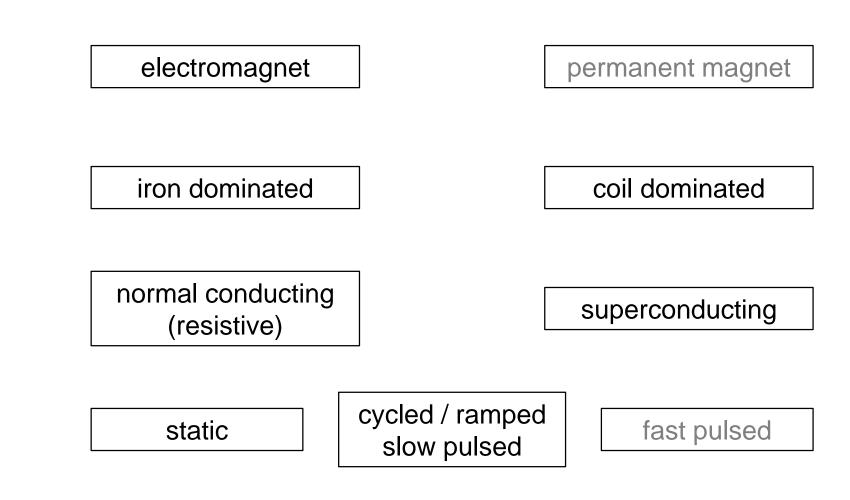


Warm Magnets

Gijs de Rijk CERN

CAS

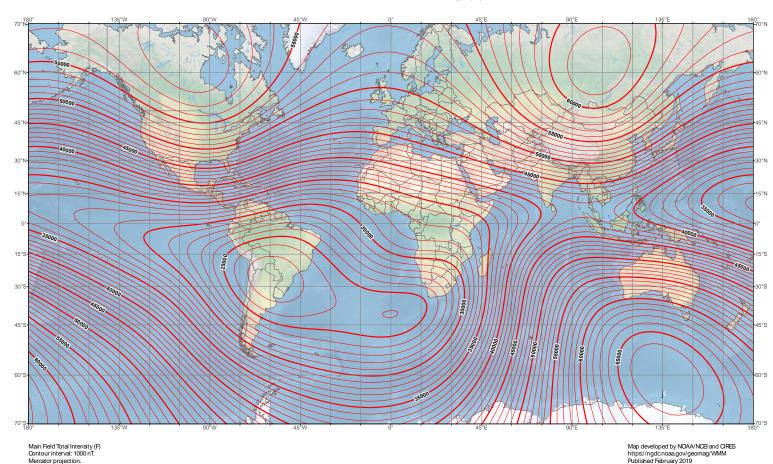
Vysoke-Tatry, Slovakia 11th September 2019


Contents

- Introduction: magnetic field and warm magnet principles
- Field description and magnet types
- Practical magnet design & manufacturing
- Permanent magnets
- Examples of accelerator magnets from the early times until the present
- Literature on warm Magnets

Magnet types, technological view

We can also classify magnets based on their technology



Earth magnetic field

In Geneva, on 15/08/2019, the (estimated) magnetic field (flux density) is

 $|B| = 40054 \text{ nT} = 0.040054 \text{ mT} = 4.0054 \cdot 10^{-5} \text{ T} \approx 0.5 \text{ Gauss.}$

B_{horizontal} = 19045 nT

Maxwell equations

Integral form

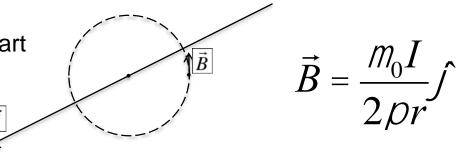
Differential form

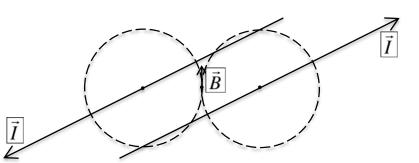
 $\vec{D} = \varepsilon \vec{E} = \varepsilon_0 \left(\vec{E} + \vec{P} \right)$ $\vec{J} = \kappa \vec{E} + J_{imp.}$

Magnetostatics

Let's have a closer look at the 3 equations that describe magnetostatics

Gauss law of
magnetism(1)div
$$\vec{B} = 0$$
always holdsAmpere's law with no
time dependencies(2) $\operatorname{rot} \vec{H} = \vec{J}$ holds for magnetostaticsRelation between
 \vec{H} field and the flux
density \vec{B} (3) $\vec{B} = \mu_0 \mu_r \vec{H}$ holds for linear materials



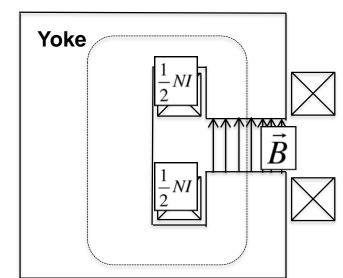

Magnetic fields

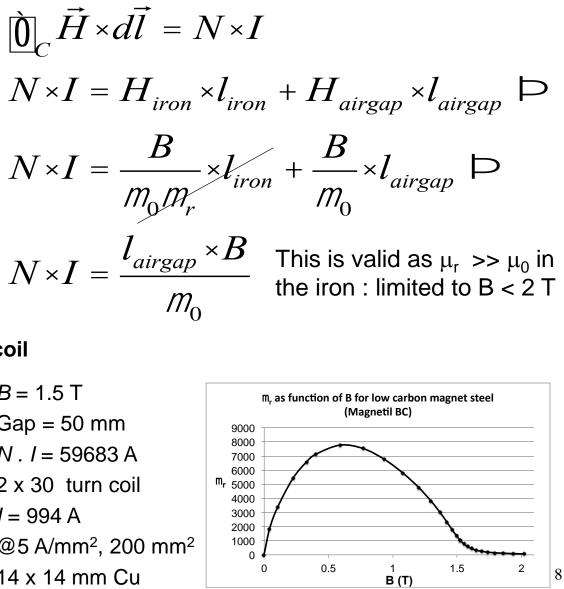
From Ampere's law with no time dependencies

(Integral form)
$$\dot{D}_C \vec{B} \times d\vec{l} = M_0 I_{encl.}$$

We can derive the law of Biot and Savart

If you wanted to make a B = 1.5 T magnet with just two infinitely thin wires placed at 100 mm distance in air one needs : I = 187500 A

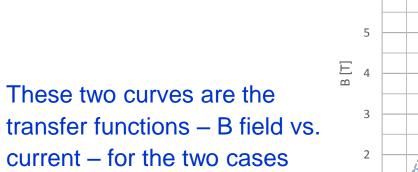

- To get reasonable fields (*B* > 1 T) one needs large currents
- Moreover, the field homogeneity will be poor

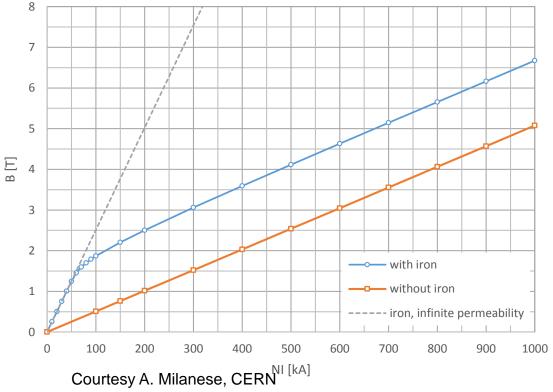

Iron dominated magnets

With the help of an iron yoke we can get fields with less current

Example: C shaped dipole for accelerators

coil B = 1.5 TGap = 50 mm*N* . *I* = 59683 A 2 x 30 turn coil I = 994 A@5 A/mm², 200 mm² 14 x 14 mm Cu





Comparison : iron magnet and air coil

Imagine a magnet with a 50 mm vertical gap (horizontal width ~100 mm) Iron magnet wrt to an air coil:

- Up to 1.5 T we get ~6 times the field
- Between 1.5 T and 2 T the gain flattens of : the iron saturates
- Above 2 T the slope is like for an air-coil: currents become too large to use resistive coils

Magnetic field quality: multipole description

$$B_{y}(z) + iB_{x}(z) = 10^{-4}B_{1}\sum_{n=1}^{\infty} (b_{n} + ia_{n}) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$
with

with:

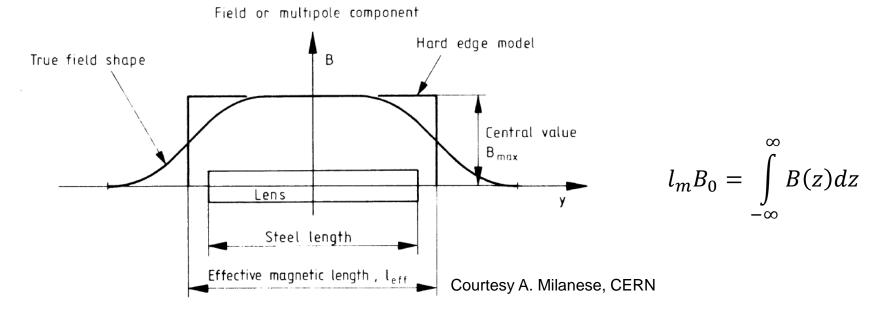
z = x + iy,

 B_x and B_y the flux density components in the x and y direction, R_{ref} the radius of the reference circle,

 B_1 the dipole field component at the reference circle,

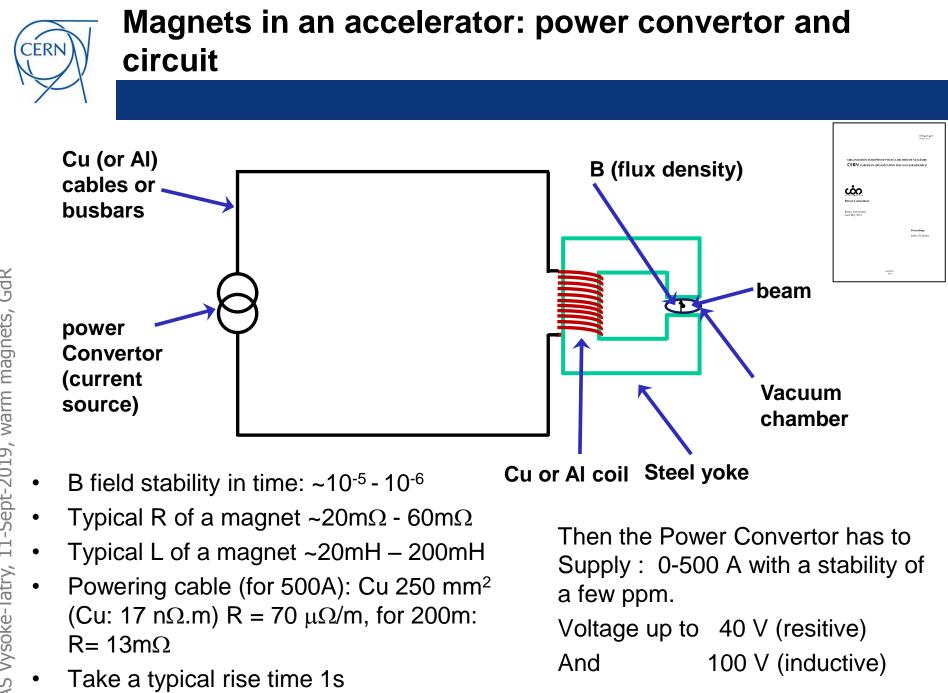
 b_n the normal nth multipole component,

 a_n the skew nth multipole component.

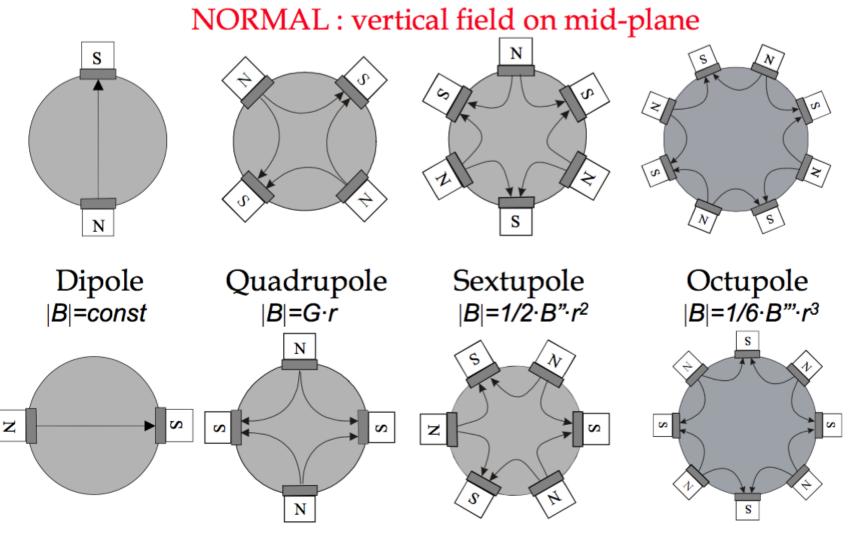

In a ring shaped accelerator, where the beam does multiple passes, one typically demands :

 $a_n, b_n \leq 1 \text{ unit } 10^{-4}$

Magnetic Length

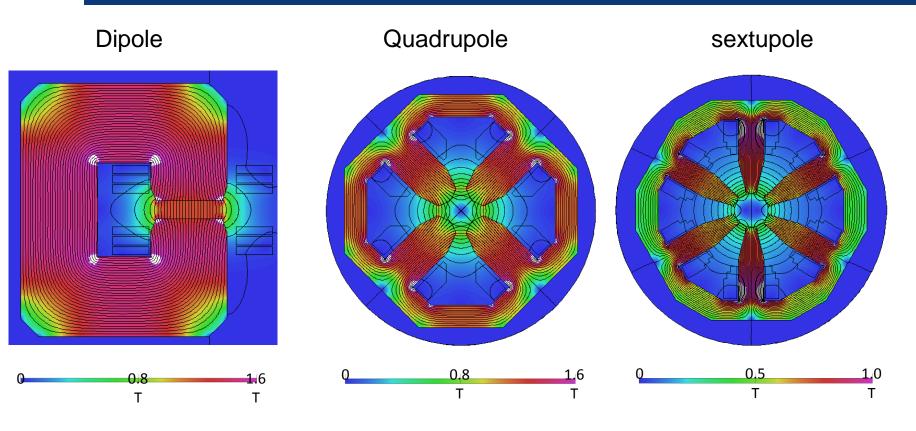

In 3D, the longitudinal dimension of the magnet is described by a magnetic length

magnetic length L_{mag} as a first approximation:


- For dipoles L_{mag} = L_{yoke} + d
- For quadrupoles: $L_{mag} = L_{yoke} + r$

- d = pole distance
- r = radius of the inscribed circle between the 4 poles

Types of magnet fields for accelerators



Courtesy D. Tommasini, CERN SKEW : horizontal field on mid-plane

CAS Vysoke-Tatry, 11-Sept-2019, warm magnets, GdR

fluxlines in magnets

Symmetry and allowed harmonics

In a fully symmetric magnet certain field harmonics are natural.

Magnet type	Allowed harmonics b_n
n=1 Dipole	n=3,5,7,
n=2 Quadrupole	n=6,10,14
n=3 Sextupole	n=9,15,21
n=4 Octupole	n=12,20,28

Non-symmetric designs and fabrication errors give rise to non allowed harmonics: b_n with n other than listed above and a_n with any n

NB: For "skew" magnets this logic is inverted !

Basic magnet types

Magnet	Pole shape	Transfer function	Inductance (H)
NVZ w : pole width	parallel	$B=\mu_0 NI/g$	$L=\mu_0 N^2 A/g$ $A \approx (w+1.2 \cdot g) \cdot (l+g)$
w : pole width g : vertical gap	parallel	$B=\mu_0 NI/g$	$L=\mu_0 N^2 A/g$ $A \approx (w+1.2 \cdot g) \cdot (l+g)$
w : pole width g : pole gap t : coil width	parallel	$B=\mu_0 NI/g$	$L=2\mu_0 N^2 A/g$ $A \approx (d+2/3t) \cdot (l+g)$
w : pole width g : pole gap t : coil width	parallel	$B=\mu_0 NI/g$	$L=\mu_0 N^2 A/g$ $A \approx (d+2/3t) \cdot (l+g)$
R : aperture radius	2xy=R ²	$\begin{array}{c} B(r)=G \cdot r\\ G=2\mu_0 NI/R^2 \end{array}$	$L=8\mu_0 N^2 A/R$ $A \approx (d+1/3t) \cdot (l+2/3R)$
All coil distance t : coil width R : aperture radius d : coil distance t : coil width	$3x^2y-y^3=R^3$	$\begin{array}{c} B(r) = S \cdot r^2 = \frac{1}{2}B'' \cdot r^2 \\ S = 3\mu_0 NI/R^3 \end{array}$	$L=20\mu_0 N^2 A/R$ $A \approx (d+1/3t) \cdot (l+1/2R)$
Courtesy D. Tom	masini, CERN		16

Practical magnet design & manufacturing

Steps in the process:

- 1. Specification
- 2. Conceptual design
- 3. Raw materials choice
- 4. Detailed design
 - 1. Coil cross-section geometry: cooling
 - 2. Yoke shape, pole shape: FE model optimization
 - 3. Yoke ends, coil ends design
- 5. Yoke manufacturing, tolerances, alignment, structure
- 6. Coil manufacturing, insulation, impregnation type
- 7. Magnetic field measurements

Specification

Before you start designing you need to get from the accelerator designers:

- B(T) or G (T/m) (higher orders: G₃(T/m²), etc)
- Magnet type: C-type, H-type, DC (slow ramp) or AC (fast ramp)
- Aperture:
 - Dipole : "good field region" \rightarrow airgap height and width
 - quads and higher order: "good field region" \rightarrow aperture inscribed circle
- Magnetic length and estimated real length
- Current range of the power convertor (and the voltage range: watch out for the cables)
- Field quality:

dipole: $\frac{\Delta B}{B}$ (ref volume), quadrupole: $\frac{\Delta G}{G}$ (reference circle)

or b_n, a_n for n = 1, 2, 3, 4, 5, ...

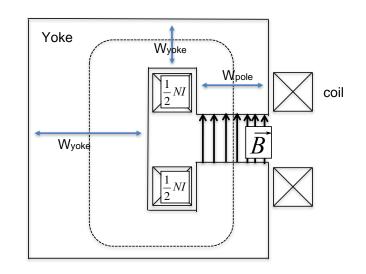
- Cooling type: air, water (P_{max} , Δp_{max} and Q_{max} (I/min)
- Jacks and Alignment features
- Vacuum chamber to be used \rightarrow fixations, bake-out specifics

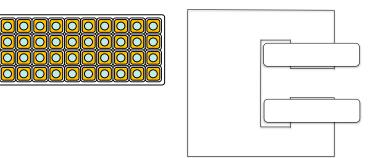
These need careful negotiation and often iteration after conceptual (and detailed) design

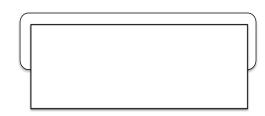
Conceptual design

• From *B* and *I* you get *NI* (A)

$$NI = \frac{l_{airgap}B}{\mu_0}$$


- From NI (A) and the power convertor I_{max} you get N
- Then you decide on a coil X-section using:


 $j_{coil} = 5 \ ^{A}/_{mm^{2}}$ for water cooled or $j_{coil} = 1 \ ^{A}/_{mm^{2}}$ for air cooled


- This defines the coil cavity in the yoke (you add 0.5 mm insulation around each conductor and 1 mm ground insulation around the coil) and select the best fitting rectangular
- You can the draw the draft X-section using:

$$W_{yoke} = W_{pole} \frac{B}{B_{sat}}$$
 with $1.5 T < B_{sat} < 2 T$

- Decide on the coil ends: racetrack, bedstead
- You now have the rough magnet cross section and envelope

Power generated

Power generated by coil

• DC: from the length of the conductor $N \cdot L_{turn}$, the cross section σ and the specific resistivity ρ of the material one gets the spent Power in the coil

$$P/l[W/m] = \frac{\rho}{S}I^2 \quad \text{with:} \qquad \qquad \rho_{Cu} = 1.72(1+0.0039(T-20))10^{-8}\Omega m$$
$$\rho_{Al} = 2.65(1+0.0039(T-20))10^{-8}\Omega m$$

For AC: take the average l^2 for the duty cycle

Power losses due to hysteresis in the yoke: (Steinmetz law up to 1.5 T) $P[W/kg] = \eta f B^{1.6} \text{ with } \eta = 0.01 \text{ to } 0.1, \ \eta_{Si \text{ steel}} \approx 0.02$

Power losses due to eddy currents in the yoke

$$P[W/kg] = 0.05 \left(d_{lam} \frac{f}{10} B_{av} \right)^2$$

with d_{lam} the lamination thickness in mm, B_{av} the average flux density

Cooling circuit parameters

Aim: to design $d_{cooling}$, $P_{water}[bar]$, $\Delta P[bar]$, Q[l/min]

- Choose a desired ΔT (20°C or 30°C depending on the $T_{cooling water}$)
- with the heat capacity of water (4.186 kJ/kg°C) we now know the required water flow rate: Q(I/min)
- The cooling water needs to be in moderately turbulent regime (with laminar flow the flow speed is zero on the wall !): Reynolds > 2000

$$R_e = \frac{dv}{v} \sim 140d[mm]v[m/s] \text{ for } T_{water} \sim 40^{\circ}C$$

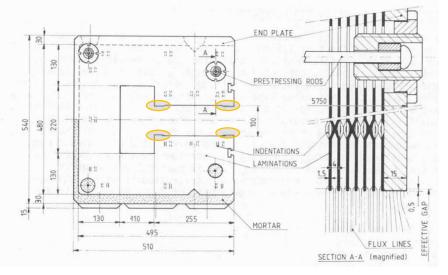
A good approximation for the pressure drop in smooth pipes can be derived from the Blasius law, giving:

$$\Delta P[bar] = 60L[m] \frac{Q[l/min]^{1.75}}{d[mm]^{4.75}}$$

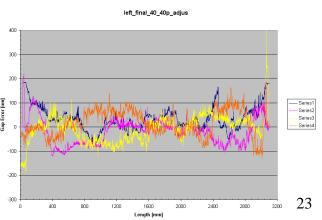
Theoretical pole shapes

The ideal poles for dipole, quadrupole, sextupole, etc. are lines of constant scalar potential

Dipole $y = \pm h/2$ straight line


quadrupole $2xy = \pm r^2$ hyperbola

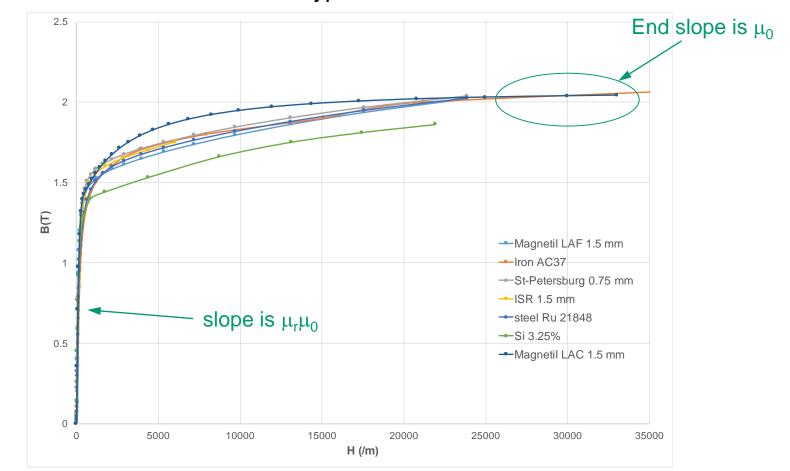
sextupole
$$3x^2y - y^3 = \pm r^3$$



Practical pole shapes: shims and alignment features

 Dipole example: below a lamination of the LEP main bending magnets, with the pole shims well visible

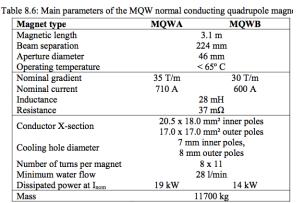
- Quadrupoles: at the edge of the pole one can put a combination a shim and alignment feature (examples: LHC-MQW, SESAME quads, etc)
- This then also allows to measure the pole distances : special instrumentation can be made for this

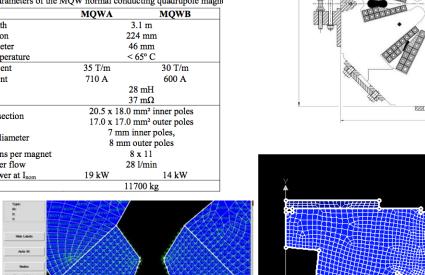

Finite Element electromagnetic models

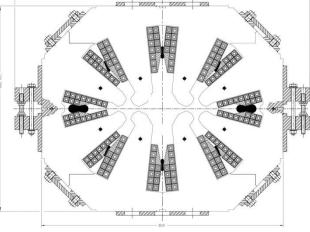
- Aim of the electromagnetic FE models:
 - The exact shape of the yoke needs to be designed
 - Optimize field quality: adjust pole shape, minimize high saturation zones
 - Minimize the total steel amount (magnet weight, raw material cost)
 - Calculate the field: needed for the optics and dynamic aperture modelling
 - transfer function $B_{xsection}(I)$, $\int Bdl$, magnetic length
 - multipoles (in the centre of the magnet and integrated) b_n and a_n
 - Some Electromagnetic FE software packages that are often used:
 - Opera from Cobham: 2D and 3D commercial software see: <u>http://operafea.com/</u>
 - "Good old" Poisson, 2D: now distributed by LANL-LAACG see: http://laacg.lanl.gov/laacg/services/download_sf.phtml
 - ROXIE (CERN) 2D and 3D, specialized for accelerator magnets; single fee license for labs & universities see: <u>ttps://espace.cern.ch/roxie/default.aspx</u>
 - ANSYS Maxwell: 2D and 3D commercial software see: <u>http://www.ansys.com/Products/Electronics/ANSYS-Maxwell</u>

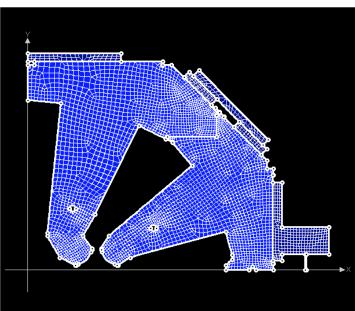
FE models: steel curves

You can use a close 'generic' B(H) curve for a first cut design You HAVE to use a measured, and smoothed, curve to properly calculate $B_{xsection}(I)$, \int_{Bdl} , b_n and a_n As illustration the curves for several types of steel:




poles, slits, etc


Yoke shape, pole shape: FE model optimization


Use symmetry and the thus appropriate boundary conditions to model only ¹/₄th (dipoles, quadrupoles) or even 1/6th sextupoles.

Meshing needs attention in the detailed areas like

2.069

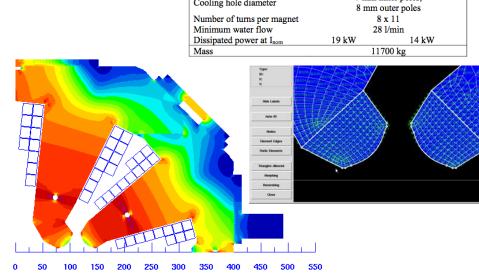
1.960

1.852

1.743

1.634

1.525


1.416

1.307 1.198 1.089 0.980

0.871

0.762 0.653 0.544 0.436 0.327 0.218

0.109

Yoke manufacturing

- Yokes are nearly always laminated to reduce eddy currents during ramping
- Laminations can be coated with an inorganic (oxidation, phosphating, Carlite) or organic (epoxy) layer to increase the resistance
- Magnetic properties: depend on chemical composition + temperature and mechanical history
- Important parameters: coercive field H_c and the saturation induction.
 - H_c has an impact on the remnant field at low current
 - $H_c < 80$ A/m typical
 - H_c < 20 A/m for magnets ranging down also to low field B < 0.05 T
 - low carbon steel (C content < 0.006%) is best for higher fields B > 1 T

Field Strength [A/m]	Minimum	Everaple
	Induction [T]	Example
40	0.20	specification for
60	0.50	1.5 mm epoxy
120	0.95	thick oxide steel
500	1.4	for the LHC
1 200	1.5	
2 500	1.62	warm separation
5 000	1.71	magnets,
10 000	1.81	<i>B_{max}</i> = 1.53 T
24 000	2.00	max

1 B [T]

Example specification for 0.5 mm thick epoxy coated steel for LHC transfer line corrector magnet B_{max} =0.3 T

Yoke manufacturing

Stacking an MBW dipole yoke stack

Stacking an MQW quadrupole yoke stack

MQW yoke assembly

Yoke stack manufacturing

Double aperture LHC quadrupole MQW

Stacking on a precision table

Welding the structural plates

Finished stack

Yokes: holding a laminated stack together

- Yokes are either
 - Glued, using epoxy coated laminations
 - Welded, full length plates are welded on the outside
 - Compressed by tie rods in holes
 - or a combination of all these
- To be able to keep the yoke (or yoke stack) stable you probably need end plates (can range from \pm 1 cm to 5 cm depending on the size)
 - The end plates have pole chamfers and often carry end shims
- Glued yoke (MCIA LHC TL)

Welded stack

Coil manufacturing, insulation, impregnation type

- Winding Cu conductors is an well established technique
- When the Cu conductor is thick it is best to use "dead soft" Cu (T treatment)
- Insulation of the coil
 - Glass fibre epoxy impregnated
 - Individual conductor 0.5 mm glass fibre, 0.25 mm tape wound half lapped
 - Impregnated with radiation resistant epoxy, total glass volume ratio >50%
 - For thin conductors: Cu emanel coated, possibly epoxy impregnated afterwards

Coil ends

For dipoles some main types are racetrack of bedstead

Quadrupoles

Coil manufacturing

MQW Glass fibre tape wrapping.

Glass fiber tape winding

Winding the hollow Cu conductor

Coil manufacturing

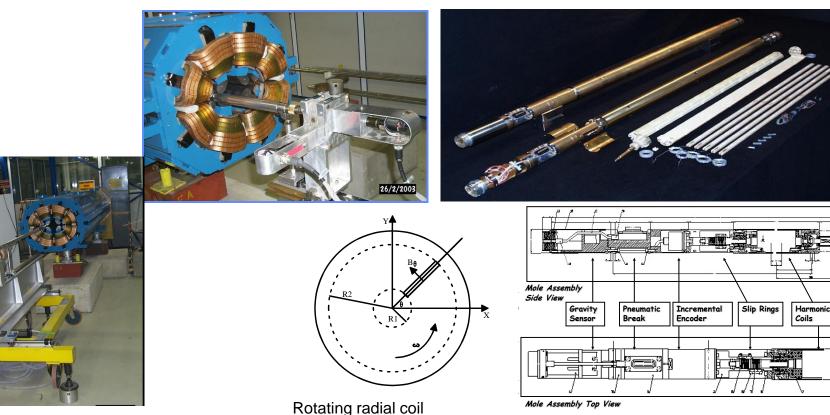
Mounted coil

coil electrical test (under water !)

Dipoles racetrack coil

MBXW Coil winding

Finished MBXW coil

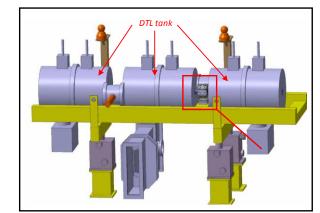


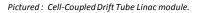
Magnetic field measurements

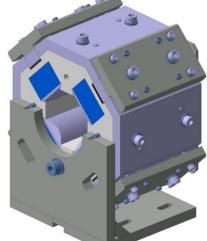
Several Magnetic Measurements techniques can be applied, e.g.:

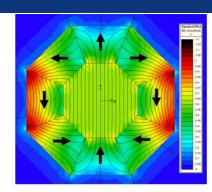
- Rotating coils: multipoles and integrated field or gradient in all magnets
- Stretched wire: magnetic centre and integrated gradient for n > 1 magnets
- Hall probes: field map
- Pickup coils: field on a current ramp
- Example below : MQW : double aperture quadrupole for the LHC.

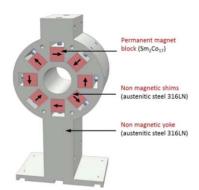
Sextupoles

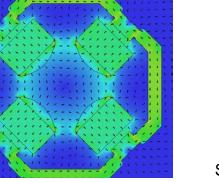

• These are sextupoles (with embedded correctors) of the main ring of the SESAME light source




Permanent magnets

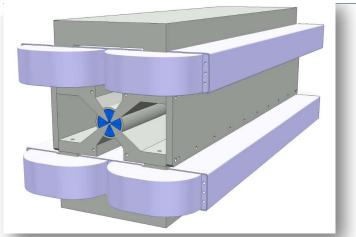

Linac4 @ CERN permanent magnets , quadrupoles

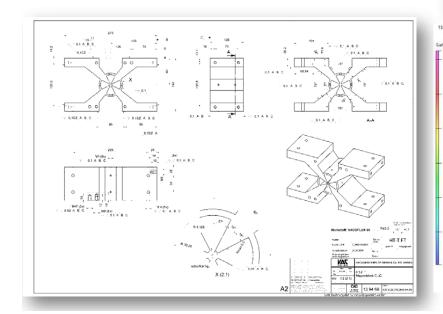


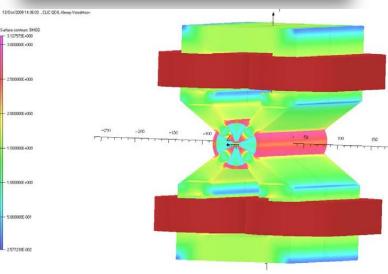

- Permanent magnet because of space between DTL tanks
- Sm₂Co₁₇ permanent magnets
- Integrated gradient of 1.3 to 1.6 Tesla
- 15 magnets
- Magnet length 0.100 m
- Field quality/amplitude tuning blocks

ig. 1. Schematic layout of the Linac4 permanent-magnet quadrupole.

Sextupole Hallback Array 37

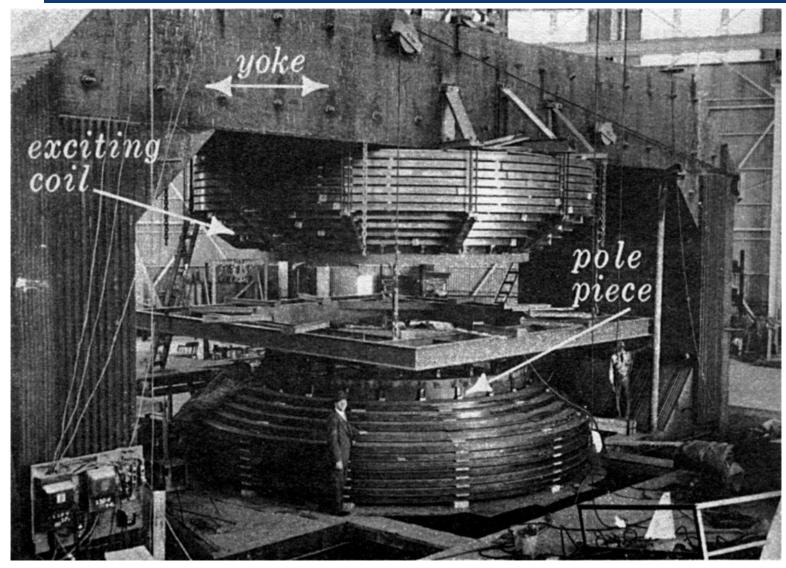

Courtesy D. Tommasini, CERN




Hybrid magnets

CLIC final focus,

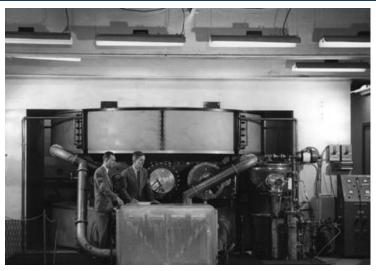
Gradient: > 530 T/m *Aperture* Ø: 8.25 mm *Tunability:* 10-100%



Examples;

Some history, some modern regular magnets and some special cases

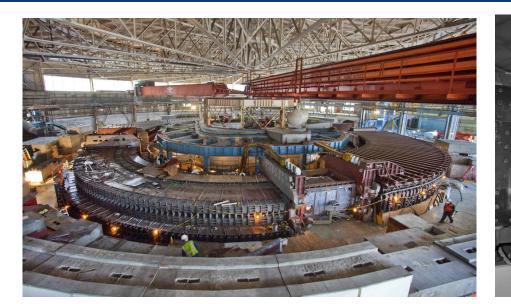
The 184" (4.7 m) cyclotron at Berkeley (1942)

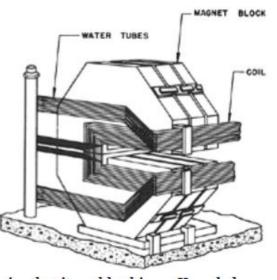


Cyclotrons

PSI= 590 MeV proton 1974

Harvard 1948

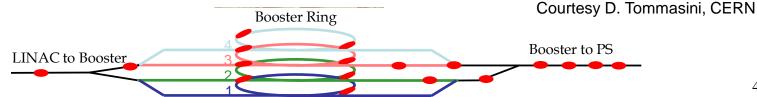



Some early magnets (early 1950-ies)

Bevatron (Berkeley) 1954, 6.2 GeV

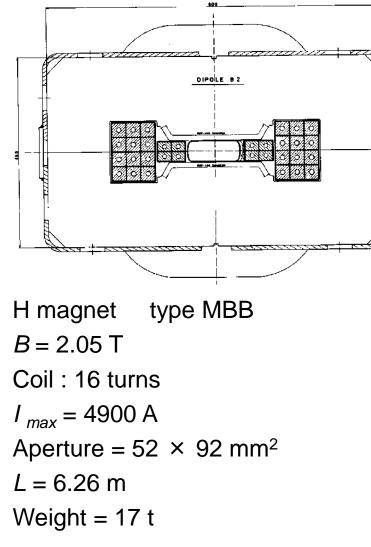
PS combined function dipole

Magnetic field:	Equation of hyperbolic part: (243.00+r) z = 12150 mm ²		
at injection	147 G		
for 24.3 GeV	1.2 T		
maximum	1.4 T		
Weight of one magnet unit	38 t	00.75 e0.0	
Gradient @1.2 T : 5 T/m		124.0 155.0	
 Equipped with pole-face windings for higher order corrections Connection of the PFW main windings for R type mainet 	Water cooled AI race-	Tolerance within the shaded area ±0.02 mm	
corrections	track coils	¥.z ∩ nom ≈ 288.4 R = 70079mm	
Percenting upstream <u>Ring center</u> <u>Fing center</u> <u>Focusing downstream</u>		<image/> <caption></caption>	
	· · · ·	Courtesy D. Tommasini, CERN 43	

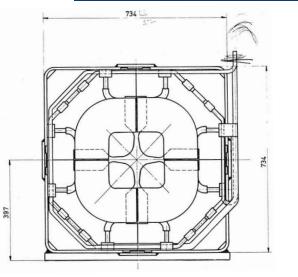


CPS booster

4 accelerator rings in a common yoke. (increase total beam intensity by 4 in presence of space charge limitation at low energy): B=1.48 T @ 2 GeV Was originally designed for 0.8 GeV !

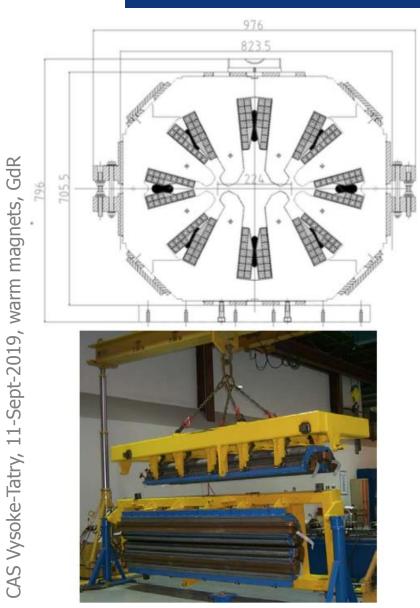


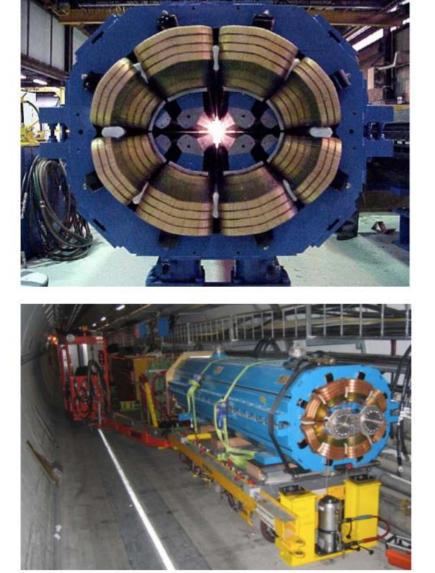
dipole magnet : SPS dipole



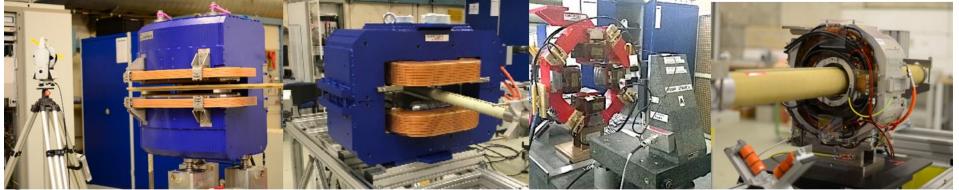
Quadrupole magnet : SPS quadrupole

type MQ G = 20.7 T/m Coil : 16 turns $I_{max} = 1938$ A Aperture inscribed radius = 44 mm $L_{coil} = 3.2$ m Weight = 8.4 t


CAS Vysoke-Tatry, 11-Sept-2019, warm magnets, GdR


MBW LHC warm separation dipole (1)

1080	Parameter	Value
A standard and a standard a stand	Aperture	52 mm
:224	Nominal field	1.42 T
	Magnetic length	3.4 m
	Weight	18 t
	Water flow	19 l/min
	Power	29 kW


MQW: LHC warm double aperture quadrupole

Elena, anti proton decelerator

CAS Vysoke-Tatry, 11-Sept-2019, v

Ring dipoles 8/8

TL dipoles 3/3

Skew quads 3/3

HV correctors 3/14

Soleil, synchrotron light-source

Courtesy A. Dael, CEA

Literature on warm accelerator magnets

- Books
 - G.E.Fisher, "Iron Dominated Magnets" AIP Conf. Proc., 1987 -- Volume 153, pp. 1120-1227
 - J. Tanabe, "Iron Dominated Electromagnets", World Scientific, ISBN 978-981-256-381-1, May 2005
 - P. Campbell, Permanent Magnet Materials and their Application, ISBN-13: 978-0521566889
 - S. Russenschuck, Field computation for accelerator magnets : analytical and numerical methods for electromagnetic design and optimization / Weinheim : Wiley, 2010. - 757 p.
 - Schools
 - CAS Bruges, 2009, specialized course on magnets, 2009, CERN-2010-004
 - CAS Frascati 2008, Magnets (Warm) by D. Einfeld
 - CAS Varna 2010, Magnets (Warm) by D. Tommasini
 - Papers and reports
 - D. Tommasini, "Practical definitions and formulae for magnets," CERN, Tech. Rep. EDMS 1162401, 2011

Acknowledgements

For this lecture I used material from lectures, seminars, reports, etc. from the many colleagues. Special thanks goes to:

Davide Tommasini, Attilio Milanese, Antoine Dael, Stephan Russenschuck, Thomas Zickler

And to the people who taught me, years ago, all the fine details about magnets !

www.cern.ch