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Introduction
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Study interaction between beam and RF

Complementary approaches for the same problem

(Semi-)Analytical Numerical: tracking

• Describe particle motion by 
differential equations

 Continuous trajectories of 
particle motion

 Deduce useful parameters for 
stable acceleration:

 RF bucket
 Synchrotron frequency
 Stable phase
 ...

• Track particle parameters from 
turn to turn

 Profit from discretization of 
motion: turn-by-turn

 No notion of RF bucket, 
synchrotron, stable phase, etc.

 Follow ensemble of particles to 
study evolution of bunch

 Classical introduction of 
longitudinal beam dynamics

 Flexible brute-force approach
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Objectives of longitudinal hands-on

1. Design RF system (upgrade)
LongitudinalHandsOnDraftRFSystemCalculations_empty.ipynb

• Study boundary constraints

• Derive requirements for RF system

• Choose main components

• Compare with existing facilities

2. Play with longitudinal beam dynamics
LongitudinalHandsOnDraftTracking_empty.ipynb

• Build your own particle tracker

• Understand motion of particles in longitudinal phase 
space

• Transition from single particle motion to evolution of an 
entire bunch
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RF system design
Tomorrow afternoon
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Introduction

What to do to design an RF system?

How to choose the right one?
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Simplified design work flow

Accelerator and
beam parameters

Ramp rate 
limitations

Magnetic cycle, B(t)

 Revolution frequency swing
 Voltage gain per turn during cycle

 Harmonic number, RF frequency range
 Voltage program during the cycle
 Choice of RF system: number of cavities, type, … 
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RF parameters of existing accelerators

Try to follow design choices of existing accelerator

• Can we understand the arguments?

• Are the choices reasonable?

Good design?

Accelerators at CERN

Linac2/4 50 MeV
 160 MeV

PS Booster 1.4 GeV/2 GeV

PS 26 GeV/c

SPS 450 GeV/c

LHC 7 TeV

Intensity 
with 25 ns

1.3 · 1011 ppb    
 >2 · 1011 ppb
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Proton Synchrotron
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Example: RF System for CERN PS

• Attention

 Present RF system designed in ~1969

 Not the same energy range as today

Parameter Value

Circumference, 2pR 2p ∙ 100 m = 628 m

Acceleration time, tcycle 1 s

Maximum ramp rate, dB/dt 2.3 T/s

Injection energy, Ekin 45 MeV

Flat-top energy, Etot initially 28 GeV

Revolution frequency  at injection, frev,inj 143 kHz

at flat-top, frev,FT 477 kHz

Relative frequency swing 3.33
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Example: CERN PS - choice of RF voltage

 Energy gain per turn defined by size and ramp rate

 At 2.3 T/s ramp rate: ~100 keV gain per turn

 Just sufficient to accelerate synchronous particle

 Over-voltage for bucket area:
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Example: CERN PS - choice of RF harmonic

t12
t231

2

3

RF

 Operate RF stations in phase with respect to beam

 Use common RF signal

q12 q23

 RF stations must be located an multiples of 2p/h

• Time of flight, tnm

between RF cavities:

 Multiple of RF period 


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Example: CERN PS - choice of harmonic

 Main elements: 100 bending magnets

 100 possible location for RF stations in-between

 100 = 2 ∙ 2 ∙ 5 ∙ 5, hence divisible by 2, 4, 5, 10, 20, 25, 50

 Distribute total RF voltage over many cavities

 Possible harmonic numbers 20 or 25  h = 20 retained
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Example: CERN PS choice of harmonic

 Distance between RF stations: multiples of 2p/20 

 No need to use common RF with todays technology

 Injection energy at 1.4 GeV (2 GeV)  10% (5%) swing

 Early design choices  
based on h = 20

 Today’s flexibility
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Accelerating
gaps

Ferrite stacks for 
shortening and 

tuning

Shortened l/4 coaxial resonators with ferrite tuning

10 kV 10 kV

Example: CERN PS choice of cavity

 RF system parameters:

 Distribute voltage over 10 RF stations: 20 kV/cavity

Parameter

Harmonic, h 7…, 20, 21

Frequency, fRF 2.8-10 MHz

Voltage, VRF 10 (+1)  20 kV
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• As an injector of LEP electrons were accelerated
in the PS to E = 3.5 GeV

• Is the RF system for acceleration of protons usable?

 Bucket area too small and bunches too long at 3.5 GeV

 Optimized RF system for electron acceleration

Electrons in the PS

Parameter

Harmonic, h 240

Frequency, fRF 114 MHz

Voltage, VRF 1 MV

(5  more than 10 MHz cavities)
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PS Booster
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Example: RF System for CERN PS Booster

• PS injector synchrotron

 2pRPSB = 2pRPS/4

 Sandwich of 4 rings

 Total length as PS circumference

Parameter Value

Circumference, 2pR 2p ∙ 25 m = 157 m

Acceleration time, tcycle 1 s

Maximum ramp rate, dB/dt 2.3 T/s

Injection energy, Ekin 50 MeV

Flat-top energy, Ekin 0.8/1.0/1.4/2.0 GeV

Revolution frequency  at injection, frev,inj 600 kHz

at ejection, frev,ej 1.81 MHz

Relative frequency swing 3
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Example: CERN PS Booster (PSB)

Parameter

Harmonic, h 1 or/and 2

Frequency, fRF 0.6…1.8 MHz

Voltage, VRF 8 kV

• Circumference 2pRPSB = 2pRPS/4 = 157 m

• Initial design as PS injector
fRF,PSB = fRF,PS

hPSB = hPS/4 = 5

 Modifications as pre-
injector to LHC:
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Example: CERN PSB (single harmonic, h = 1)

Bucket area:

Depends on:

• Bending field, B and ramp rate dB/dt

• RF voltage, V

Bending field and RF voltage

Bucket area

Beam intensity
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Acceleration and splitting 

0.6 – 1.8 MHz, 8 kV

1.2 – 3.8 MHz, 8 kV

Controlled longitu-
dinal blow-up

6 – 16 MHz

RF systems in the PS Booster

 4 rings with 3 cavities

 PS Booster RF systems based on tuned ferrite cavities

Acceleration and splitting 

PSB
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10

RF systems in the PS Booster after upgrade

 New wide-band cavities covering h = 1, 2, and higher

 Based on innovative Finemet material

 Much increased flexibility

PSB

 BEAM

FINEMET

GAP

Collaboration     
with KEK/JPARC
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Super Proton Synchrotron
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Example: RF System for CERN SPS

Parameter Value

Circumference, 2pR 2p ∙ 1.1 km = 6.91 km

Acceleration time, tcycle 1 s

Maximum ramp rate, dB/dt ~0.74 T/s

Injection Energy, Etot initially 10 GeV

Flat-top energy, Etot 450 GeV

Relativistic beta, b = v/c at injection 0.9955885

at flat-top 0.9999978

Relative frequency swing 0.44%

 Needs significantly more
RF voltage: several MV
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Example: SPS - choice of RF harmonic

Lower RF frequency Higher RF frequency

• Total bucket area:

 Insufficient at inj. for h > 5500

• Mechanically smaller cavities

• Higher shunt impedance easier to 
achieve  power efficiency

• Magnetic tuning only possible at 
fRF < 100 MHz)

• Higher breakdown voltages

h 660 1320 1980 2640 3300 3960 4620 5280 5940

fRF [MHz] 29 57 86 115 143 172 200 229 258

Harmonic number should be multiple of 

Revolution frequency ratio of PS and SPS 11

Acceleration harmonic in the PS 20

Super-periodicity of SPS 6

 Looking for multiples of 660

Y
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Example: SPS choice of RF cavities

• Requirements:

How to build such an RF system?

 Cavity resonator would need tuning or low Q < 1/0.44% ≈ 230

Mechanically
tuned cavity

Travelling wave
structure

Avoid cycling
mechanics in vacuum

High voltage in
moderate bandwidth

Parameter

Harmonic, h 4620

Frequency, fRF 200 MHz

Bandwidth, DfRF 0.44%

Voltage, VRF Few MV
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Example: SPS travelling wave cavities

Beam

 Multi-cell structure operated as a waveguide

 Sufficient bandwidth without mechanically moving parts

 Travelling wave structure always matched to amplifier

 Beam takes power it needs from the waveguide

Pload = Pin – Pbeam – Ploss
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Large Electron Positron
and Hadron Colliders
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• LEP energy was entirely dominated by synchrotron radiation

• At E = 100 GeV:

 About 3 % of beam energy
lost each turn

Ex.: RF against synchrotron radiation in LEP

RF voltage and beam energy
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• LHC maximum energy and ramp rate limited by super-
conducting bending magnets: 20 minutes ramp time

 Average energy gain per turn only DEturn ≈ 500 keV/turn

 Revolution frequency stays almost constant

 RF voltage required to keep
bunches short

 Superconducting cavities chosen
to reduce beam induced voltage
(small R/Q)

Example: LHC

Parameter (per beam)

Harmonic, h 35640

Frequency, fRF 400.8 MHz

Voltage, VRF 16 MV

8 per beam

(cf. LEP: 3.5 GeV)
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You will design an RF system (upgrade)

 Protons accelerator: Special RF system for the CERN PS

 Electron storage ring: Energy and current upgrade

… tomorrow
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Longitudinal tracking
this afternoon
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Tracking simulation flow

Generate initial 
distribution

Accelerator 
parameters

RF system 
parameters

Tracking

 Plot and analyse results
 Compare with measurements

 Follow the coordinates of one or more particles 
determine its behaviour



36

Circular accelerator without RF system

• Particles with higher or lower momentum have a 
different orbit compared to a reference particle

 Arrival time/phase depends on energy

ring

, phase slip factor:
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Arrival phase of a particle at next turn

 Turn-by-turn drift equation

 Azimuth, q or phase, f a particles arrives next turn
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Circular accelerator with RF station

• Particle energy changes at 
passage through cavity

 For sinusoidal RF voltage:

 With acceleration:

 General energy change:

Reference particle: 
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• RF systems modelled point-like mostly valid approximation

 Valid in most cases

Exceptions:

 Large synchrotron tune fS/frev

 Strong intensity effects: interaction within one turn

 Beam energy changing during turn

Multiple RF stations

LHC SPS
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Multiple RF stations

11
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89

8 6

Acceleration 

2.8 – 10 MHz

40 MHz

80 MHz

RF Manipulations

200 MHz

Longitudinal blow-up

2

20 MHz0.4 – 5 MHz

to SPS

 Small fS/frev: Single kick per turn fully sufficient 
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Example: Electrons and positrons in LEP

• Beam energy changed in LEP along turn due to strong 
synchrotron radiation

Positrons

Electrons

• 4  2 RF sections

 Energy loss in bending 
magnets

 Track from RF section 
to RF section
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Combining both tracking equations

• Observe phase and energy error at each turn with 
respect to reference particle

• Test particles: Df = f – fS = 0 DE = 0

Df  0 DE = 0

Df = 0 DE  0
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Longitudinal phase space

Energy dependent phase advance, f:

Phase dependent energy gain, DE:

Simple accelerator model:

Works for arbitrary shape of acceleration amplitude g(f)
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Continuous versus discrete

• Analytical solution describes static condition

• No notion of turn-by-turn evolution

 Same result with both approaches for fS/frev << 1



45

Example: simple tracking in Python

• Follow the trajectory of a single particle

Turn n  n+1
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Choice of particle coordinates

• Time or phase? Momentum or energy?

• Absolute or relative coordinates

Advantages Disadvantages

t E • Most universal
• Suitable for any tracking
• Canonically conjugated

• Numerical precision: large 
absolute value

• Relative bunch motion more 
difficult to follow

Dt DE • Relevant deviations only
• Canonically conjugated
• Most suited for multiple h

• Required synchronous particle 
as reference

• Duration of turn may change

F E, 

DE
• Turn length always 2p

• Relevant deviations only
• Requires synchronous particle 

as reference
• Not canonically conjugated

f E, 

DE
• RF bucket length always 2p

• Relevant deviations only
• Most suited for single h

• Requires synchronous particle 
as reference

• Not canonically conjugated
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Tracking simulation flow

Generate initial 
distribution

Accelerator 
parameters

RF system 
parameters

Tracking

 Plot and analyse results
 Compare with measurements
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Distributions and projections

From single particle tracking to distribution

 1010…1012 particles per bunch  too much computing power

 Macro-particles to reduce  up to few 106 per bunch

Normal distribution in x, y
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Projections of distributions

 Time projection directly 
observable: bunch profile

• Very  common task:

 e.g. Python seaborn
 plotPhaseSpace
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Example: Tracking of a single bunch

• Set-up bunch with parabolic distribution: generateBunch

• Most simple case: single harmonic RF without acceleration

Correct voltage at correct phase Wrong voltage at correct phase

 Matched bunch  Breathing bunch 
(quadrupole)
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Example: Tracking of a single bunch

• Set-up bunch with parabolic distribution: generateBunch

• Most simple case: single harmonic RF without acceleration

Correct voltage at wrong phase All correct, but wrong energy

 Dipole oscillations
 Phase and energy offset for example at injection
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Getting closer to reality

 State-of-the-art tracking may include much more

Multiple RF systems with
changing parameters

Non-linear phase 
slip factor, e.g. 

transition

Energy loss: 
synchrotron 
radiation or 
impedances

Beam induced
voltage

AccelerationGlobal regulation loops for 
beam phase and radial 

position

Feedbacks
around cavities
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Longitudinal tracking codes

Name Remarks

BLonD • Widely used at CERN
• Complex RF manipulations and feedbacks
• Longitudinal intensity effects

http://blond.web.cern.ch/

ESME • Longitudinal work horse code for many years
• RF manipulations with multiple RF systems
• Intensity effects

esme.fnal.gov

PyHeadTail • Longitudinal and transverse combined simulation
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyHEADTAIL

PyOrbit • Longitudinal and transverse combined simulation
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyORBIT

elegant • Longitudinal and transverse combined simulation
• Mainly used for electron accelerators

https://ops.aps.anl.gov/elegant.html

… …
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• Dedicated to longitudinal dynamics: fast and focussed on RF aspects

• Combined transverse and longitudinal tracking

http://blond.web.cern.ch/
esme.fnal.gov
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyHEADTAIL
https://twiki.cern.ch/twiki/bin/view/ABPComputing/PyORBIT
https://ops.aps.anl.gov/elegant.html
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Examples of particle tracking

• Multiple RF systems with changing RF voltages: RF manipulations

• Single bunch with intensity effects (example from SPS)

Voltage induced
by bunch 

Induced voltage 
affects bunch
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longitudinal tracking code

… after the coffee break

You will build a (small) 
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Summary

• Design of RF system for circular accelerator

1. Start from accelerator parameters

2. Define RF parameters based on beam requirements

3. Chose RF system

 Mostly several design options are possible

• Longitudinal simulations using particle tracking

 Complementary approach to longitudinal beam 
dynamics

 Flexibility to change parameters during tracking

 Powerful technique to study

• Multi-harmonic RF systems

• Complicated intensity effects

• Longitudinal dynamics with feedbacks and RF loops
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Thank you very much            
for your attention!
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