Beam Instrumentation & Diagnostics Part 2 CAS Introduction to Accelerator Physics Vysoké Tatry, 19th of September 2019 Peter Forck

Gesellschaft für Schwerionenforschnung (GSI)
p.forck@gsi.de

2nd part of this lecture covers:

- Transverse profile techniques
- Emittance determination at transfer lines
- Diagnostics for bunch shape determination

Measurement of Beam Profile

The beam width can be changed by focusing via quadruples.

Transverse matching between ascending accelerators is done by focusing.

→ Profiles have to be controlled at many locations.

Synchrotrons: Lattice functions β (s) and D(s) are fixed \Rightarrow width σ and emittance ε are:

$$\sigma_x^2(s) = \varepsilon_x \beta_x(s) + \left(D(s) \frac{\Delta p}{p}\right)^2$$
 and $\sigma_y^2(s) = \varepsilon_y \beta_y(s)$ (no vertical bend)

Transfer lines: Lattice functions are 'smoothly' defined due to variable input emittance.

Typical beam sizes:

e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

A great variety of devices are used:

- Optical techniques: Scintillating screens (all beams), synchrotron light monitors (e-), optical transition radiation (e-, high energetic p), ionization profile monitors (protons)
- Electronics techniques: Secondary electron emission SEM grids, wire scanners (all)

Scintillation Screen

Scintillation: Particle's energy loss in matter causes emission of light

 \rightarrow the most direct way of profile observation as used from the early days on!

Pneumatic feed-through with Ø70 mm screen:

Example of Screen based Beam Profile Measurement

Advantage of screens:

- ➤ Direct 2-dim measurement
- ➤ High spatial resolution
- ➤ Cheap realization
- ⇒ widely used at transfer lines

Disadvantage of screens:

- > Intercepting device
- > Some material might brittle
- Low dynamic range
- Might be destroyedby the beamObservation with

a CCD, CMOS or video camera

Scintillation Screen (beam stopped)

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen

Light output from various Scintillating Screens

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u

- ➤ Very different light yield i.e. photons per ion's energy loss
- > Different wavelength of emitted light

Material Properties for Scintillating Screens

Some materials and their basic properties:

Name	Туре	Material	Activ.	Мах. λ	Decay
Chromox	Cera-	Al ₂ O ₃	Cr	700 nm	≈ 10 ms
Alumina	mics	Al ₂ O ₃	Non	380 nm	≈ 10 ns
YAG:Ce	Crystal	Y ₃ Al ₅ O ₁₂	Ce	550 nm	200 ns
P43	Powder	Gd ₂ O ₃ S	Tb	545 nm	1 ms
P46		Y ₃ Al ₅ O ₁₂	Ce	530 nm	300 ns
P47		Y ₃ Si ₅ O ₁₂	Ce&Tb	400 nm	100 ns

Properties of a good scintillator:

- ➤ Large light output at optical wavelength
 - → standard CCD camera can be used
- \triangleright Large dynamic range \rightarrow usable for different currents
- \triangleright Short decay time \rightarrow observation of variations
- ➤ Radiation hardness → long lifetime
- ightharpoonup Good mechanical properties ightharpoonup typ. size up to ho 10 cm (Phosphor Pxx grains of ho \approx 10 μ m on glass or metal).

Standard drive with P43 screen

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- **➤** Wire scanner
- > Ionization Profile Monitor
- Optical Transition Radiation
- > Synchrotron Light Monitors
- Summary

Secondary Electron Emission by Ion Impact

Energy loss of ions in metals close to a surface:

Closed collision with large energy transfer: \rightarrow fast e with $E_{kin} >> 100 \text{ eV}$

Distant collision with low energy transfer : \rightarrow slow e⁻ with $E_{kin} \leq 10 \text{ eV}$

- \rightarrow 'diffusion' & scattering with other e: scattering length $L_s \approx 1$ 10 nm
- \rightarrow at surface \approx 90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

 \Rightarrow **Y = const.** * **dE/dx** (Sternglass formula)

From E.J. Sternglass, Phys. Rev. 108, 1 (1957)

Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e[−] emission → measurement of current.

Example: 15 wire spaced by 1.5 mm:

SEM-Grid feed-through on CF200:

Parameter	Typ. value		
# wires per plane	10100		
Active area	(520 cm) ²		
Wire ∅	25100 μm		
Spacing	0.32 mm		
Material	e.g. W or Carbon		
Max. beam power	1 W/mm		

Secondary Electron Emission Grids = SEM-Grid

Beam surface interaction: e^- emission \rightarrow measurement of current.

Example: 15 wire spaced by 1.5 mm:

Each wire is equipped with one I/U converter different ranges settings by R_i

 \rightarrow very large dynamic range up to 10⁶.

Example of Profile Measurement with SEM-Grids

Even for low energies, several SEM-Grid can be used due to the ≈ 80 % transmission

⇒ frequently used instrument beam optimization: setting of quadrupoles, energy....

Example: C^{6+} beam of 11.4 MeV/u at different locations at GSI-LINAC

The Artist view of a SEM-Grid = Harp

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner: emission of electrons, workhorse, scanning method
- > Ionization Profile Monitor
- Optical Transition Radiation
- Synchrotron Light Monitors
- Summary

Slow, linear Wire Scanner

Idea: One wire is scanned through the beam!

Wire diameter 100 μ m $< d_{wire} < 10 \mu$ m

Slow, linear scanner are used for:

> Low energy protons

► High resolution measurements for e⁻ beam by de-convolution $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$ ⇒ resolution down to 1 µm range can be reached

The Artist view of a Beam Scraper or Scanner

Fast, Flying Wire Scanner

In a synchrotron one wire is scanned though the beam as fast as possible.

Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':

Usage of Flying Wire Scanners

Material: carbon or SiC \rightarrow low Z-material for low energy loss and high temperature.

Thickness: down to 10 μ m \rightarrow high resolution.

Detection: High energy **secondary particles** with a detector like a beam loss monitor

Secondary particles:

Proton beam \rightarrow hadrons shower (π , n, p...) **Electron beam** \rightarrow Bremsstrahlung photons.

Proton impact on scanner at CERN-PS Booster:

Kinematics of flying wire:

Velocity during passage typically 10 m/s = 36 km/h and typical beam size \varnothing 10 mm \Rightarrow time for traversing the beam $t \approx 1$ ms **Challenges:** Wire stability for fast movement with high acceleration

U. Raich et al., DIPAC 2005

The Artist View of a Wire Scanner

Comparison between SEM-Grid and slow Wire Scanners

Grid: Measurement at a single moment in time

Scanner: Fast variations can not be monitored

→ for pulsed LINACs precise synchronization is needed

Grid: Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

Grid: Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μ m)

 \rightarrow used for e-beams having small sizes (down to 10 µm)

Grid: Needs one electronics channel per wire

→ expensive electronics and data acquisition

Scanner: Needs a precise movable feed-through \rightarrow expensive mechanics.

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner: emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- Optical Transition Radiation
- Synchrotron Light Monitors
- > Summary

Ionization Profile Monitor at GSI Synchrotron

Non-destructive device for proton synchrotron:

- beam ionizes the residual gas by electronic stopping
- > gas ions or e⁻ accelerated by E -field ≈1 kV/cm
- spatial resolved single particle detection

Typical vacuum pressure:

Transfer line: $N_2 \ 10^{-8} ... 10^{-6} \ mbar \cong 3 \cdot 10^8 ... 3 \cdot 10^{10} cm^{-3}$

Synchrotron: $H_2 10^{-11}...10^{-9} \text{ mbar } \cong 3.10^5...3.10^7 \text{ cm}^{-3}$

Realization at GSI synchrotron: One monitor per plane

Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

One monitor per plane

Ionization Profile Monitor Realization

The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:

One monitor per plane

'Adiabatic' Damping during Acceleration

The emittance $\varepsilon=\int dxdx'$ is defined via the position deviation and angle in **lab-frame**

After acceleration the longitudinal velocity is increased \Rightarrow angle φ is smaller

The angle is expressed in momenta: $x' = p_{\perp}/p_{||}$ the emittance is $\langle xx' \rangle = 0$: $\varepsilon = x \cdot x' = x \cdot p_{\perp}/p_{||}$

- \Rightarrow under ideal conditions the emittance can be normalized to the momentum $p_{||} = \gamma \cdot m \cdot \beta c$
- \Rightarrow normalized emittance $\varepsilon_{norm} = \beta \gamma \cdot \varepsilon$ is preserved with the Lorentz factor γ and velocity $\beta = v/c$

Example: Acceleration in GSI-synchrotron for C⁶⁺ from

6.7
ightarrow 600 MeV/u ($m{\beta}$ = 12 ightarrow 79 %) observed by IPM

theoretical width: $\langle x \rangle_f = \sqrt{\frac{\beta_i \cdot \gamma_i}{\beta_f \cdot \gamma_f}} \cdot \langle x \rangle_i$

 $= 0.33 \cdot \langle x \rangle_i$

measured width: $\langle x \rangle_f \approx 0.37 \cdot \langle x \rangle_i$

IPM is well suited

for long time observations

without beam disturbance

→ mainly used at proton synchrotrons

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light. universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner: emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- Optical Transition Radiation: crossing material boundary, for relativistic beams only
- > Synchrotron Light Monitors
- > Summary

Optical Transition Radiation: Depictive Description

Optical Transition Radiation OTR for a single charge *e***:**

Assuming a charge **e** approaches an ideal conducting boundary e.g. metal foil

- image charge is created by electric field
- dipole type field pattern
- field distribution depends on velocity $oldsymbol{eta}$ and Lorentz factor γ due to relativistic trans. field increase
- penetration of charge through surface within t < 10 fs: sudden change of source distribution
- emission of radiation with dipole characteristic

sudden change charge distribution rearrangement of sources ⇔ radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation

26

Optical Transition Radiation: Depictive Description

Optical Transition Radiation OTR can be described in classical physics:

approximated formula for normal incidence & in-plane polarization:

$$\frac{d^2W}{d\theta \,d\omega} \approx \frac{2e^2\beta^2}{\pi \,c} \cdot \frac{\sin^2\theta \cdot \cos^2\theta}{\left(1 - \beta^2 \cos^2\theta\right)^2}$$

W: radiated energy

 ω : frequency of wave

Angular distribution of radiation in optical spectrum:

- \triangleright lope emission pattern depends on velocity or Lorentz factor γ
- \triangleright peak at angle $\theta \approx 1/\gamma$
- \triangleright emitted energy i.e. amount of photons scales with $W \propto \beta^2$
- \triangleright broad wave length spectrum (i.e. no dependence on ω)
- → suited for high energy electrons

sudden change charge distribution rearrangement of sources ⇔ radiation

Technical Realization of Optical Transition Radiation OTR

OTR is emitted by charged particle passage through a material boundary.

Photon distribution: within a solid angle $d\Omega$ and Wavelength interval λ_{begin} to λ_{end}

$$rac{dN_{photon}}{d\Omega} = N_{beam}$$

- $\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{2e^{2}\beta^{2}}{\pi c} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^{2}}{\left(v^{-2} + \theta^{2}\right)^{2}}$
- \triangleright Detection: Optical 400 nm < λ < 800 nm using image intensified CCD
- \triangleright Larger signal for relativistic beam $\gamma >> 1$
- \triangleright Low divergence for $\gamma >> 1 \Rightarrow$ large signal
- ⇒ well suited for e beams
- \Rightarrow p-beam only for $E_{kin} > 10 \text{ GeV } \Leftrightarrow \gamma > 10$

- ➤ Insertion of thin Al-foil under 45°
- Observation of low light by CCD.

OTR-Monitor: Technical Realization and Results

Example of realization at TERATRON:

Insertion of foil e.g. 5 μ m Kapton coated with 0.1 μ m Al Advantage: thin foil \Rightarrow low heating & straggling 2-dim image visible

rad-hard camera Lens Filter wheel Window Beam pipe Results at FNAL-TEVATRON synchrotron with 150 GeV proton Using fast camera: Turn-by-turn measurement

Courtesy V.E. Scarpine (FNAL) et al., BIW'06

Optical Transition Radiation compared to Scintillation Screen

Example: ALBA LINAC 100 MeV

0.4

0.3

0.2

0.1

ver. sigma, $\sigma_{\rm y}$ [mm]

Much more light from YAG:Ce for 100 MeV (γ =200) electrons light output $I_{YAG} \approx 10^{-5} I_{OTR}$

OTR

Results:

Broader image from YAG:Ce due to finite YAG:Ce thickness

Courtesy of U. Iriso et al., DIPAC'09

1.6

1.8

quad current, iq [A]

2.6

YAG OTR

2.4

2.2

Comparison between Scintillation Screens and OTR

OTR: electrodynamic process \rightarrow beam intensity linear to # photons, high radiation hardness

Scint. Screen: complex atomic process → saturation possible, for some low radiation hardness

OTR: thin foil Al or Al on Mylar, down to 0.25 µm thickness

→ minimization of beam scattering (Al is low Z-material e.g. plastics like Mylar)

Scint. Screen: thickness ≈ 1 mm inorganic, fragile material, not always radiation hard

OTR: low number of photons \rightarrow expensive image intensified CCD

Scint. Screen: large number of photons → simple CCD sufficient

OTR: complex angular photon distribution → resolution limited

Scint. Screen: isotropic photon distribution \rightarrow simple interpretation

OTR: large γ needed \rightarrow e⁻-beam with $E_{kin} > 100$ MeV, proton-beam with $E_{kin} > 100$ GeV

Scint. Screen: for all beams

Remark: OTR **not** suited for LINAC-FEL due to **coherent** light emission (not covered here) but scintillation screens can be used.

Measurement of Beam Profile

Outline:

- Scintillation screens:emission of light, universal usage, limited dynamic range
- > SEM-Grid: emission of electrons, workhorse, limited resolution
- Wire scanner: emission of electrons, workhorse, scanning method
- ➤ Ionization Profile Monitor: secondary particle detection from interaction beam-residual gas
- Optical Transition Radiation: crossing optical boundary, for relativistic beams only
- > Synchrotron Light Monitors
 photon detection of emitted synchrotron light in optical and X-ray range
- Summary

Synchrotron Light Monitor

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light see lecture of Lenny Rivkin

This light is emitted

into a cone of

opening $2/\gamma$ in lab-frame.

⇒Well suited for rel. e⁻

For protons:

Only for energies $E_{kin} > 100 \text{ GeV}$

Rest frame of electron: Laboratory frame:

The light is focused to a

intensified CCD.

Advantage:

Signal anyhow available!

Realization of a Synchrotron Light Monitor

Extracting out of the beam's plane by a (cooled) mirror

- → Focus to a slit + wavelength filter for optical wavelength
- → Image intensified CCD camera

Example: ESRF monitor from dipole with bending radius 22 m (blue or near UV)

Courtesy K. Scheidt et al., DIPAC 2005

Result from a Synchrotron Light Monitor

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength:

Advantage: Direct measurement of 2-dim distribution, good optics for visible light

Realization: Optics outside of vacuum pipe

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics.

'Adiabatic Damping' for an Electron Beam

Example: Booster at the light source ALBA acceleration from $0.1 \rightarrow 3$ GeV within 130 ms

Profile measure by synchrotron light monitor:

10 ms 30 ms 0 ms vert. y [mm] hor. x [mm] 90 ms 60 ms 120 ms 1 2 3 4 5 SRM synchrotron Courtesy U. Iriso & M. Pont (ALBA) et al. IPAC 2011 injection extraction

The beam emittance in influenced by:

- Adiabatic damping
 - Longitudinal momentum contribution via dispersion $\Delta x_D(s) = D(s) \cdot \frac{\Delta p}{p}$

total width
$$\Delta x_{tot}(s) = \sqrt{\varepsilon \beta(s) + D(s) \cdot \frac{\Delta p}{p}}$$

Quantum fluctuation due to light emission

The Artist View of a Synchrotron Light Monitor

Diffraction Limit of Synchrotron Light Monitor

Limitations:

Diffraction limits the resolution due to Fraunhofer diffraction

$$⇒ σ ≅ 0.6 \cdot (λ2 / ρ)1/3$$
≈ 100 μm for typical case

Improvements:

> Shorter wavelength:

Using X-rays and an aperture of Ø 1mm

ightarrow 'X-ray pin hole camera', achievable resolution $\sigma \approx 10~\mu m$

➤ Interference technique:

At optical wavelength using a double slit

 \rightarrow interference fringes achievable resolution $\sigma \approx 1 \, \mu m$.

X-ray Pin-Hole Camera

The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot \left(\lambda^2 / \rho\right)^{1/3} \Rightarrow$ shorter wavelength by X-rays.

Double Slit Interference for Radiation Monitors

The **blurring of interference pattern** due to finite size of the sources

- \Rightarrow spatial coherence parameter γ delivers **rms** beam size i.e. 'de-convolution' of blurred image!
- → highest resolution, but complex method

Typical resolution for three methods:

- \triangleright Direct optical observation: $\sigma \approx 100 \ \mu m$
- \triangleright Direct x-ray observation : $\sigma \approx 10 \, \mu m$
- \succ Interference optical obser: $\sigma \approx 1 \, \mu m$

Summary for Beam Profile Measurement

Different techniques are suited for different beam parameters:

e-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

Intercepting ↔ non-intercepting methods

Direct observation of electrodynamics processes:

- ➤ Optical synchrotron radiation monitor: non-destructive, for e⁻-beams, complex, limited res.
- > X-ray synchrotron radiation monitor: non-destructive, for e⁻-beams, very complex
- > OTR screen: nearly non-destructive, large relativistic γ needed, e⁻-beams mainly

Detection of secondary photons, electrons or ions:

- > Scintillation screen: destructive, large signal, simple setup, all beams
- Ionization profile monitor: non-destructive, expensive, limited resolution, for protons

Wire based electronic methods:

- > SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

Measurement of transverse Emittance

The emittance characterizes the whole beam quality, assuming linear behavior as described by second order differential equation.

It is defined within the phase space as: $\varepsilon_x = \frac{1}{\pi} \int_A dx dx'$

The measurement is based on determination of:

Either profile width σ_x and angular width $\sigma_{x'}$ at one location **Or** profile width σ_x at different locations and linear transformations.

Different devices are used at transfer lines:

- \triangleright Lower energies E_{kin} < 100 MeV/u: slit-grid device, pepper-pot (suited in case of non-linear forces).
- ➤ All beams: Quadrupole variation, 'three grid' method using linear transformations (**not** well suited in the presence of non-linear forces)

Synchrotron: lattice functions results in stability criterion

$$\Rightarrow \text{ beam width delivers emittance: } \quad \varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right) \right] \text{ and } \quad \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$$

Trajectory and Characterization of many Particles

Definition of Coordinates and basic Equations

The basic vector is 6 dimensional:

$$\vec{x}(s) = \begin{pmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{pmatrix} = \begin{pmatrix} \text{hori. spatial deviation} \\ \text{horizontal divergence} \\ \text{vert. spatial deviation} \\ \text{vertical divergence} \\ \text{longitudinal deviation} \\ \text{momentum deviation} \end{pmatrix} = \begin{pmatrix} [\text{mm}] \\ [\text{mrad}] \\ [\text{mm}] \\ [\text{mm}] \\ [\text{mm}] \\ [\text{mm}] \end{pmatrix}$$

The transformation of a single particle from a location s_0 to s_1 is given by the

Transfer Matrix R:
$$\chi(S_1) = R(S) \cdot \chi(S_0)$$

The transformation of a the envelope from a location s_0 to s_1 is given by the

Beam Matrix
$$\sigma$$
: $\sigma(s_1) = R(s) \cdot \sigma(s_0) \cdot R^T(s)$

6-dim Beam Matrix with <u>decoupled</u> hor., vert. and long. plane:

$$\sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & 0 & 0 & 0 & 0 \\ \sigma_{12} & \sigma_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{34} & \sigma_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{55} & \sigma_{56} \\ 0 & 0 & 0 & 0 & \sigma_{56} & \sigma_{66} \end{pmatrix} \text{ horizontal the three } \text{Horizontal the three coordinates: beam matrix: } \text{ vertical tongitudinal hor.-long. coupling } x_{rms} = \sqrt{\sigma_{11}} & \sigma_{11} = \langle x^2 \rangle \text{ horizontal the three coordinates: beam matrix: } \text{ vertical tongitudinal hor.-long. coupling } \text{ vertical tongitudinal hor.-long. coupling } \text{ vertical tongitudinal tor.-long. coupling } \text{ vertical tor.-long. coupling } \text{ vertical$$

The Emittance for Gaussian and non-Gaussian Beams

The beam distribution can be non-Gaussian, e.g. at:

- beams behind ion source
- > space charged dominated beams at LINAC & synchrotron
- > cooled beams in storage rings

General description of emittance using terms of 2-dim distribution:

It describes the value for 1 standard derivation

$$\varepsilon_{rms} = \sqrt{\left\langle x^2 \right\rangle \left\langle x'^2 \right\rangle - \left\langle xx' \right\rangle^2}$$
Variances Covariance
i.e. correlation

For <u>Gaussian</u> beams only: $\varepsilon_{rms} \leftrightarrow$ interpreted as area containing a fraction f of ions:

$$\varepsilon(f) = -2\pi\varepsilon_{rms} \cdot \ln(1-f)$$

Care:

No common definition of emittance concerning the fraction f

Emittance ε(f)	Fraction f
$1 \cdot \epsilon_{rms}$	15 %
$\pi \cdot \epsilon_{\sf rms}$	39 %
$2\pi \cdot \epsilon_{rms}$	63 %
$4\pi\cdot\epsilon_{rms}$	86 %
$8\pi \cdot \epsilon_{rms}$	98 %

The Slit-Grid Measurement Device

Slit-Grid: Direct determination of position and angle distribution.

Used for protons with E_{kin} < 100 MeV/u \Rightarrow range R < 1 cm.

Slit: position **P(x)** with typical width: 0.1 to 0.5 mm

Distance: typ. 0.5 to 5 m (depending on beam energy 0. 1 ... 100 MeV)

SEM-Grid: angle distribution P(x')

Display of Measurement Results

The distribution is depicted as a function of position [mm] & angle [mrad]

The distribution can be visualized by

- ➤ Mountain plot
- Contour plot

Calc. of 2^{nd} moments $\langle x^2 \rangle$, $\langle x'^2 \rangle \& \langle xx' \rangle$

Emittance value $\boldsymbol{\mathcal{E}_{rms}}$ from

$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

- ⇒ Problems:
- > Finite **binning** results in limited resolution
- ightharpoonup Background ightharpoonup large influence on $\langle x^2 \rangle$, $\langle x'^2 \rangle$ and $\langle xx' \rangle$

Or fit of distribution with an ellipse

⇒ Effective emittance only

Remark: Behind a ion source the beam might very non-Gaussian due to plasma density and aberration at quadrupoles

Beam: Ar⁴⁺, 60 keV, 15 μA

at Spiral Phoenix ECR source.

P. Ausset, DIPAC 2009

Measurement of transverse Emittance

Outline:

- > Definition and some properties of transverse emittance
- Slit-Grid device: scanning method
 scanning slit → beam position & grid → angular distribution
- ➤ Quadrupole strength variation and position measurement emittance from several profile measurement and beam optical calculation

Emittance Measurement by Quadrupole Variation

From a profile determination, the emittance can be calculated via linear transformation, if a well known and constant distribution (e.g. Gaussian) is assumed.

- Measurement of beam width $x^2_{max} = \sigma_{11}(1, k)$ matrix R(k) describes the focusing.
- With the drift matrix the transfer is $\mathbf{R}(k_i) = \mathbf{R}_{\text{drift}} \cdot \mathbf{R}_{\text{focus}}(k_i)$
- Transformation of the beam matrix

$$\sigma(1,k_i) = \mathbf{R}(k_i) \cdot \sigma(0) \cdot \mathbf{R}^\mathsf{T} (k_i)$$

Task: Calculation of $\sigma(0)$

at entrance s_0 i.e. all three elements

measurement:

$$\mathbf{x}^{2}(\mathbf{k}) = \sigma_{11}(1, \mathbf{k})$$

Measurement of transverse Emittance

Using the 'thin lens approximation' i.e. the quadrupole has a focal length of **f**:

$$R_{focus}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} \Rightarrow R(L, K) = R_{drift}(L) \cdot R_{focus}(K) = \begin{pmatrix} 1 + LK & L \\ K & 1 \end{pmatrix}$$

Measurement of the matrix-element $\sigma_{11}(1,K)$ from $\sigma(1,K) = R(K) \cdot \sigma(0) \cdot R^{T}(K)$

Example: Square of the beam width at

G. Penco (ELETTRA) et al., EPAC'08

For completeness: The relevant formulas

$$\sigma_{11}(1,K) = L^2 \sigma_{11}(0) \cdot K^2$$

$$+ 2 \cdot (L\sigma_{11}(0) + L^2 \sigma_{12}(0)) \cdot K$$

$$+ L^2 \sigma_{22}(0) + \sigma_{11}(0)$$

$$\equiv a \cdot K^2 - 2ab \cdot K + ab^2 + c$$

The three matrix elements at the quadrupole:

$$\sigma_{11}(0) = \frac{a}{L^2}$$

$$\sigma_{12}(0) = -\frac{a}{L^2} \left(\frac{1}{L} + b \right)$$

$$\sigma_{22}(0) = \frac{1}{L^2} \left(ab^2 + c + \frac{2ab}{L} + \frac{a}{L^2} \right)$$

$$\varepsilon_{rms} \equiv \sqrt{\det \sigma(\mathbf{0})} = \sqrt{\sigma_{11}(\mathbf{0}) \cdot \sigma_{22}(\mathbf{0}) - \sigma_{12}^2(\mathbf{0})} = \sqrt{ac} / L^2$$

Summary for transverse Emittance Measurement

Emittance is the important quantity for comparison to theory.

It includes size (value of ε) and orientation in phase space (σ_{ij} or α , β and γ)

three independent values $\varepsilon_{rms} = \sqrt{\sigma_{11} \cdot \sigma_{22} - \sigma_{12}} = \sqrt{\langle x^2 \rangle} \langle x'^2 \rangle - \langle xx' \rangle^2$ assuming no coupling between horizontal, vertical and longitudinal planes

Transfer line, low energy beams \rightarrow direct measurement of x- and x'-distribution:

 \triangleright *Slit-grid:* movable slit \rightarrow *x*-profile, grid \rightarrow *x'*-profile

Transfer line, all beams → profile measurement + linear transformation:

> Quadrupole variation: one location, different setting of a quadrupole

Assumptions: ➤ well aligned beam, no steering

no emittance blow-up due to space charge

Remark: non-linear transformation possible via tomographic reconstruction

Important remark: For a synchrotron with a stable beam storage,

width measurement is sufficient using $x_{rms} = \sqrt{\varepsilon_{rms} \cdot \beta}$

Measurement of Iongitudinal Parameters

Measurement of longitudinal parameter:

Bunch length measurement at

- > Synchrotron light sources
- Linear light sources
- > Summary

Longitudinal ↔ **transverse correspondences**:

➤ position relative to rf
↔ transverse center-of-mass

➤ bunch structure in time
 ↔ transverse profile

Bunch Length Measurement for relativistic Electrons

Electron bunches are too short (σ_t < 100 ps) to be covered by the bandwidth of pick-ups (f < 3 GHz $\Leftrightarrow t_{rise}$ > 100 ps) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution \approx 1 ps.

Scheme of a streak camera

Technical Realization of a Streak Camera

Hardware of a streak camera
Time resolution down to 0.5 ps:

Technical Realization of a Streak Camera

Hardware of a streak camera
Time resolution down to 0.5 ps:

Results of Bunch Length Measurement by a Streak Camera

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale) and a slower scan in horizontal direction (24 μ s).

Example: Bunch length at the synchrotron light source SOLEIL for U_{rf} = 2 MV

for slow direction 24 μ s and scaling for fast scan 360 ps: measure σ_t = 35 ps.

Courtesy of M. Labat et al., DIPAC'07

The Artist View of a Streak Camera

57

Bunch Length Measurement by electro-optical Method

For Free Electron Lasers → bunch length below 1 ps is achieved

- Below the resolution of streak camera
- \triangleright Short laser pulses with $t \approx 10$ fs and electro-optical modulator

Electro optical modulator: birefringent, rotation angle depends on external electric field

Relativistic electron bunches: transverse field $E_{\perp, lab} = \gamma E_{\perp, rest}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.

From S.P.Jamison et al., EPAC 2006

Bunch Length Measurement by electro-optical Method

For Free Electron Lasers → bunch length below 1 ps is achieved

Short laser pulse ⇔ broad frequency spectrum (property of Fourier transformation)

Optical stretcher: Separation of colors by different path length ⇒ **single-shot observation**

Courtesy S.P.Jamison et al., EPAC 2006

Realization of EOS Scanning

Setup of a scanning EOS method.

Using 12fs pulses from Ti:A₁₂O₃ laser at 800nm and ZnTe crystal 0.5mm thick with a e⁻ - beam 46MeV of 200pC

X. Yan et al, Phys. Rev. Lett. 85, 3404 (2000)

Hardware of a compact EOS Scanning Setup

Example: Bunch length at FLASH 100 fs bunch duration = 30 μm length

- B. Steffen et al, DIPAC 2009
- B. Steffen et al., Phys. Rev. AB 12, 032802 (2009)

61

Summary of longitudinal Measurements

Devices for bunch length at light sources:

Streak cameras:

- > Time resolved monitoring of synchrotron radiation
 - → for relativistic e⁻-beams, t_{bunch} < 1 ns reason: too short bunches for rf electronics.

Laser scanning:

- > Electro-optical modulation of short laser pulse
 - → very high time resolution down to some fs

Conclusion for Beam Diagnostics Course

Diagnostics is the 'sensory organ' for the beam.

It required for operation and development of accelerators

Several categories of demands leads to different installations:

- > Quick, non-destructive measurements leading to a single number or simple plots
- > Complex instrumentation used for hard malfunction and accelerator development
- > Automated measurement and control of beam parameters i.e. feedback

The goal and a clear interpretation of the results is a important design criterion.

General comments:

- > Quite different technologies are used, based on various physics processes
- > Accelerator development goes parallel to diagnostics development

Thank you for your attention!

General Reading on Beam Instrumentation

- ➤ H. Schmickler (Ed.) Beam Instrumentation, Proc. CERN Accelerator School, Tuusula 2018 in prep.
- D. Brandt (Ed.), Beam Diagnostics for Accelerators, Proc. CERN Accelerator School, Dourdan,
 CERN-2009-005, 2009;
- Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics).
- ➤ V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods, VDM Verlag Dr. Müller, Saarbrücken 2009.
- > P. Strehl, Beam Instrumentation and Diagnostics, Springer-Verlag, Berlin 2006.
- ➤ M.G. Minty and F. Zimmermann, *Measurement and Control of Charged Particle Beams*, Springer-Verlag, Berlin 2003.
- > S-I. Kurokawa, S.Y. Lee, E. Perevedentev, S. Turner (Eds.), *Proceeding of the School on Beam Measurement*, Proceedings Montreux, World Scientific Singapore (1999).
- P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS School, JUAS Indico web-site.
- Contributions to conferences, in particular to International Beam Instrumentation Conference IBIC.

Backup slides

Emittance Enlargement by Injection Mis-steering

Emittance conservation requires precise injection matching

Wrong angle of injected beam:

injection into outer

phase space \rightarrow large β -amplitude i.e. large beaming to might result in

might result in 'hollow' beam

filling of acceptancei.e. loss of particles

⇒ Hadron beams: larger emittance after acceleration

injection:
angle
mismatch

vertical
steerer

injection extraction

Example: Variation of vertical injection angle by magnetic steerer Beam: C^{6+} at 6.7 MeV/u acc. to 600 MeV/u, up to $6\cdot10^9$ ions per fill with multi-turn injection, IPM integration 0.5 ms i.e. \approx 100 turns

Coherent Optical Transition Radiation

Observation of coherent OTR for compressed bunches at LINAC based light sources

Reason: Coherent emission if bunch length \approx wavelength (t_{bunch} =2 fs \Leftrightarrow I_{bunch} =600 nm)

or bunch fluctuations ≈ wavelength Parameter reach for most LINAC-based FELs!

Beam parameter: FLASH, 700 MeV, 0.5 nC, with bunch compression scint. screen OTR screen

prompt emission for OTR and scint. screen

→ coherent and in-coherent OTR

(b) OTR screen, +100ns delay

- **100 ns delayed** emission
- → no OTR as expected (classical process)
- \rightarrow emission by scint. screen due to lifetime ⇔ correct profile image!

Contrary of M. Yan et al., DIPAC'11 & S. Wesch, DIPAC'11

67