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Radiation is emitted into a narrow cone

v << c v c

v ~ c

qe q
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q = 1
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Synchrotron radiation power

  P  E2B2

  
C = 4
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Power emitted is proportional to:

Energy loss per turn:
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Radiation effects in electron storage rings

Average radiated power restored by RF

 Electron loses energy each turn to synchrotron radiation

 RF cavities accelerate electrons back to the nominal energy

Radiation damping

 Average rate of energy loss produces DAMPING of electron 

oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations

 Statistical fluctuations in energy loss (from quantized emission of 

radiation) produce RANDOM EXCITATION of these oscillations

Equilibrium distributions

 The balance between the damping and the excitation of the electron 

oscillations determines the equilibrium distribution of particles in the 

beam

  
U0  10– 3 of E0

  VRF > U0
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Radiation damping

Transverse oscillations



Average energy loss and gain per turn

 Every turn electron radiates small 
amount of energy

 only the amplitude of the 
momentum changes

  

E1 = E0 – U0 = E0 1 –
U0

E0

  

P1 = P0 –
U0
c = P0 1 –

U0

E0

 Only the longitudinal component 
of the momentum is increased in 
the RF cavity

 Energy of betatron
oscillation

  
E  A2

  
A1

2 = A0
2 1 –

U0

E0

or A1  A0 1 –
U0

2E0



 But this is just the exponential decay law!

 The oscillations are exponentially damped
with the damping time (milliseconds!)

 In terms of radiation power

and since 

  
A
A

= –
U0

2E
teAA




0

Damping of vertical oscillations

0

02

U

TE
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the time it would take particle to 
‘lose all of its energy’
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 p
 p

 p p

Adiabatic damping in linear accelerators

  
x =

p
p decreases  1

E
In a linear accelerator:

In a storage ring beam passes many 
times through same RF cavity

 Clean loss of energy every turn (no change in x’)

 Every turn is re-accelerated by RF (x’ is reduced)

 Particle energy on average remains constant



Emittance damping in linacs:
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Radiation damping

Longitudinal oscillations



 RF cavity provides accelerating field 
with frequency
• h – harmonic number

 The energy gain:

 Synchronous particle: 
• has design energy 

• gains from the RF on the average as much 
as it loses per turn U0

Longitudinal motion: 
compensating radiation loss U0

 RFRF eVU 

0fhfRF 



VRF

U0





VRF

U0

 Particle ahead of synchronous one
• gets too much energy from the RF

• goes on a longer orbit (not enough B)
>> takes longer to go around

• comes back to the RF cavity closer to synchronous part.

 Particle behind the synchronous one 
• gets too little energy from the RF

• goes on a shorter orbit (too much B)

• catches-up with the synchronous particle

Longitudinal motion: 

phase stability





e

Longitudinal motion: energy-time oscillations

energy deviation from the design energy, 
or the energy of the synchronous particle

longitudinal coordinate measured from the 
position of the synchronous electron
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Click to edit Master title styleOrbit Length

Length element depends on x

Horizontal displacement has two parts:

 To first order x does not change L

 xe – has the same sign around the ring

Length of the off-energy orbit



x

ds
dl

  
dl = 1 + x

 ds

  x = x + xe

  
Le = dl = 1 +

xe
 ds = L 0 +L

  
L = 

D s

 s
ds where  =

p
p = E

E
  L
L

=



Something funny happens on the way around the ring...

Revolution time changes with energy

 Particle goes faster (not much!)

 while the orbit length increases (more!)

 The “slip factor”

 Ring is above “transition energy” 

isochronous ring:

  
T0 =

L0

c  
T
T

= L
L

–


   d


= 1
 2


dp
p (relativity)

  
L
L

=
dp
p

  T
T

=  – 1
 2


dp
p =

dp
p

 
   since  >> 1

 2

  
 1

 tr
2

  
 = 0 or  =  tr



Not only accelerators work above transition

Dante Aligieri

Divine Comedy





VRF

U0

RF Voltage

   shVV   0sinˆ
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Momentum compaction factor

Like the tunes Qx, Qy -  depends on the whole optics

 A quick estimate for separated function guide field:

 But

 Since dispersion is approximately

and the orbit change for ~ 1% energy deviation

  
  1

L

D s

 s
ds

  
 = 1

L00
D s ds

mag

= 1
L00

D  Lmag
 = 0 in dipoles
 =  elsewhere

  
Lmag = 20

  
 =

D

R

  
D R

Q2
   1

Q2
typically < 1%

  L
L

= 1

Q2
   10 – 4



Energy balance

Energy gain from the RF system:

 synchronous particle () will get exactly the energy loss per 
turn

 we consider only linear oscillations 

 Each turn electron gets energy from RF and loses energy to 
radiation within one revolution time T0

 An electron with an energy deviation will arrive after one turn 
at a different time with respect to the synchronous particle

  URF = eVRF  = U0 + eVRF  

  
VRF =

dVRF

d  = 0

  e = U0 + eVRF   – U0 + U  e
  de
dt

= 1
T0

eVRF   – U  e

  d
dt

= – e
E0



Synchrotron oscillations: damped harmonic oscillator

Combining the two equations

 where the oscillation frequency

 the damping is slow:

 the solution is then:

 similarly, we can get for the time delay:

  
d 2e

dt 2
+ 2e

de
dt

+ W2e = 0

  
W2 

eVRF

T0E0
  
e

U

2T0
typically e <<W

  
e t =e0e–etcos Wt + qe

  
 t =0e–etcos Wt + q



Synchrotron (time - energy) oscillations 

The ratio of amplitudes at any instant 

Oscillations are 90 degrees out of phase 

The motion can be viewed in the phase space of conjugate 
variables 


ˆ 

ˆ e

e e

E0

W

  
 = 

WE0
e

 
qe = q + 

2

 
e, 

  e
E0

, W



Stable regime
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During one period of synchrotron oscillation:
 when the particle is in the upper half-plane, it loses more 

energy per turn, its energy gradually reduces

 when the particle is in the lower half-plane, it loses less 
energy per turn, but receives U0 on the average, so its 
energy deviation gradually reduces

The synchrotron motion is damped
 the phase space trajectory is spiraling towards the origin

Longitudinal motion: 
damping of synchrotron oscillations

22BP E

  U > U0

  U < U0



e



 Transverse betatron oscillations 
are damped with

 Synchrotron oscillations 
are damped twice as fast

 The total amount of damping (Robinson theorem) 
depends only on energy and loss per turn

the sum of the partition numbers

Robinson theorem: Damping partition numbers

  
1
x

+ 1
y

+ 1
e

=
2U0

ET0
=

U0

2ET0
Jx + Jy + Je

  
Jx + Jz + Je = 4

0

02

U

ET
zx 

0

0

U

ET
e



 
PE2B2

Radiation loss

Displaced off the design orbit particle sees fields that 
are different from design values

 energy deviation e

 different energy:

 different magnetic field B
particle moves on a different orbit, defined by the

off-energy or dispersion function Dx

both contribute to linear term in

 betatron oscillations: zero on average

2
γ EP 

 eγP



 
PE2B2

Radiation loss

To first order in e

electron energy changes slowly, at any instant it is 

moving on an orbit defined by Dx

after some algebra one can write

 
Urad = U0 + U  e

 
U 

dUrad

dE E0

   
U =

U0

E0
2 + D

   
D  0 only when k

  0



 Typically we build rings with no vertical dispersion

 Horizontal and energy partition numbers can be 
modified via D :

 Use of combined function magnets

 Shift the equilibrium orbit in quads with RF frequency

Damping partition numbers
  

Jx + Jz + Je = 4

1zJ 3 eJJ x

D1xJ D 2eJ
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Equilibrium beam sizes



Radiation effects in electron storage rings

Average radiated power restored by RF

 Electron loses energy each turn to synchrotron radiation

 RF cavities accelerate electrons back to the nominal energy

Radiation damping

 Average rate of energy loss produces DAMPING of electron 

oscillations in all three degrees of freedom (if properly arranged!)

Quantum fluctuations

 Statistical fluctuations in energy loss (from quantized emission of 

radiation) produce RANDOM EXCITATION of these oscillations

Equilibrium distributions

 The balance between the damping and the excitation of the electron 

oscillations determines the equilibrium distribution of particles in the 

beam

  
U0  10– 3 of E0

  VRF > U0



Damping only

• If damping was the whole story, the beam emittance (size) 
would shrink to microscopic dimensions!*

• Lots of problems! (e.g. coherent radiation)

• How small? On the order of electron wavelength

– Compton wavelength
Diffraction limited electron emittance

Quantum nature of synchrotron radiation

  
E =mc2 = h = hc

e

 e = 1


h
mc =

C


  C = 2.4 10–12m



Quantum nature of synchrotron radiation

Quantum fluctuations

• Because the radiation is emitted in quanta, 
radiation itself takes care of the problem!

• It is sufficient to use quasi-classical picture:
» Emission time is very short

» Emission times are statistically independent 
(each emission - only a small change in electron 
energy)

Purely stochastic (Poisson) process



Visible quantum effects

I have always been somewhat amazed that a purely quantum 
effect can have gross macroscopic effects in large machines;

that Planck’s constant has just the right magnitude needed to 
make practical the construction of large electron storage 
rings.

A significantly larger or smaller value of 

and, even more,

would have posed serious -- perhaps  insurmountable --

problems for the realization of large rings.



Mathew Sands



Quantum excitation of energy oscillations

Photons are emitted with typical energy

at the rate (photons/second)    
N =

P

uph

Fluctuations in this rate excite oscillations

During a small interval t electron emits photons

losing energy of

Actually, because of fluctuations, the number is

resulting in spread in energy loss

   N = N  t

  N  uph

  N  N

   N  uph

For large time intervals RF compensates the energy loss, providing 

damping towards the design energy E0

Steady state: typical deviations from E0

≈ typical fluctuations in energy during a damping time e

  
uph  htyp = hc

3





We then expect the rms energy spread to be

and since                  and

Relative energy spread can be written then as: 

it is roughly constant for all rings

• typically

Equilibrium energy spread: rough estimate

phuN  ee 

  
e

E0

P phuNP 

  
e E0  uph geometric mean of the electron and photon energies!

  e

E0

  –e


  
–e = h

mec
 4  10– 13m

  
e

E0

~ const ~ 10 – 3

2E



More detailed calculations give 

• for the case of an ‘isomagnetic’ lattice

with

It is difficult to obtain energy spread < 0.1%

• limit on undulator brightness!

Equilibrium energy spread

  
 s =

0 in dipoles

 elsewhere

  
e

E

2
=

CqE 2

Je0

  
Cq = 55

32 3
hc

mec
2 3

= 1.468  10 – 6 m
GeV2



Equilibrium bunch length

Bunch length is related to the energy spread

 Energy deviation and time of arrival
(or position along the bunch)
are conjugate variables (synchrotron oscillations)

 recall that

Two ways to obtain short bunches:

 RF voltage (power!)

 Momentum compaction factor in the limit of  = 0
isochronous ring: particle position along the bunch is 
frozen



e

  
 = 

Ws

e
E

  
 = 

Ws

e

E  Ws  VRF

  
 

1
VRF

1
VRF

 
  



Excitation of betatron oscillations
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E
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



e
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E
Dx





e
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 
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Excitation of betatron oscillations

Electron emitting a photon 

• at a place with non-zero dispersion 

• starts a betatron oscillation around a 
new reference orbit

E
Dx




e




Horizontal oscillations: equilibrium

Emission of photons is a random process

 Again we have random walk, now in x. How far particle 
will wander away is limited by the radiation damping

 The balance is achieved on the time scale of the damping 
time x = 2 e

 Typical horizontal beam size ~ 1 mm

 Vertical size - determined by coupling

Quantum effect visible to the naked eye!

E
D

E
Dxx

e


e
  2N



Betatron oscillations
• Particles in the beam execute betatron oscillations with 

different amplitudes.

Transverse beam distribution
• Gaussian (electrons)

• “Typical” particle: 1 -  ellipse
(in a place where   = ’ = 0)

Beam emittance

x

x’

x

x’

 
Area =  e

  
Units of e m  rad  

Emittance 
x

2

   
x = e 

x = e /

  
e = x  x

  
 =

x

x



Detailed calculations for isomagnetic lattice 

where

and                 is average value in the bending magnets

Equilibrium horizontal emittance

   
ex0 

x
2


=

CqE
2

Jx


H mag



   
H = D 2 + 2DD + D

2

= 1


D 2 + D + D
2

  H mag



2-D Gaussian distribution

Area = ex

x

x’

x

x

Electron rings emittance definition

 1 -  ellipse

 Probability to be inside 1- ellipse

 Probability to be inside n- ellipse

  
n x dx = 1

2
e–x 2 / 2 2

dx

  
P1 = 1 – e– 1 21 2 = 0.39

  
Pn = 1 – e–

n2
2n2
2



FODO cell lattice



FODO lattice 

emittance



1

10

100

E
m

it
ta

nc
e

180160140120100806040200

Phase advance per cell [degrees]

  
e

E2

Jx

q3FFODO 

   
H ~

D 2


~ R

Q 3

  

ex0 
CqE

2

Jx

 R
  1

Q 3



Ionization cooling

absorber acceleration

E

p||

p
similar to radiation 

damping, but there is 

multiple scattering 

in the absorber that 

blows up the 

emittance





to minimize the 

blow up due to 

multiple 

scattering in the 

absorber we can 

focus the beam 
 = 0

2
+ MS

2  0 >> MS



Minimum emittance lattices

latt

3

2

0 Fθ 
x

q

x
J

EC
e

 
Fmin = 1

12 15







Quantum limit on emittance

 Electron in a storage ring’s dipole fields is accelerated, 
interacts with vacuum fluctuations: «accelerated 
thermometers show increased temperature»

 synchrotron radiation opening angle is ~ 1/-> a lower 
limit on equilibrium vertical emittance

 independent of energy

 in case of SLS: 0.2 pm

G(s) =curvature, Cq = 0.384 pm

isomagnetic lattice

 pm09.0
Mag




e

y

y 



Vertical emittance record

Beam size 3.6  0.6 m

Emittance  0.9  0.4 pm

SLS beam cross section compared to a human hair:

80 m

4 m



Summary of radiation integrals
   

I1 = D
 ds

I2 = ds
 2

I3 = ds
 3

I4 = D
 2k + 1

 2
ds

I5 = H
 3

ds

Momentum compaction factor

Energy loss per turn

  
 =

I1

2R

  
U0 = 1

2
CE

4  I2

  
C = 4

3
re

mec
2 3

= 8.858  10– 5 m
GeV 3



Summary of radiation integrals (2)
   

I1 = D
 ds

I2 = ds
 2

I3 = ds
 3

I4 = D
 2k + 1

 2
ds

I5 = H
 3

ds

Damping parameter

Damping times, partition numbers

Equilibrium energy spread

Equilibrium emittance

   
D =

I4

I2

   
Je = 2 + D , Jx = 1 – D , Jy = 1

  
 i =

0

J i

  
 0 =

2ET0

U0

  
e

E

2

=
Cq E 2

Je


I3

I2

  

ex0 =
x

2


=

CqE2

Jx


I5

I2

   H = D 2 + 2DD + D
2

  
Cq = 55

32 3
hc

mec
2 3

= 1.468  10 – 6 m
GeV2



Increase the radiation loss per turn U0 with WIGGLERS

 reduce damping time

 emittance control

wigglers at high dispersion: blow-up emittance

e.g. storage ring colliders for high energy physics

wigglers at zero dispersion: decrease emittance

e.g. damping rings for linear colliders

e.g. synchrotron light sources (PETRAIII, 1 nm.rad)

Damping wigglers

wigPP

E







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