Introduction to Longitudinal Hands-on Calculations

S. Albright, H. Damerau, A. Lasheen, F. Tecker

CERN

Introduction to Accelerator Physics

16 September 2019

Outline

Introduction

Design of RF systems

- Design flow and constraints
- Examples of RF systems at CERN

Longitudinal particle tracking

- Basic tracking equations
- Single and multiple particle tracking

Summary

Introduction

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical

- Describe particle motion by differential equations
- → Continuous trajectories of particle motion
- → Deduce useful parameters for stable acceleration:
 - → RF bucket
 - → Synchrotron frequency
 - → Stable phase
 - \rightarrow ...

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical	Numerical: tracking
 Describe particle motion by differential equations → Continuous trajectories of particle motion → Deduce useful parameters for stable acceleration: → RF bucket → Synchrotron frequency → Stable phase → 	 Track particle parameters from turn to turn → Profit from discretization of motion: turn-by-turn, RF station-by-RF station → No notion of RF bucket, synchrotron, stable phase, etc. → Follow ensemble of particles to study evolution of bunch

Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical	Numerical: tracking
 Describe particle motion by differential equations 	• Track particle parameters from turn to turn
 → Continuous trajectories of particle motion → Deduce useful parameters for stable acceleration: → RF bucket → Synchrotron frequency → Stable phase → 	 → Profit from discretization of motion: turn-by-turn, RF station-by-RF station → No notion of RF bucket, synchrotron, stable phase, etc. → Follow ensemble of particles to study evolution of bunch
→ Classical introduction of longitudinal beam dynamics	→ Flexible brute-force approach

Objectives of longitudinal hands-on

Design RF system (upgrade)

LongitudinalHandsOnDraftRFSystemCalculations_empty.ipynb

- Study boundary constraints
- Derive requirements for RF system
- Choose main components
- Compare with existing facilities

2. Play with longitudinal beam dynamics

LongitudinalHandsOnDraftTracking_empty.ipynb

- Build your own particle tracker
- Understand motion of particles in longitudinal phase space
- Transition from single particle motion to evolution of an entire bunch

RF system design Tomorrow afternoon

Introduction

What to do to design an RF system? How to choose the right one?

Simplified design work flow

RF parameters of existing accelerators

Try to follow design choices of existing accelerator

- Can we understand the arguments?
- Are the choices reasonable?

Good design?

Proton Synchrotron

Example: RF System for CERN PS

• Attention

- → Present RF system designed in ~1969
- \rightarrow Not the same energy range as today

Parameter	Value
Circumference, $2\pi R$	$2\pi \cdot 100 \text{ m} = 628 \text{ m}$
Acceleration time, t_{cycle}	1 S
Maximum ramp rate, dB/dt	2.3 T/s
Injection energy, $E_{\rm kin}$	45 MeV
Flat-top energy, $E_{\rm tot}$	initially 28 GeV

Example: CERN PS - choice of RF voltage

→ Energy gain per turn defined by size and ramp rate

$$\Delta E_{\rm turn} = 2\pi q \rho R \dot{B}$$

- → At 2.3 T/s ramp rate: ~100 keV gain per turn
- → Just sufficient to accelerate synchronous particle

 \rightarrow Over-voltage for bucket area: $V_{\rm RF} = -$

$$V_{\rm RF} = \frac{1}{\sin \phi_{\rm S}} \frac{\Delta E}{q} \simeq 200 \text{ kV}$$

Example: CERN PS - choice of RF harmonic

- → Operate RF stations in phase with respect to beam
- → Use common RF signal

• Time of flight, τ_{nm} between RF cavities:

→ Multiple of RF period

$$\rightarrow \tau_{\rm pq} = n \cdot T_{\rm RF} = n/hT_{\rm rev}$$

$$\theta_{\rm pq} = n \cdot 2\pi/h$$

 \rightarrow RF stations must be located an multiples of $2\pi/h$

Example: CERN PS - choice of harmonic

- → Main elements: 100 bending magnets
- \rightarrow 100 possible location for RF stations in-between
- \rightarrow 100 = 2 · 2 · 5 · 5, hence divisible by 2, 4, 5, 10, 20, 25, 50

- → Distribute total RF voltage over many cavities
- \rightarrow Possible harmonic numbers 20 or 25 \rightarrow h = 20 retained

Example: CERN PS choice of harmonic

- \rightarrow Distance between RF stations: multiples of $2\pi/20$
- → No need to use common RF with todays technology
- \rightarrow Injection energy at 1.4 GeV (2 GeV) \rightarrow 10% (5%) swing

- \rightarrow Early design choices based on h = 20
- → Today's flexibility

Example: CERN PS choice of cavity

→ RF system parameters:

Parameter	
Harmonic, h	7, 20 , 21
Frequency, f_{RF}	2.8-10 MHz
Voltage, $V_{\rm RF}$	10 (+1) × 20 kV

 \rightarrow Distribute voltage over 10 RF stations: 20 kV/cavity

Shortened $\lambda/4$ coaxial resonators with ferrite tuning

Electrons in the PS

- As an injector of LEP electrons were accelerated in the PS to E = 3.5 GeV
- Is the RF system for acceleration of protons usable?

$$\Delta E_{\text{turn}} = \frac{e^2}{3\epsilon_0 (m_0 c^2)^4} \frac{E^4}{\rho} \simeq 190 \text{ keV/turn}$$
 $\epsilon_0 \simeq 8.85 \cdot 10^{-12} \text{ As/Vm}$

- → Bucket area too small and bunches too long at 3.5 GeV
- → Optimized RF system for electron acceleration

Parameter	
Harmonic, h	240
Frequency, f_{RF}	114 MHz
Voltage, $V_{\rm RF}$	1 MV

(5 × more than 10 MHz cavities)

PS Booster

Example: RF System for CERN PS Booster

- PS injector synchrotron
 - $\rightarrow 2\pi R_{\rm PSB} = 2\pi R_{\rm PS}/4$
 - → Sandwich of 4 rings
 - → Total length as PS circumference

Parameter	Value
Circumference, $2\pi R$	$2\pi \cdot 25 \text{ m} = 157 \text{ m}$
Acceleration time, t_{cycle}	1 S
Maximum ramp rate, dB/dt	2.3 T/s
Injection energy, $E_{\rm kin}$	50 MeV
Flat-top energy, $E_{\rm kin}$	0.8/1.0/1.4/2.0 GeV

Example: CERN PS Booster (PSB)

Circumference

$$2\pi R_{PSB} = 2\pi R_{PS}/4 = 157 \text{ m}$$

Initial design as PS injector

$$f_{RF,PSB} = f_{RF,PS}$$

$$h_{PSB} = h_{PS}/4 = 5$$

→ Modifications as preinjector to LHC:

Parameter	
Harmonic, h	1 or/and 2
Frequency, f_{RF}	o.61.8 MHz
Voltage, $V_{\rm RF}$	8 kV

Example: CERN PSB (single harmonic, h = 1)

Bucket area:

$$A_{\text{bucket}} = \frac{8\sqrt{2}}{\hbar\omega_0} \sqrt{\frac{E\beta^2 qV}{\pi\hbar|\eta|}} \cdot \alpha(\phi_{\text{S}})$$

Depends on:

- Bending field, B and ramp rate dB/dt
- RF voltage, V

RF systems in the PS Booster

- \rightarrow 4 rings with 3 cavities
- → PS Booster RF systems based on tuned ferrite cavities

RF systems in the PS Booster after upgrade

- \rightarrow New wide-band cavities covering h = 1, 2, and higher
- → Based on innovative Finemet material
- → Much increased flexibility

Super Proton Synchrotron

Example: RF System for CERN SPS

$$\Delta E_{\rm turn} = 2\pi q \rho R \dot{B}$$

→ Needs significantly more RF voltage: several MV

Parameter	Value
Circumference, $2\pi R$	$2\pi \cdot 1.1 \text{km} = 6.91 \text{km}$
Acceleration time, t_{cycle}	1 S
Maximum ramp rate, dB/dt	~o.74 T/s
Injection Energy, E_{tot}	initially 10 GeV
Flat-top energy, E_{tot}	450 GeV

Example: SPS - choice of RF harmonic

Harmonic number should be multiple of	
Revolution frequency ratio of PS and SPS	11
Acceleration harmonic in the PS	20
Super-periodicity of SPS	6

→ Looking for multiples of 660

h	660	1720	1080	2649	3200	3960	4620	5280	5000
$f_{ m RF} [{ m MHz}]$	29	57	86	115	143	172	200	229	258

Lower RF frequency

Higher RF frequency

Example: SPS choice of RF cavities

• Requirements:

Parameter	
Harmonic, h	4620
Frequency, f_{RF}	200 MHz
Bandwidth, Δf_{RF}	0.44%
Voltage, $V_{\rm RF}$	Few MV

How to build such an RF system?

→ Cavity resonator would need tuning or low $Q < 1/0.44\% \approx 230$

High voltage in moderate bandwidth

Example: SPS travelling wave cavities

→ Multi-cell structure operated as a waveguide

- → Sufficient bandwidth without mechanically moving parts
- → Travelling wave structure always matched to amplifier
- → Beam takes power it needs from the waveguide

$$P_{\text{load}} = P_{\text{in}} - P_{\text{beam}} - P_{\text{loss}}$$

Large Electron Positron and Hadron Colliders

Ex.: RF against synchrotron radiation in LEP

LEP energy was entirely dominated by synchrotron radiation

• At
$$E$$
 = 100 GeV: $\Delta E_{\rm turn} = \frac{e^2}{3\epsilon_0 (m_0 c^2)^4} \frac{E^4}{\rho} \simeq 3 \ {\rm GeV/turn}$

→ About 3 % of beam energy lost each turn

Date

Example: LHC

- LHC maximum energy and ramp rate limited by superconducting bending magnets: 20 minutes ramp time
- → Average energy gain per turn only $\Delta E_{\text{turn}} \approx 500 \text{ keV/turn}$
- → Revolution frequency stays almost constant
- → RF voltage required to keep bunches short
- → Superconducting cavities chosen to reduce beam induced voltage (small R/Q)

Parameter (per beam)			
Harmonic, h	35640		
Frequency, f_{RF}	400.8 MHz		
Voltage, $V_{\rm RF}$	16 MV		

(cf. LEP: 3.5 **GeV**)

You will design an RF system (upgrade)

→ Protons accelerator: Special RF system for the CERN PS

→ Electron storage ring: Energy and current upgrade

... tomorrow

Longitudinal tracking this afternoon

Tracking simulation flow

→ Follow the coordinates of one or more particles determine its behaviour

Circular accelerator without RF system → ring

- Particles with higher or lower momentum have a different orbit compared to a reference particle
- ightarrow Arrival time/phase depends on energy $\frac{\Delta L}{L} = \frac{1}{\gamma_{\rm tr}^2} \frac{\Delta p}{p}$

$$rac{\Delta f}{f}=\etarac{\Delta p}{p}$$
 , phase slip factor: $\eta=rac{1}{\gamma^2}-rac{1}{\gamma_{
m tr}^2}$

Arrival phase of a particle at next turn

→ Turn-by-turn drift equation

$$\theta_{n+1} = \theta_n - 2\pi \frac{\eta}{\beta^2} \frac{\Delta E_{\rm n}}{E}$$

$$\phi_{n+1} = \phi_n - 2\pi h \frac{\eta}{\beta^2} \frac{\Delta E_n}{E}$$

 \rightarrow Azimuth, θ or phase, ϕ a particles arrives next turn

Circular accelerator with RF station

- Particle energy changes at passage through cavity
- → For sinusoidal RF voltage:

$$\Delta E_{n+1} = \Delta E_n + qV \sin \phi_{n+1}$$

→ With acceleration:

$$\Delta E_{n+1} = \Delta E_n + qV \left[\sin \phi_{n+1} - \sin \phi_{S} \right]$$

Reference particle: $\phi = \phi_{\mathrm{S}}$

→ General energy change:

$$\Delta E_{n+1} = \Delta E_n + qV \left[g(\phi_{n+1}) - g(\phi_S) \right] + \Delta E_{\text{ext}} + \Delta E_{\text{self}}$$

Multiple RF stations

- RF systems modelled point-like mostly valid approximation
- → Valid in most cases

Exceptions:

- \rightarrow Large synchrotron tune $f_{\rm S}/f_{\rm rev}$
- → Strong intensity effects: interaction within one turn
- → Beam energy changing during turn

Multiple RF stations

 \rightarrow Small f_S/f_{rev} : Single kick per turn fully sufficient

Example: Electrons and positrons in LEP

Beam energy changed in LEP along turn due to strong synchrotron radiation

- 4 × 2 RF sections
- → Energy loss in bending magnets
- → Track from RF section to RF section

Combining both tracking equations

- Observe phase and energy error at each turn with respect to reference particle
- Test particles:

$\Delta \phi = \phi - \phi_S = \mathbf{o}$	$\Delta E = \mathbf{o}$
$\Delta \phi \neq \mathbf{o}$	$\Delta E = \mathbf{o}$
$\Delta \phi = o$	$\Delta E \neq \mathbf{o}$

Longitudinal phase space

Simple accelerator model:

Energy dependent phase advance, φ:

$$\phi_{n+1} = \phi_n - 2\pi h\eta/\beta^2 \frac{\Delta E_n}{E_0}, \ \eta = \frac{1}{\gamma^2} - \frac{1}{\gamma_{\text{tr}}^2}$$

Phase dependent energy gain, ΔE :

$$\Delta E_{n+1} = \Delta E_n + qVg(\phi_{n+1})$$

Works for arbitrary shape of acceleration amplitude $g(\phi)$

Continuous versus discrete

- Analytical solution describes static condition
- No notion of turn-by-turn evolution

 \rightarrow Same result with both approaches for $f_{\rm S}/f_{\rm rev}$ << 1

Example: simple tracking in Python

Follow the trajectory of a single particle

Choice of particle coordinates

- Time or phase? Momentum or energy?
- Absolute or relative coordinates

		Advantages	Disadvantages
t	E	 Most universal Suitable for any tracking Canonically conjugated	 Numerical precision: large absolute value Relative bunch motion more difficult to follow
Δt	ΔΕ	 Relevant deviations only Canonically conjugated Most suited for multiple h 	Required synchronous particle as referenceDuration of turn may change
Ф	<i>E</i> , Δ <i>E</i>	 Turn length always 2π Relevant deviations only 	Requires synchronous particle as referenceNot canonically conjugated
ф	<i>E</i> , Δ <i>E</i>	 RF bucket length always 2π Relevant deviations only Most suited for single h 	Requires synchronous particle as referenceNot canonically conjugated

Tracking simulation flow

Distributions and projections

From single particle tracking to distribution

- → 10¹⁰...10¹² particles per bunch → too much computing power
- → Macro-particles to reduce \rightarrow up to few 10⁶ per bunch

Projections of distributions

- Very common task:
 - \rightarrow e.g. Python seaborn
 - \rightarrow plotPhaseSpace

→ Time projection directly observable: bunch profile

Example: Tracking of a single bunch

- Set-up bunch with parabolic distribution: generateBunch
- Most simple case: single harmonic RF without acceleration

→ Matched bunch

Wrong voltage at correct phase

→ Breathing bunch (quadrupole)

Example: Tracking of a single bunch

- Set-up bunch with parabolic distribution: generateBunch
- Most simple case: single harmonic RF without acceleration

- → Dipole oscillations
- → Phase and energy offset for example at injection

Getting closer to reality

→ State-of-the-art tracking may include much more

Longitudinal tracking codes

- Dedicated to longitudinal dynamics: fast and focussed on RF aspects
- Combined transverse and longitudinal tracking

Name	Remarks	
BLonD	 Widely used at CERN Complex RF manipulations and feedbacks Longitudinal intensity effects http://blond.web.cern.ch/ 	dinal, 1D
ESME	 Longitudinal work horse code for many years RF manipulations with multiple RF systems Intensity effects 	Longitudinal,
PyHeadTail	• Longitudinal and transverse combined simulation https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyHEADTAIL	3D
PyOrbit	• Longitudinal and transverse combined simulation https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyORBIT	Combined,
elegant	 Longitudinal and transverse combined simulation Mainly used for electron accelerators https://ops.aps.anl.gov/elegant.html 	Comb

Examples of particle tracking

Multiple RF systems with changing RF voltages: RF manipulations

Single bunch with intensity effects (example from SPS)

You will build a (small) longitudinal tracking code

... after the coffee break

Summary

- Design of RF system for circular accelerator
 - Start from accelerator parameters
 - 2. Define RF parameters based on beam requirements
 - Chose RF system
 - → Mostly several design options are possible
- Longitudinal simulations using particle tracking
 - → Complementary approach to longitudinal beam dynamics
 - → Flexibility to change parameters during tracking
 - → Powerful technique to study
 - Multi-harmonic RF systems
 - Complicated intensity effects
 - Longitudinal dynamics with feedbacks and RF loops

A big Thank You

to all colleagues providing support, material and feedback

Simon Albright, Maria-Elena Angoletta,
Philippe Baudrenghien, Thomas Bohl, Wolfgang Höfle, Erk
Jensen, Alexander Lasheen, Elena Shaposhnikova,
Frank Tecker, Daniel Valuch, Manfred Wendt, Jörg Wenninger
and many more...

Thank you very much for your attention!

References

- D. Boussard, Design of a Ring RF System, CERN SL/91-2 (RFS, rev.), 1991, http://cds.cern.ch/record/1023436/files/CM-P00065157.pdf
- E. Regenstreif, The CERN Proton Synchrotron, pt. 1, CERN-59-26, https://cds.cern.ch/record/214352/files/CERN-59-29.pdf
- CERN, The 300 GeV Programme, CERN/1050, 1972, https://cds.cern.ch/record/104068/files/CM-P00077738-e.pdf
- G. Arduini, E. Shaposhnikova, J. Wenniger, Acceleration Cycles for the LHC Proton Beams in the SPS, CERN AB-Note-2006-018, 2006, http://cds.cern.ch/record/951985/files/ab-note-2006-018.pdf
- R. W. Assmann, M. Lamont, S. Myers, A Brief History of the LEP Collider, CERN-SL-2002-009-OP, 2002, https://cds.cern.ch/record/549223/files/sl-2002-009.pdf