.Beams 20 (2017) no.4, 043501

Transverse Linear Beam Dynamics W. Hillert page 20



CERN Accelerator School: Introductory Course

2.6. Effective field length

The assumption of a constant field distribution along the longitudinal axis (GE/ os =0)

1s not valid in general due to the fringing fields at the end of the magnets. In order to
simplify the calculation of the optics of particle accelerators, an effective field length

lefr of each magnet is usually defined, calculated from the path-integral

fringe field rectangular approximation

) ]eﬂ" i
and approximating the real longitudinal field by a rectangular shaped profile.

Note: [t differs from the length L of the iron poles, in almost all cases letr > L.

Transverse Linear Beam Dynamics W. Hillert page 21
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NPhHée Space
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3. Linear Beam Optics

3.1. A quick and simple first approach using geometric optics

Reference path = path of a particle moving on the design path:

dipole

quadrupole quadrupole

quadrupole

dipole

Use coordinate system fixed to reference particle, moving along the reference path!

Horizontal position and angle of a particle given by displacements x, x”

Transverse Linear Beam Dynamics W. Hillert page 23
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Considering paraxial optics: x<<p, Xx =tana=a«a

Impact of magnets in a very rough approximation:
dipole magnet: drift of length Lp

quadrupole magnet:  thin lens with focal lengths £, :—i, f :L

0 ’ kLQ

Particle positions in horizontal / vertical phase space are changed by matrices:

Transverse Linear Beam Dynamics W. Hillert page 24
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Lens Drift
X
>
S
x':xo'—xo/f x': 0'
Phase space Position Drift Dipole Quadrupole

| B X 1 I 1 L 1 0
horizontal X(S):ix'j Md:[O lj MD:(O lj MQ:(H/f lj

Transverse Linear Beam Dynamics W. Hillert page 25
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Phase Space Position Drift Dipole Quadrupole
- )7( ) y M 1 L 1 L M 1 0

rt S) = = = =
verHed ¥ 70 1 N VR N e = VA

Calculation of single particle trajectories by matrix multiplication, e.g.:

quadrupole

dipole

—

.

quadrupole

dipole

quadrupole

— Hands-on Lattice Calculation
recommended E1-E35, optional E6

X =M, MM, *M,-M, MM, M ,-M, M, M, X,

= Transfefr Matrix M

Transverse Linear Beam Dynamics

W. Hillert
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l

YRR
p’ pp

x (s)+

Y (s)+k(s)-y(s)=0

|

A quick and dirty “derivation” of the equations of motion

l

Transverse Linear Beam Dynamics W. Hillert page 27




CERN Accelerator School: Introductory Course

3.2. Some considerations concerning the equations of motion

A correct treatment requires solving the equations of motion in a moving reference

system. Again we will try a somehow ““superficial” approach and look at the forces:

—

mr = m(ﬂrc)zf":F:e-(foé)

using Pl B g 59T B A (B g ~(B.c) 7 (s)
S TTasa T T as a ds :
e quadrupoles: F=m-(Bc) k- (xéx —~ yéy) , remember: k=2g
P
(] dip()les: F =m ( rc)z l A_p . éx , remember: l = iBO
P Dy P Py

(take care: a particle with nominal momentum po 1sn’t deflected in the moving frame

when traversing a dipole, so this contribution to the deflection in the lab frame has to

be subtracted: F — F(p) —ﬁ(po), leadingto p — Ap)

In addition, we have to take care of the geometric focusing in the horizontal plane:

Transverse Linear Beam Dynamics W. Hillert page 28
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Quadrupole Magnet: Dipole Magnet:
L e TEp
1/_f = kQuad'L
x .
. focusing
W analogue to
...................................................... i 0 quadrupole:
S
1/f = kpip:L
kpip =-1/p*
) f
F A A — | R
mag (ﬂ C) . (xex B yey) Fmag (IB C) p_ Xe,

Putting everything together, we obtain the famous linear equations of motion:

1

|2 '
p (s

p(s) p

) —k(S)j-X(S) =

y(s)+k(s)-y(s) = 0

Transverse Linear Beam Dynamics W. Hillert
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3.3. Equations of motion in a moving reference system

Moving orthogonal, right-handed coordinate system (x, y, s) that follows a refer-

ence particle traveling along its ideal path (design orbit):

A
ERy EEFuNaNw
a ....'ll. ey o*" -...'-

We will concentrate on ideal orbits laying within the horizontal plane, therefore

F=(p+x)-e +y-eé, xy<Kp

Transverse Linear Beam Dynamics W. Hillert page 30
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Using this reference system moving with s = p- @, we obtain the following time de-

rivatives of the coordinate vectors (éx = (cos@,sin@), e, =(sin@,—cos (p))

S N2
; o S A i 3 A S ) .
e, ==, =-—¢, “=7¢ ex:_(_] -
P & N P
x i S . Y
€S=+¢x=—l——x é:_ 2é S e é
7o o (Pj S
e, =0
.. dxds ,. . dy ds . : : L
and by using x=— —=x"s, yz—y-—:y-s,we obtain for the time derivatives:
ds dt ds dt
= A A X A
rzxsex+ysey—(1+—jse
0
; x ) §° § X
V= x”Sz—(l—k—j—er'S' e. + y§+ 'S éy+<—2x'——(1+—j§ -e
PP ) polp
~0
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Now proceed with several approximations:

e small displacements x << p, y << p, § 0 (paraxial optics)

e only dipole and quadrupole magnets (linear field changes)

e design orbit lies in a plane (flat accelerator)

e no coupling between motion in hor. and vert. plane (upright magnets)
e small momentum deviations (quasi monochromatic beam)

e in general: no quadratic or higher order terms (linear beam optics)

Magnetic field in terms of strength parameters:
q = . 1 .
—B=kye +i——+kxge,
Po P
and from simple geometrical considerations, we may write the particles longitudinal

velocity v in terms of the change of the longitudinal coordinate s :

Transverse Linear Beam Dynamics W. Hillert page 32
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S=pp, v,=(p+x)p

= Vv, =p+x$:(l+£)s
P P
V. =XS, V,=Y's

and for p =y .m, - v=p, + Ap we have

11 o(1/p) :1£1_Apj
P=Po p() p()

The particles are deflected due to the Lorentz force y.m, F = q- (? X E) , thus

P Dy op

x ) s X
x§? —(14——]— l+—|sB,
PP P
Vs -4 —(1+1j5~8x
7/rm0 p
-2
, S
—2x ; S‘(x'By —y'Bx)
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We will concentrate on the transverse planes. With the corresponding multipole

strengths and the momentum expansion, we get

16 G i Gl G s

:1/7/rm0 :\éz
2
S\ P PJ 4 P P
— —
=l/y,m, =By

Neglecting all nonlinear terms in x, y, and Ap/ p, , we again obtain the (already well

known) linear equations of motion:

1

x”(s)+( 2 —k(s)j-x(s): L &
p(s)

p(s) p

Y(s)+k(s)-y(s) =0

Transverse Linear Beam Dynamics W. Hillert page 34
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Remember:
Can be driven resonantly like a child’s swing

<« Parametric oscillator

[0): %] = o+ o (1) p=0

Transverse Linear Beam Dynamics W. Hillert page 35
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3.4. Matrix formalism

We will characterize a particles state by a vector built from its relative coordinates:

X horizontal displacement
_ . hor. phase space
X horizontal angular displacement
y vertical displacement
, : : vert. phase space
y vertical angular displacement

and use the matrix formalism to describe particles trajectories: X = M- X, . In case of

upright magnets there will be no coupling of the transverse planes and we can gener-

ally write:
v, n, 0 0 <x‘xo> <x‘xo'> 0 0
M| 2 001 _ (%) ([ 0 0
0 0 r n 0 0 (yly) w)
0 0 1, 7, 0 0 (V) O3

Next, we have to derive the matrices for drift, dipole and quadrupole magnets.

Transverse Linear Beam Dynamics W. Hillert page 36
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3.4.1. Drift space

1/p(s)=k(s)=0 gives x'(s) = x,’= const., y'(s) =y, = const.
Thus we get:
1 L| 0 O
0O 1| 0 0
Mdrift =
0 0 |1 L
0 0 |0 1

3.4.2. Dipole magnets

Constant bending radius: £ =0. Homogeneous solution (case Ap/p=0):

x,(s)=a- oS~ +b-sin—
P P
The integration constants a, b are derived from the boundary conditions at s =0
I4 b 4
x(s=0)=a=x,, xX(s=0)=—=x,,
Yo,

Transverse Linear Beam Dynamics W. Hillert
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and by defining the bending angle ¢ = L/p of the dipole magnet, we obtain :

x(L)=x,-cos@+ p-x,-sing
Y=y, +p @Yy

CosS @ Osin@

—1/p-sin COS
M _ /,0 v P — Hands-on Lattice Calculation
dipole recommended E31-E32
0 0 PP
0 O 0 1

A sector magnet is therefore focusing in the horizontal plane.

Sector- / rectangular dipole magnets and edge focusing:

Sector Magnet +r +¥
) o B i _—e
/- 1! ‘1‘ //______\I’
@\ / b ;r\
Rectangular Magnet

Transverse Linear Beam Dynamics W. Hillert page 38
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The focusing / defocusing effect of the fringe fields (edge focusing) depends on the

entrance (exit) angle i and may again be described by a linear transformation matrix

1 0 0 O
tany /p 1 0 0
M, =
0 O 1 0
0 0 —tany /p 1
We finally obtain with y =¢p/2 and M, , =M M . -M
1 psing 0 0
0 1 0 O
Mi’e‘Cl =
0 0 1-po/ f PP
0 0 |po/f*=2/f 1-polf

where we have defined the focal length f ~ p/tany caused by edge (de)focusing.

A rectangular dipole magnet is therefore focusing in the vertical plane.
It acts like a drift space in the horizontal plane!

Transverse Linear Beam Dynamics W. Hillert page 39
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3.4.3. Quadrupole magnets
Assuming a pure quadrupole magnet we set the bending term 1/p = 0. The solution

of the equation of motion depends on the sign of the quadrupole strength k. For £ <0
we get the solution of a quadrupole magnet, which is horizontal focusing and vertical

defocusing (the case k& >0 can be treated completely analog):
x(s)=a- cos( |k| -S) +b- sin( |k| -S)
¥(s)=c-cosh([i]s) + -sinh Jl]s
The integration constants a, b, ¢, d are derived from the boundary conditions at s = 0:
x(s=0) = a = x,, X(s=0)=>b=x,
Ys=0)=c =y, V(s=0)=d =y’

Substituting and building the first derivative, we obtain the transformation matrices

for a horizontal focusing (FQ) and a horizontal defocusing (DQ) quadrupole,

where we put 2 = \/m - L with the quadrupole length L and focal length 1/ f = kL.

Transverse Linear Beam Dynamics W. Hillert page 40
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QF (k < 0):

cos() LsinQ

1 0
0 - 0
—\/m sin €2 cosQ) L—0 f
MQF = —>
cosh Q2 1 sinh Q 0 0 Lo
0 0 \/W 1
0 0 0 O 7 1
‘k‘ sinh Q cosh Q
— Hands-on Lattice Calculation
QD (k> 0): recommended E30
coshQ L sinh Q 1 0
00 Lo
lk|sinhQ  coshQ L0 ||f
MQD = —>
cos (2 1 sin €2 Lo
0 _
: JKl 1
—\/W sin €2 cos(2 /
Transverse Linear Beam Dynamics W. Hillert page 41
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3.4.4. Particle orbits in a system of magnets

With the derived matrixes particle trajectories may be calculated for any given arbi-
trary beam transport line by cutting this beam line into smaller uniform pieces so that

k=const. and R=const. in each of these pieces:

Quadrupole
s=0 Ql Q2 Q3 Q4
| v S
X, Dl . D2 . D3 . D4 . D3 X,
it | Xy,
| |
% [min] ; Particle Orbit
1 i :
1 : Ay
0 - 3
N \W ~
2
3 — Hands-on Lattice Calculation
Y recommended E7-E11

— —

XE :MDS 'MQ4 'MD4 'MQ3 'MD3 'MQ2 'MDz 'MQ1 'Mm 'Xo

Transverse Linear Beam Dynamics W. Hillert page 42



CERN Accelerator School: Introductory Course

but:

-3 Particle Orbit

Envelope

Transverse Linear Beam Dynamics W. Hillert
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3.5. Particle beams and phase space

3.3.1. Beam emittance

Beam = statistical set of points in phase space!

Consider e.g. horizontal phase space, intensity distribution in x, x".

Choose origin of the coordinate axes ¢_ and e_ at the barycentre of the points:

— 1] & _ 1 & X A
TN g X
i=1 i=l1 \
Interested in variances (rms spread): e .
1 & 1 & ,
2 2 2 r2 e
o = —le. , o. = —le. . &/’/6 '-j -
N D NS Tl : X
System (X, X") which is rotated by &: ;
2 2 "
do, 0oy 0
00 06 2
— Hands-on Lattice Calculation

recommended E12 - E15
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We will define the spread of the distribution, which is called the emittance &y, by

j— . ,_ _2-_,2— ’2
E, =0, 0, =X X" —XxXx

X

It is important to note that this is a statistical definition of &!
More general, £ will be defined over the area ¢ = _[x’-dx /

The emittance can be considered as a statistical mean area:

— i lii( — ’)2 — L Ziifl 2
“ TN\ 24 = HLTRE) TN TA il
X4
o @3=b=0 P,
(remember: 24, =‘Ei><b — ‘albz —azb]‘) ,

where A;; 1s the area of the triangle 0P;P;

oA 4

and ¢ 1s a measure of the spread of the points

around their barycentre.
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The area of the “rms”-envelope-ellipse is just 7 times the emittance &
A=rmab=rmno,0, =7we,

and its equation with respect to the axes X and X "1s

X2 sz 2 2 r2 2 2
~+— =1 — X0, + X" 0, =¢
O, O,

3.5.2. Twiss parameters

By an inverse rotation of angle —6 in phase space we obtain

2 2 2 r w2 2 2 2 - 22
g, = X o, —-2xxxx'+x70. = x -0.—-2xx'ro o +x"-0,

where we have defined the correlation coefficient

I4

XX

2 72
X X

=

It 1s more or less obvious, that such a correlation term must exist in general.
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We may define the so-called Twiss-parameters ax, S, and 7 such that

_fﬁ

‘ ”ﬁ
£y

and the equation of the envelope-ellipse reads in the “conventional” form:

y. X +2a, xx+B.x° =&

X

All the above derived equations appear in identical form for the vertical plane, x
has only to be replaced by y. In the following, we will skip the index x for reason of
simplicity. Please note, that this doesn’t imply that emittances and corresponding

Twiss parameters are equal in both planes — they are not!

The meaning of the Twiss-parameters can be read off from the graphical representa-

tion of the envelope-ellipse:
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o \/E represents the r.m.s. beam-envelope per unit emittance,

o \/; represents the r.m.s. beam divergence per unit emittance,

e « i1s proportional to the correlation between x and x .
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3.5.3. Beta functions

In the following, we will first concentrate on the situation where Ap/p =0. With

K. (s)= 1/ p°(s)—k(s) and K, (s)=k(s) the equations of motion read

xX"(s)+ K. (s) - x(s)=0,  y"(s)+K,(s)-¥(s)=0

They describe a transverse oscillation with position dependent amplitude and phase,
which is called betatron oscillation. Both transverse planes can be treated similar!

We will therefore concentrate on x and try to solve this equation, making the Ansatz
x(s)=A-u,(s)-cos(u,(s) +¢,)
(4 and ¢, are integration constants, we will skip the index x from now on) and obtain:
[u"—u 1+ K u] ccos(p+@,) — [2-u"p'+u-py|sin(p+¢,) =0
This relation 1s valid for any given phase u(s) at any given position s, therefore

u'—u- 1 +K-u =0
2-u i +u- 1 =0
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By integration of the second equation we obtain

s
u(s)= j e
: : : o]
and by using this relation u'——+K-u=0.
u

With the definition of the beta function S(s):=u’(s) we derive for the amplitude and

phase of the oscillation:

x(s) = A-{p(s) °COS(ﬂ(S)+€Do)

u()j

0 P(5)

Building the first derivative and defining «/(s) :=— , We obtain

F(s)
2

X (s)=— J% {a(s)-cos(u(s)+@,)+sin(u(s)+¢,)}
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The equation for x can be transformed to

2
X

A*- B

which can be used in combination with the equation for x” to obtain

sinz(y+¢0):£@.x’+ﬁ.xJ

S

cos’(u+¢,)=

Using cos’+sin” =1 we derive

2

a +( a(s) ox+m-x'] = A*

B(s) \\B(s)
2
which can be transformed by defining y(s) = % to:
s
’ 2
yx +2axx'+ fx° = A,  where : = 1/(s), a:—ﬁ, y=1+a
B(s) 2 P
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Note:

Each particle will stay on its own ellipse, which will enclose a constant area in phase

space A. The amplitude factor 4 represents the Courant Snyder invariant! The

shape of the ellipse 1s determined by the Twiss parameters «, £, ¥ and will change

along the magneto-optics system, its area will stay always constant (Rem.: in case of

conservative forces and no acceleration). The shape (not the size) of all single particle

ellipses are determined by the same Twiss parameters!
u'

10}

.+ 05} *

u'

— Hands-on Lattice Calculation
recommended E18-E21

area =mA>

u

*T 10 05 | 0% 10 -« T
aglOB L. . oot .

~10f

a=0
S1

05 .10

az0
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3.5.4. Transformation in phase space

According to Liouville’s theorem, all particles enclosed by an envelope ellipse will
stay within that ellipse. The transformation of the horizontal and vertical ellipse pa-
rameters along the beam line may be derived from the transport matrixes in the hori-

zontal and vertical plane. Starting at s=0, we have for a particle on this ellipse

VoXy +20,%, %, + By x,”° = & = yxX" +2axx+ fx”

Any particle trajectory starting at s=0 transforms to s#0 by
(x] _ [’”11 7’12)(3‘0] _ (C(S) S(S)j.(xoj
X By o) \ Xy C'(s) S(s)) \x
which gives for the transformed ellipse equation via

Xo | 1 . S'(s) —=S(s) [ x MIEH L S = 8x
x, ) CS—Cs \-Cs) ) ) \x) — \—Ccx+cx

~/

2 2 2 ro. 2.2 2 2 2 ro 2.2 ’
and x,"=8"x" =288 xx+85°x7, x,=C"x" =2CCxx+C°x", xyx,=...
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(877, =28 Cay +C*B,) - x* +2 (-8 S"y, +(S'C+S8C)-a, ~CC"f,)- xx’

\_ ) o J

:VJ/ :Va
+(S7 7, -285C-a,+C*-B)x" = ¢
=p
This gives the transformation of the beam parameters in matrix formulation
b C? -25C S? B,
a|=|-CC SC+S5C =-S5 ||¢
7/ Crz _2 Sr Cr Sr2 7/0

Another useful relation may be obtained by defining the Beta matrix B

If
4

— 2
BE(ﬂ aj’ B|=8y-a’ =], E-B:(GX G’g‘j
—a ¥ ,

The equation of the envelope-ellipse can be transformed to:

—

e="X,-B,'-X, = "X, -B - X,

where the inverse of the Beta matrix is
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s
« B

and displacement-vector X transforms according to
X, =M-X, X ='(M-X)="% ™
By inserting 1=M"'-M, we obtain:
e="X,-'M-'M"-B," M"'-M-X,
_ T(M.XO).( ™M'.B," M )(MXO)

= %, -(M-B,-'M) - X

1

and we can read off the transformation of the Beta matrix:

B, =M-B,-'M

This can e.g. be used to derive the beta-function around a symmetry-point of a trans-

fer-line where a =0 in a simple way:
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2

B4 S S
1 A IB sym O 1 O o IB sym IB sym
B,(s) = : : =
0 1 0 1B, ) s 1 B ]
IB sym IB sym
This gives the relations for the beam parameters around a symmetry-point:
s’ B [m] !
m
p(s) = B, + T
ﬂsym B' =0.03m
a(s) = ——— _
IBsym +5
1 -
y(s) = — * 0.1 m
Pom ][.Bozm
The corresponding beam size scales with - P oam
-0.5 0  s[m] 05
o. .=+ P(s) !
Remember: o =./¢-f(s), o . =./¢-y(s), and therewith:
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o(s) =0, -\/1 + (;j : o'(s) = £ _ const.

0 00

To obtain further insights, we will compare the particle’s beam with a Gaussian light
beam (TEMoo), characterized by its waste radius w(s) and Rayleigh length zz, in
which w is doubled. From diffraction theory, we know (from diffraction integrals):

S i W, A w Y 2
w(s) =w, - 1+(—j , Zp=—2t, O = : ](x,y)z]max-(—oj e v

Z, A TW,

This indicates:
, ¥y dxdy

2

W,

B, =z, =—>, andfrom o
A

c ”](x,y)-dxdy 4

and replacing w =20 = 2,/gf we obtain the important relation:

— dr-c= 1

Transverse Linear Beam Dynamics W. Hillert page 57




CERN Accelerator School: Introductory Course

\ A yA E/ﬂ
rge> . Parallel
N e e
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The transformation matrix M can be derived also from the Twiss parameters. With

x(s) = @cos(,u+(p0) = \/E-\/E-{cos,u-cosgoo —sin,u-singoo}

x'(s) = —%-{a [cos 1 - cos g, —sin u - sin g, | —sin - cos @, +cos,u-sing/)0}

and the starting conditions x(0) =x,, x'(0)=x,", x(0)=0, which transform to

CosQ, = %g
sing, = _/\/EKXO’\/FOJF% %o \/Fo]

\/\/ﬁE(COSﬂJF% sin ) B By sin

o, — l+taca, . \/EO

we obtain: M(s) =

Wcosy— T3/, sin u \/E(cos,u—asin,u)

Transverse Linear Beam Dynamics W. Hillert page
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Circular
Accelerators

—
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4. Circular Accelerators

4.1. Weak focusing

Beam stability: transverse focusing in both planes!

Equation of motion:

x"(s)+( 21 —k(S)j'x(S) =0
p(s)

o /

>0
., ——
y'(s)+k(s)-y(s) = 0
Idea: horizontally defocusing & is overcompensated by geometrical focusing!

OB
O<hk=-L""»c 12
pox p

With p =qpB,, where By defines the bending field at the design orbit, one obtains

p OB
O<n=—"—"—"x<I1 (Steenbeck 1924)

B, oOx
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where we have defined the field index » to

OB -
n=kp’=-L— > B()=B,| =
B, dp P

Thus, a circular accelerator like a synchrotron has to be made of dipole magnets with
radially decreasing bending field strength fulling the above derived weak focusing
condition.

Particles will oscillate around the reference trajectory with the spatial frequency

W, = —2—k= R
p p p

I 1-n %:fgﬁi

The number Q of oscillations per turn of length L = 2wp will then be

1 ¢ds N 1 ¢ds
=~ $E = Ji-n <, = —¢p—=n<1
2 277 B 0, 277 B,

Problem:

We derive for the constant beta functions S, > p

— beam size o =./gf will increase remarkably with increasing radius!
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4.2. Strong focusing

Focusing in both planes possible in case of alternating gradient — well know from

light optics:

Magnet optics:

Simplest configuration: FODO lattice, periodic arrangement of i1dentical structures

Quadrupole Quadrupole
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DESYI -5
«— DESY 1
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4.2.1. Stability criterion

If M(L) 1s the transformation matrix for one periodic cell we will have for N cells:
N
M(N-L)=|M(L)]

For a full lattice period, we take use of Floquet’s theorem. Recalling the equations
of motions

x(s)+ K (s)-x(s) =0 with K (5)= 1/,02 (s)—k(s)

Y($)+ K, (s)-y(s) =0 with K (s5)=k(s)

it states (Gaston Floquet, 1847 — 1920) for e.g. x(s) = 4.,/ S.(s cos( u (s)+ goo)

If K(s) is periodic, the amplitude function (and therefore (s)) is periodic as well.

In this case we call the DGL Hill’s equation (George William Hill 1838 — 1914).

Please note and take care:

Floquet’s theorem doesn’t state that ((s) and therewith x(s), y(s) are periodic as well!

This would be an exception! (catastrophic, as we will see later)
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Thus we recommend periodic boundary conditions g = f,, a = &, and obtain, us-

ing the Twiss parameter representation of the transfer matrix:

COS 1L + &, SIn U B, sin
—¥, 81N U COS U — ¢, SIn U

This matrix was first derived by Twiss from general mathematics principles and is
called the Twiss matrix (Richard Q. Twiss, 1920 —2005).

We calculate its eigenvalues from
M —-2-1|=A° -Tr{M}-21+1=0
With Tr{M} =2-cos # we obtain
A, =cosptising = e
We require that the eigenvalues remain finite thus requiring a real betatron phase .

This is guaranteed when |cos ,u| <1 and leads to the general stability condition:

‘Tr{MH :‘r“+r22‘ <2
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And now comes the “clou”: Rewriting the Twiss matrix using

(55 Y
-y - 0 -1
it can be expressed by
M =1-cosu+J-sinu
Similar to Moivre’s formula we get for N equal periods
M"Y = (I-cos,u+J-siny)N = 1-cos(Nu)+J-sin(Nu)

and ‘Tr{MN}‘ = ‘2-COS(N,U)‘ <2

Conclusion:

In case of a real betatron phase advance x, the beam size in a circular accelerator will

remain finite (the 100 Mio $ question in the 50’s!). This can easily be proofed by

calculating the trace of the one turn matrix: ‘Tr{M}‘ <2
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4.3. Periodic focusing systems

4.3.1. General FODO lattice
I I

i i

FODO

The FODO geometry can be expressed symbolically by the sequence

=M_,, =M,

It is sufficient to use the thin lens approximation (/, < f'). We will set the focal

lengths to f, =2 f,, f, =2 f,, the drift length to L. Defining
Vi =1/ f+ L= L/(f 1)
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the transformation matrix of half a FODO cell is

e He M -

Multiplication with the reverse matrix gives

4L

- ) L-(1-L
ML :L 1-2L/f" 2L /{2)] and ‘Tr{M}‘:‘z_ <2
=2/f-(1-L)f) 1-2L/f f
This 1s equivalent to 0 < L* < 1, and defining u =§, v=£ we get
1 2

O<u+v—-—u-v<l

from which we derive the boundaries of the stability region

u
=
e
|V1|_1> |V3|_1+|u|
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which gives the famous necktie-diagram for thin lens approximation:

|V| A — Hands-on Lattice Calculation
recommended E22
1,0
0,5 -
0 . >
0 0,5 1,0 |u|
In the simple case of equal focusing strengths, we arrive at
|f|:|f|:|f0|:|fF|:|f| 2L) _ |Lsono| _
R S A f f
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LHC: Lattice Design
the ARC 90° FoDo in both planes

106.90 m

equipped with additional corrector coils

MB: main dipole

MQ: main quadrupole

MQT: Trim quadrupole

MQS: Skew trim quadrupole

MO: Lattice octupole (Landau damping)
MSCB: Skew sextupole

Orbit corrector dipoles

MCS: Spool piece sextupole

MCDO: Spool piece 8 / 10 pole

BPM: Beam position monitor + diagnostics

© Bernhard Holzer
W. Hillert page 72
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4.3.2. Periodic beta functions

Periodic solutions of a periodic lattice of period-length L will be

P(s, +L) = f(sy) = B

a(s,+L) = a(s,) = ¢,

Comparing the transfer matrix for one period with its Twiss parameter representation

M:(r“ ruj:(cos,quaosin,u B, sin i ]

—¥,SIn i COS 1 — &, Sin i

we can determine the Twiss parameters at the symmetry points (where a = 0!)

a, =0, B = 77—, Yo = ) COSU =1,

and transform them to any position s using e.g. the beta matrix formalism

( IB —x j - M (S,SO) . Llf)o 0 j . TM(S’ So) — Hands-on Lattice Calculation
Yo

—a y recommended E23-E26

thus revealing the development of A(s), a(s), 1(s). | Minimum < ,B> for 11 =90°!
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Example: simple model toy ring (taken from Wille):

ring with 8 identical
FODO cells: -
(Focusing — Drift (=0)— | * ™
Defocusing — Drift (=0) | ® '
B b
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Choosing‘kQF‘ = ‘kQD‘ =1.20m, we can calculate the transfer matrix M and extract the

— Hands-on Lattice Calculation

Twiss parametersa obtamlng: recommended E32, E34, E39-40

T2 6
10- B‘i -5
BIm]\ Py D [m]
8- -4
6- -3
4 -2
- L
0 | | 1 | s l[m] 0
0 1 = - 4 5 6
H D B e i
QF B QD B QF
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4.4. Transverse beam dynamics

4.4.1. Closed orbit

Remember: In circular accelerators the amplitude function is periodic according to
Floquet’s theorem and reproduces itself after one turn.

This implies, that the charge center
of the beam also moves on a closed

trajectory, which is called the closed orbit! s
The shape of the closed orbit is determined
by the magnets and can — due to errors and
misalignments — significantly deviate from
the design orbit!

Dedicated steerer magnets (small dipoles),

which have to be installed around the ring,

are used to correct closed orbit deviations.
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4.4.2. Betatron tune

The betatron tune Q is defined as the number of oscillations per revolution:

w1 ¢ ds
Oy = or  2rx Cﬁ B.,(s)

— Hands-on Lattice Calculation
recommended E27

If one regards the phase space at an ar-

bitrarily chosen point, a single particle

moves on its phase space ellipse.
The points represents the parameters af-

ter 1,2, ... 5 revolutions.

The betatron tune is one of the most important parameter in circular accelerators!
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4.4.2. Filamentation

If the envelope ellipse o, of the beam is not matched to the ellipse o, of the periodic

lattice, it will start to rotate with a phase advance per revolution of 27 Q

— Hands-on Lattice Calculation
recommended E28

Due to effects of higher order the quadrupole strengths and therefore the phase ad-
vance depends on the amplitude (horizontal and vertical displacements). In case of
mismatch, the beam phase space distribution starts to filament. After a large number
of revolutions, the distribution may be surrounded by a large ellipse of the form of

the lattice ellipse.
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Example for an unmatched and matched beam (taken from B. Schmidt):

matching distribmtion non=matching distribution
2r ~ machine ellipse : Z- machine ellipse ]
” - L Zady - f
w DE w 0
-1} -1 :
_'." ) _2 1
L -5 q 5 0 -~ 10 -5 N 5 mn

X x
after 20 turns

. matching distribution : non=matching distribution
2} % :
Lt : :
w0 - =
L | :
| PP | i J
" 10 -5 ) 5 10 e
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4.4.3. Normalized phase space and normal forms

It 1s useful to transform the oscillatory solution with varying amplitude and frequency

to a solution which looks exactly like that of a harmonic oscillator. So far, we had:

x(s) = Ay B.(s) -cos(p,(s) + )

x(5) =~ A2 cos( 11 (s)+9,)

4 .
\/m mSIH(ﬂx(S)+¢0)

We now introduce new coordinates x, (i) defined by:

_ M)
70
NG
tJBUs)

max

The angle ¥ advances by 27 every revolution. It coincides with € at each ™ and

L™ location and does not depart very much from @ in between. We can as well use

the set x (1) which only differs by the different phase advance 27Q per revolution.
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In case of x, () we get the required transformation from

1 1
:A 0 - O
N g _ o a x,’ o X
% () =Asin(u+ gy) = VX () 4 x(6) =l VB | 2

or in short from:

X =T-X, X=T"'"X

n

with

1
- 0 JB 0

a 1
ﬁ@ JB B

Please note that the transformation matrix T is explicitly depending on the longitudi-

nal position s, since the optical functions are explicitly dependent on s as well!

Using these normalized coordinates, the equation of motion 1s simplified to
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d’*x d’*x
—+x, =0, —§+Q2xn =0

d 1 dy
The ellipse equation transforms to

_ 2 , 2 2 2
A= yx"+2axx+px" = x, +x,

and thus the ellipse transforms to a circle (— normalized phase space)

r r
x r xnll

T(s)

We have vanishing correlation and get for the variances

<xn2> = <xn'2> = &, <xn -xn'> =0

Transverse Linear Beam Dynamics W. Hillert
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Looking at one turn in a circular accelerator, the one-turn matrix M is simplified to a

simple rotation matrix. Using (x,x"), we obtained

M — COS 1L + &, Sin u B, sin
- —¥,S1n COS 1L — a, SIn U

Using (x,,x,"), the one-turn matrix transforms to R

X':T‘l.)_fn :M.)_fo :M.(T_l.)_(;n,O) — )_fn :TOMOT_I,'Xn,O
R

and simplifies to a pure rotation matrix:

R = ToMoT — (cos(27zQ) sin(ZEQ)j

—sin(27Q0)  cos(270)

In general, we can transform any quadratic (z x n) matrix M to its Jordan normal
form R. From the transformation, we get a bunch of useful information (here «, f, ¥,
and the tune Q).

As another example, we can decouple the transverse oscillations in 2D:
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With the one-turn matrix M, which will consist of 2x2 matrices A, B, U, V we have

X
= | X > = A U) s
X = P X—M-XO—(V B)Xo
¥
In case of transverse coupling U=0, V #0. Applying the same procedure, we obtain
cos(27Q,)  sin(27Q,) 0
—sin(270,)  cos(270,)
R =T,o(T.ocMoT, " )oT,” =
) ( ¢ ¢ ) ) 0 cos(27zQy) sin(ZﬂQy)
—sin<27rQy) COS(272'Qy)

where the 2x2 rotation matrices on the diagonal are the one-turn matrices for the nor-

mal modes, the transformation matrices T have the form (where I is the 2x2 identity)

el gb om0

A 1s a scalar factor and the matrix C contains the coupling coefficients.
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4.4.4. Closed orbit distortions

Let us assume a dipole field error produced by a short dipole which makes a constant

angular kick in divergence (from [ =7-¢ = sx=L2 B -0X") ¥
q(5 ) oB
r
o(B!
N B
Bp 1) x=e
This perturbs the orbit trajectory which elsewhere obeys the OB

unperturbed Hills differential equations

1

p(s

X"(S)+£ —k(S)j-x(S) =0, Y(s)+k(s)-y(s) =0

Let us first analyze the situation using normalized coordinates x, (y). The differential
equation thus simplifies to
d2
dy’

L +Qx, =0, with x,=x,,cos(Qy +A)
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We choose 7 =0 to be diametrically opposite to the kick. Then by symmetry A =0

and the disturbed orbit oscillates around the 1deal path

xn t xn = xn.O COS(QV/)

/

H $ - A A A >
2 tan” (dx, /dy)
T 2

: e dx : :
Differentiation gives —=*=—-x, ,Q-sin(Qy)=-x,,0-sin(7Q) at y=r.

ody 1 , 1 , -
With = and ox ' =——"-0x", we may relate x_, to the real kick by

ds  Qp, \/Eo ’
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5_x_ ' xn':_ .d _ dx, dw _ Ko
5 \/Eo o s :Bo s \/F() Sm(”Q)

\/EO ox’
2sin(7Q)

position s for a field error at 5o with x = \/E -x, and u(s)— u(s,))+0r =0 y:

o( Bl
x.(5) = B, c05(Ow) = Hi Sl)(i (QS;) ép)}-cos(u(s)—mmgn)

= amplitude at position s

giving X, =

The effect of a random distribution of dipole errors can be estimated from the r.m.s.

average, weighted according to the g, values of the kicks Jx;:

x.(s) = 281““ L NZES @ cos((s) - p(s,) + ) ds,

Using matrix algebra, the displacement of the closed orbit at the position of the field

error can be calculated from the displacement just before and after the kick element:
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Yoo | _ o Feo ] [cos [+ a,sin u S, sin u j X,
X, , —0X X, —¥,SIn Y cosp—a,sinp ) \ X,

with u =270, giving
By ox

Yoo 2sin(7zQ) cos(7Q)
, ox’ :
Yoo = S ECEQ) [ sin(7Q) -, cos(7Q) ]
The closed orbit displacement x (s) is calculated from X, (s) = M(SO,S) ‘X,
COS 4L + ot sin i) B($) B, sin
(XC(S)j - b, .('xc,O j
x,'(s) L+ a(s)a, O gin 1+ 1-a(s)a, cos 1 By (cos s — at, sin 1) X.o
VA () B, VB ($)f, B (s) :

JB(s) B(s,) 5(Bl)
2sm(7zQ) Bp

x,(s) = \Bn,cos(Qy) = -cos (p(s) — pu(s,) + O )
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Closed orbit distortions: uncorrected and corrected

| |
uncorrected —Ji—
old correctors —#—

New correctors —WYW—

Horz. beam position X/ mm

50 a0 100 120 140 160
Position in ring s/ m
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LHC Operation: Beam Commissioning

Mot Viehed v MEP - ClAMs ATIAL- CAF: OOM> (DAt Opeonesr G- Bb- Fesls- TMyA: Clmr: g-3c e W

POINT 5
cMS T‘

POINT 4
RF

First turn steering "by sector:"

POINT 3
Momentum

aOne beam at the time e

aBeam through 1 sector (1/8 ring),
correct trajectory, open collimator and move on.

=

Rviews | R m =83~ H More |42

FT - P 450.12 GeV/c - Fill # 830 INJPROT - 10/09/08 15-01-58 s : : 2 ; : [l
10 - : -
e -0.336 / RMS = 2.868 /|)Dp = -0.37
£ 7] |
£ - n |
$ ] It Il H [
=
-5- H H ;
0 ATLAS) NS DUMP-B2 -2
-: T T T T T
0 100 200 300 400 500
Monitor H

FT - P450.12 GeV/c - Fill # 830 INJPROT - 10/09/08 15-01-58

10 : : :
0.272 / RMS = 2,502 / Dp = -0.37 | 3
= 57 : :
€ . s
£ I'H'F"”
g ° K '
= i '
* 3 |
10 [cus] [DumP-52 ing-82]
0 100 200 300 400 500

Monitor V
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Dipole error and integer tune:
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Quadrupole error and half integer tune:

.....

.....

-----
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4.4.5. Gradient errors

Consider a small gradient error which affects a quadrupole at position s in the lattice
of a circular accelerator. Translated to matrix algebra, we have to multiply a perturba-

tion matrix

0

5Qs) :( ~Sk(s)-ds 1

with the unperturbed matrix for one circle

staring at s (where a(s)=aw, B(s)=L, AS)=mn) (

[cos L, + &, sin i, B, sin p, j

—¥, 81N 1, COS L, — &, SIn Y,

2

0

— =

giving:
M(s) = 8Q(s)-M,

COS 4, + o, SIn 44, B, sin p,
=6k ds(cos p, +a,sin 4, ) — y,sin g, —Skds f,sin g, + cos u, — , sin 4,
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1 ~ :
From ETr{M} = cos £ we can calculate the change in cos x:

A(cosu) = —Ap-sin g, = —%sin,uoﬁo ok ds

27AQ = Au = %,B(S)é‘k(s)ds

Integrating over the length of the quadrupol perturbation, one obtains

AQ = icﬁ B(s)Sk(s)ds

0Q(s)

Effect on beta function: M(s,s,

Transverse Linear Beam Dynamics W. Hillert
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A gradient error will not influence the closed orbit but the betatron function of the lat-
tice. In order to calculate the betatron amplitude modulation, we have to determine
the single turn transport matrix starting at a given observer position s, introducing a

small gradient perturbation at position sy:

M =M ) _ b, b, 1 0) [an
= (S,SO)' Q(SO).M(SO,S) = b b . —Okds, 1 . a a
21 Y2 0 21 2

It 1s only necessary to evaluate the element 7, which 1s
hy = bya, +b12(—5kds dp azz) = 1, —Okds, - a,,b,
where 7, from the unperturbed matrix found by putting 6k ds, = 0 . Thus the varia-

tion in the », term due to the perturbation is

A[IB(S) Sin(zﬂ'Qo):l =—0kds, p(s) B(s,) - sin(y(s) - /u(So)) ' Sin(:u(so) - ILI(S))
=—Skds, B(s) B(s,)-sin( () — u(s,)) -sin] 220, — (u(s) — pa(sy))
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Using sing -sin = %[cos(a —f)—cos(a+f3 )] the left-hand and right-hand sides

can be expanded to give

AB(s)sin(27Q,)+ B(s) 2700 - cos (270, ) =

T

><—

%5kds0 ,B(SO),B(S){COS(ZﬂQo ) - COS|:2(,U(S) — H(s,) — ”Qo)]}

This leaves the final expression for the betatron amplitude modulation (the so called

beta-beating):

p(s)

ABts) = 2sin(270Q,

3 b Sk(sy) B(sy)cos| 2( pu(s) = pu(s,) — 20, |- s,
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B [m]

Ideal World:

.\l\. .\l\. i .\l\. .\l\. .\l\. 'll" .\l\. .\l\. .\l\. .\I\. .\l\. .\l\. .\II. .\IL .\l\. Sosudog ool

Defocusing quads

16 .

By —
14 _l- 1 n “ [ 1 1 ] r M 1 I ( rByn—-l -
12 |

)

L,

0 20 40 60 80 100 120 140 160
Longitudinal location [m]
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70

Single Quadrupole Error:

J I. ]| .III. Jh .I I .I o ol (.U.y.l L. .I I .I I .III. .IIL

60 | | Beta Beating! | By _
50
E 40
a 30
20
10 .
; SN AM é
20 40 60 80 100 120 140 160
Longitudinal location [m]
Transverse Linear Beam Dynamics W. Hillert page 98




CERN Accelerator School: Introductory Course

4.4.6. Optical resonances

Dipole errors will give a large closed orbit displacement when the tune is close to an

Gradient errors will produce an average tune shift AQ and an amplitude modulation

of the beta function which will explode for half integer Q values.

These phenomena are called resonances. Due to the turn by turn modulation of the
tune, there exist regions of instability called stop bands around the resonance condi-
tions. The width of these stop bands are given by the tune modulation amplitude.
These effects can be studied best when regarding the normalized phase space, where

the particles ellipses transform to circles:
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Dipole Errors: Gradient Errors:
A 3

AU=2TAQ  «

=v

>
n
: 1
No average tune shift Average tune shift AQ = e Lo (kl )
Tune modulation amplitude dQ Tune modulation amplitude dO = AQ

Any particle whose unperturbed Q lies in the stop band width dQ will lock into reso-
nance and is lost.

We may generalize and give a list of resonances and their driving multipoles:
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resonance type driving multipole

integer resonance: O =n dipole errors
half-integer resonance 2-O =n quadrupole errors

third-integer resonance 3-Q =n sextupole errors

: S Cp : tiOIlS may depend on the betatl‘On am-

plitude in both planes. These coupling

terms lead to the generalized reso-

0. nance condition
J-O.+k-O, =N

where j+k indicates the order of the

..........................................................................................................................

resonance. The circle represents the

tune on the energy ramp of ELSA.
h 0 5 gy ramp
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Example: LHC ,
Courtesy: R. Steinhagen

a 60 I T anl O>.59. SSGUE B sad GUARRAEN e N A A
59.8 /i SEYE v, 3 - 59.3 99"_
507 N RN R S 59.3 Linj. Y )
50.6 | : i ‘ 5931 . """ 3
59.4/w | S 59. A .
59.3 - h eV RRRNRN - 59.2 :

59,2/ P e St - _ so.27— 4" /™ AN\

5017 & T e R R R R 59. \ \
L A4S IR = 4 R
y AN i AR T L . 1\ ....... N ]

597541 642 643 644 645 646 647 648 649 65 59.83 .25 64.26 64.27 64.28 64.20 64.3 64.31 64.32 64.33 64.34 64.3!

Q, Q,

Tune stability requirements: AQ < 0.001 vs exp. Drifts ~ 0.06
Note: need to stay much further of resonances due to finite tune width (chromaticity,

momentum spread), space charge, beam-beam, etc., and finite width of stop bands.
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4.5. Beam dynamics with acceleration

Phase space in accelerator physics  # phase space in classical mechanics:
coordinates x, x’ > canonical coordinates x, px
p.=m-XxX=m-S-X =p,-X =Ly -mc-x — By, -x = const.

Beam acceleration (momentum increase) causes compression of x” axis and therewith

decrease of the beam emittance, which is called adiabatic damping:

V- LLTTPPR ae

energy
increase

X

(p,) £(p,)

— Define normalized emittance, which is conserved: ¢ =Sy -¢
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S. Dynamics with Off Momentum Particles

We will come back to the equation of motion, now explicitly treating the momentum

dependent right hand side, depending on the relative momentum deviation § =Ap/ p,

L Ap
p(s) p

x”(s)+( 21 —k(S)jOC(S) =
p(s)

y(s)+k(s)-y(s) =0

Since the dynamics of off momentum particles 1s only affected in the horizontal

plane, we will restrict the treatment to 1D including the momentum dependence.

5.1 Dispersion and dispersion functions
A particular solution for a non-vanishing § =Ap/p is x,(s)= p- 6 . Recalling the so-

lution of the homogenous equation, this gives:

x(S)th(S)erl.h(s)=a-cos(%))+b-sin(%))+p-5
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The integration constants a, b are again derived from the boundary conditions at

s =0, but now the inhomogenous solution has to be included:

x(S=O)=CZ+,0'5=x0, x'(S:O)zész,’

Yo,
and by defining the bending angle ¢ = L/p of the dipole magnet, we obtain :

x(L)=x, -Cosg0+p-xo'-sin(o+p(1—cosgp)-5
x(L)y=-x,/p-sinp+x,-cosp+sing-o

This can be easily implemented in the matrix formalism by adding a 3" component to
the particle’s position vector dealing with the actual relative momentum deviation

compared to the reference particle:

X COS @ psing|  p(l—cose)
X=|x Mo =| | =1/ psing  cosg sin @
0 0 0 1
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First neglecting the dependence of the quadrupole strength & on the actual particle’s

momentum, the quadrupole transfer matrices remain “unchanged”:

cos ()

[k|sin

cos()

Important:

M = —I/MsinQ
0

0

0
0

1

QD

cosh Q2 |k| sinhQ|
1/ \/m sinh 3 cosh Q) 0
0 0 1
— Hands-on Lattice Calculation
recommended E33

Whereas a quadrupole magnet will not directly cause an impact on the particle’s tra-

jectory, a dipole magnet creates a (horizontal) dispersion:

D =7 =,0(1—COS(0),

D' =r,=smg

The dispersion represents the offset due to a relative momentum deviation Ap/p =1.

In general, we have:

X(5) = ,() + 2, (5) = x(s) + D(s) -
P

Here, D(s) is the dispersion function, a solution of the equation of motion for 6= 1.

Transverse Linear Beam Dynamics
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But now take care:

Due to x(s) = x,(s)+x,(s), we will observe a change of the dispersion orbit x,(s)

when passing a dipole magnet or a quadrupole magnet!!

Both dipole and quadrupole magnets therefore will modify an existing dispersion ac-

cording to
D(s) Mo Tl Te | [ Do D(s) ho Tt O [ Dy
D(s)| = ||n 7| 5| | Do D(s)| = ||n m| 0D
1 00 1 1 1 00 1 1
Md\i;ole Mquaﬁrupole

5.2 Dispersion in circular accelerators

In a periodic lattice, the dispersion function has — as well as the beta function — to ful-

fill periodic boundary conditions:

D(s, + L) = D(s,)
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Thus the dispersion function can obtained from applying the 3x3 transport matrix M3

for a full period
D, D, hi ha s D,
Dy |=M;-| Dy |=|r nr nyl|Dy
1 1 0O 0 1 1
yielding: D, = Hits + 1 (1_’”11)
2-r,—1n,
p = Dot
" 1_7’11

which for a symmetry point, where D,’=0 , simplifies to

DS UE
A - 13
1_7’11

Applying this to our model toy synchrotron, we can derive the dispersion function

which is plotted in blue:
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s [m]
0 1 2 3 4 5 6

0 I 1 I 1

I D I S i
QF B QD B QF recommended E34-38

— Hands-on Lattice Calculation

Please note that the total beam width is given by o= \/ epf.+(DS )2 !
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5.3. Chromaticity

The variation of tunes is called chromaticity and is defined by the factor £ in

AQx,y — é:x,y R

0

We distinguish between natural chromaticity created by the

chromatic aberration of quadrupole magnets and perturba-

tions derived from non-linear perturbations in the particles

trajectories (e.g. produced by sextupole magnets).

Natural Chromaticity:

The quadrupole strength scales with the particles momentum:

Ak = —k-Ap/p,

and the tune shift can therefore be cal- Ap

1 - .
AQ,, = | B,() k. (5) d5-==

culated from: § Po
zéx, y
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Chromaticity produced by sextupoles:

A beam of particles moving on a dispersion orbit through a sextupole magnet 1s “fo-

: : : A
cused” by the nonlinear field due to horizontal displacement x =D - 2P We can de-

Po
rived a position dependent focusing strength from

15 =mxye, +%m(x2 —yz) e

sext y

giving a dispersion dependent k. and £: to:

OB
kx:i' Y :mx:mDA_p
p Ox Po
A
ky:ian:mx:mD_p
p Oy Po

This adds to the natural chromaticity and gives in total:

& = o[k, 6 -m&DE)]- 4, 6)d5
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In order to avoid a large tune spread, chromaticity has to be corrected by the use of
additional sextupole magnets right after focusing and defocusing quadrupoles where

the horizontal dispersion does not vanish:
Focal length

r Sextupole

Ap/p >0
Ap/p =0
Dispersion
Quadrupole D+0

This correction will have an influence on the stability of the beam and the maximum

aperture given by nonlinear effects (so called dynamic aperture):
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i k v !
without X with X
sextupoles e sextupoles -

g =[ ™y
- \
4 4 .
Ve & '”""...'.".1 i
/ 2 |
y .""’.r s
/ /
- i i ; /L > -
/ f /
/ g ‘.”. / x
[ : 4
| % 0 4
\ '*""nm"""‘.. 4 4
\ .
\ o b o
A machine u]e_,f—'
aperture
Y P beam toss

The dynamic aperture can be calculated from a tracking of the particles orbit through

the accelerator where the nonlinear effect of sextupole magnets has to be treated as

step by step correction in linear beam matrix optics:

Sextupol Sextupol Sextupol
! ! !
— | — | - | -
Xo M1 ?1 | ?2 M, X3 | i:. Ma Xsl Xs M4 Mn
= U .
S=§, S=§;+ U
Transverse Linear Beam Dynamics W. Hillert
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The orbit vector is transformed from sy to s; by matrix transformation

— —

X, =M,-X,
A sextupole of length / will produce an angular kick in the horizontal and vertical or-

bit of A= %mz.(xf—yf)

Ay, = ml-x y
which gives an orbit vector right after the sextupole of

X

- x, +Ax,”
X, =
M

Ay

—

By this method a randomly chosen distribution of start vectors X 1s tracked through

the accelerator for many revolutions and the resulting dynamic aperture is derived

from the phase space representation.
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5.4 Path length and momentum compaction
The path length of a particle with horizontal orbit displacement x,, is influenced by
the curved sections of the beam line. The total path length is therefore given by

_ _ | PO F+x,) | e 1% e
L —Irdw— J{ ) }ds = L0+;[ () ds

S0

With a given relative momentum deviation & = Ap/p, we have x,(s)= D(s)-5 and

obtain the deviation AL = L — L, from the ideal path length

ds

L - 5[ 2O
5 P(S)

This variation is determined by the
momentum compaction factor a., defined

for a circular accelerator by

ac — AL/LO = ! @D(f)dg
Ap/p L, I, P(S)
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The travel time 1s given by 7 = L/ ( ,Brc) , and its relative variation is obtained from the

logarithmic differentiation (using 6 = a_ la—pAﬂ,, _Afme o(br.) _ 55, 7))
p pop, p ap, B,
Alng = B0 _ AL_AB, ac—iz 0 =-10
T L B v
where we have defined the slip factor 7 by
1
n= 7—3 — &,

The momentum compaction factor therefore characterizes a critical energy

which is called the transition energy, where the slip factor vanishes. In this case, all
particles will have — to first order independent from their individual momentum — the
same revolution frequency. The (catastrophic) consequences will be treated in the

lecture on longitudinal beam dynamics.
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