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2nd part of this lecture covers: 

 Transverse profile techniques 

 Emittance determination at transfer lines 

 Diagnostics for bunch shape determination  

Beam Instrumentation & Diagnostics Part 2 
CAS Introduction to Accelerator Physics 

Vysoké Tatry, 19thof September 2019 

Peter Forck 

Gesellschaft für Schwerionenforschnung (GSI) 

p.forck@gsi.de   



Peter Forck, CAS 2019, Vysoké Tatry  Beam Instrumentation & Diagnostics, Part 2 2 

Measurement of Beam Profile 

 

 

 

 

 

The beam width can be changed by focusing via quadruples. 

Transverse matching between ascending accelerators is done by focusing. 

→ Profiles have to be controlled at many locations. 
Synchrotrons: Lattice functions  (s) and D(s) are fixed  width  and emittance  are:  

 

 

 
Transfer lines: Lattice functions are ‘smoothly’ defined  due to variable input emittance. 
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A great variety of devices are used: 

 Optical techniques: Scintillating screens (all beams), 

               synchrotron light monitors (e−), optical transition radiation (e−, high energetic p),  

 ionization profile monitors (protons) 

 Electronics techniques: Secondary electron emission SEM grids, wire scanners (all)   

Typical beam sizes: 

e−-beam: typically Ø 0.01 to 3 mm,    protons: typically Ø 1 to 30 mm 
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Scintillation Screen 

 

 

 

 

 

Scintillation: Particle’s energy loss in matter causes emission of light    

 the most direct way of profile observation  as used from the early days on! 

Pneumatic feed-through  
with Ø70 mm screen: 

Flange  
200 mm 
& window 

Screen 

70 mm 

beam 

Pneumatic 
drive 

CCD 

1 m 
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Example of Screen based Beam Profile Measurement 

 

 

 

 

 

Observation with  

a CCD, CMOS or video camera 

Advantage of screens:  

Direct 2-dim measurement 

High spatial resolution 

Cheap realization 

 widely used at transfer lines 

Disadvantage of screens:  

 Intercepting device 

 Some material might brittle 

 Low dynamic range 

Might be destroyed  

    by the beam 

b/w CCD: 

artificial 
false-color 

Example: GSI LINAC, 4 MeV/u, low current, YAG:Ce screen 

LINAC LINAC 

Scintillation Screen (beam stopped) 
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Alumina: Al2O3 
CsI:Tl Chromox: Al2O3:Cr P43 

YAG:Ce     Quartz   Quartz:Ce          ZrO2:Mg 

 Very different light yield i.e. photons per ion‘s energy loss 

 Different wavelength of emitted light   

Light output from various Scintillating Screens 

Example: Color CCD camera: Images at different particle intensities determined for U at 300 MeV/u 
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Material Properties for Scintillating Screens 

 

 

 

 

 

Some materials and their basic properties: 

 Properties of a good scintillator: 

 Large light output at optical wavelength  

     standard CCD camera can be used 

 Large dynamic range  usable for different currents 

 Short decay time  observation of variations 

 Radiation hardness  long lifetime 

 Good mechanical properties  typ. size up to Ø 10 cm 

(Phosphor Pxx grains of Ø  10 μm on glass or metal). 

Name Type Material Activ. Max. λ  Decay 

Chromox Cera- 

mics 

Al2O3 Cr 700 nm  10 ms 

Alumina Al2O3 Non 380 nm  10 ns 

YAG:Ce Crystal Y3Al5O12 Ce 550 nm 200 ns 

P43 Powder Gd2O3S Tb 545 nm 1 ms 

P46 Y3Al5O12 Ce 530 nm 300 ns 

P47 Y3Si5O12 Ce&Tb 400 nm 100 ns 

Standard drive with P43 screen 

Flange  
200 mm 
& window 

Screen 

70 mm 

beam 

Pneumatic 
drive 

CCD 

1 m 
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner 

 Ionization Profile Monitor  

 Optical Transition Radiation   

 Synchrotron Light Monitors     

 Summary 

Measurement of Beam Profile 
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8 

Secondary Electron Emission by Ion Impact  

Energy loss of ions in metals close to a surface: 

Closed collision with large energy transfer:  fast e- with   Ekin >> 100 eV   

Distant collision with low energy transfer :   slow e- with Ekin    10 eV  

 ‘diffusion’ & scattering with other e-: scattering length  Ls    1 - 10 nm 

 at surface  90 % probability for escape 

Secondary electron yield and  energy distribution comparable for all metals!  

       Y = const. * dE/dx    (Sternglass formula) 

beam 

Ls  10 nm 

e- 
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Different targets: 

From E.J. Sternglass, Phys. Rev. 108, 1 (1957) 
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Secondary Electron Emission Grids = SEM-Grid 

Beam surface interaction: e− emission → measurement of current. 
SEM-Grid feed-through on CF200: Example: 15 wire spaced by 1.5 mm: 

Parameter Typ. value 

# wires per plane 10 ...100 

Active area (5...20 cm) 2 

Wire   25....100 m 

Spacing 0.3...2 mm 

Material e.g. W or Carbon 

Max. beam power 1 W/mm 

5 cm 

 1 m 
SEM-Grid 

wire 

feedthru 

beam 
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Secondary Electron Emission Grids = SEM-Grid 

Each wire is equipped with one I/U converter  

 different ranges settings by Ri 

   very large dynamic range up to 106. 

Example: 15 wire spaced by 1.5 mm: 

5 cm 

Beam surface interaction: e− emission → measurement of current. 
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Example of Profile Measurement with SEM-Grids 

Even for low energies, several SEM-Grid can be used due to the  80 % transmission 

 frequently used instrument beam optimization: setting of quadrupoles, energy…. 

Example: C6+ beam of 11.4 MeV/u at different locations at GSI-LINAC 

injection extraction 

SEM-
Grids 

synchrotron 

horizontal vertical 

beam 
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The Artist view of a SEM-Grid = Harp 
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor  

 Optical Transition Radiation   

 Synchrotron Light Monitors  

 Summary 

Measurement of Beam Profile 
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Slow, linear Wire Scanner 

 

 

 

 

 

Idea: One wire is scanned through the beam! 

Wire diameter 100 µm < dwire < 10 µm 

Slow, linear scanner are used for: 
 Low energy protons  

 High resolution measurements for e− beam  

    by de-convolution σ2
beam=σ

2
meas−d

2
wire 

      resolution down to  1 μm range can be reached 

 Detection of beam halo 
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The Artist view of a Beam Scraper or Scanner 
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Fast, Flying Wire Scanner 

 

 

 

 

 

In a synchrotron one wire is scanned though the beam as fast as possible. 

Fast pendulum scanner for synchrotrons; sometimes it is called ’flying wire’: 

From https://twiki.cern.ch/twiki/ 
bin/viewauth/BWSUpgrade/ 

injection extraction 

particle 
detector 

synchrotron 

https://twiki.cern.ch/twiki/
https://twiki.cern.ch/twiki/
https://twiki.cern.ch/twiki/
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Usage of Flying Wire Scanners 

 

 

 

 

 

Material:   carbon or SiC → low Z-material for low energy loss and high temperature. 

Thickness: down to 10 μm → high resolution. 

Detection: High energy secondary particles with a detector like a beam loss monitor 

Proton impact on 
scanner at CERN-PS Booster: 

Secondary particles:  

Proton beam → hadrons shower (π, n, p...)  
Electron beam → Bremsstrahlung photons. 

Rest mass:  

m± = 140 MeV/c2 

m0 = 135 MeV/c2 

Kinematics of flying wire:  

Velocity during passage typically 10 m/s = 36 km/h and 

  typical beam size   10 mm  time for traversing the beam t  1 ms  

Challenges: Wire stability for fast movement with high acceleration           

U. Raich et al., DIPAC 2005 
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The Artist View of a Wire Scanner 
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Comparison between SEM-Grid and slow Wire Scanners 

 

 

 

 

 

Grid:        Measurement at a single moment in time 

Scanner:  Fast variations can not be monitored  

    for pulsed LINACs precise synchronization is needed  
__________________________________________________________________________ 

Grid:  Not adequate at synchrotrons for stored beam parameters 

Scanner:  At high energy synchrotrons flying wire scanners are nearly non-destructive 
__________________________________________________________________________ 

Grid:  Resolution of a grid is fixed by the wire distance (typically 1 mm) 

Scanner:  For slow scanners the resolution is about the wire thickness (down to 10 μm) 

  used for e−-beams having small sizes (down to 10 μm) 
__________________________________________________________________________ 

Grid:  Needs one electronics channel per wire  

  → expensive electronics and data acquisition 

Scanner:  Needs a precise movable feed-through → expensive mechanics. 
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor: 

    secondary particle detection from interaction beam-residual gas    

 Optical Transition Radiation  

 Synchrotron Light Monitors  

 Summary 

Measurement of Beam Profile 



Peter Forck, CAS 2019, Vysoké Tatry  Beam Instrumentation & Diagnostics, Part 2 21 

Ionization Profile Monitor at GSI Synchrotron 

 

 

 

 

 

Non-destructive device for proton synchrotron: 

 beam ionizes the residual gas by electronic stopping 

 gas ions or e- accelerated by E -field 1 kV/cm 

 spatial resolved single particle detection 

Realization at  GSI synchrotron: 
One monitor per plane 

Typical vacuum pressure: 

Transfer line: N2 10−8...10−6 mbar       3108...31010cm-3  

Synchrotron: H2 10−11...10−9 mbar     3105...3107cm-3  

R 

voltage divider 
+ 6 kV 

+ 5 kV 

+ 4 kV 

+ 2 kV 

+ 3 kV 

+ 1 kV 

   0 kV 
MCP 

anode position readout 

HV electrode 

𝑬 
ion 
e.g. H+  

beam 
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Ionization Profile Monitor Realization 

 

 

 

 

 

The realization for the  heavy ion storage ring ESR at GSI: 

Horizontal camera  

Horizontal  IPM:  

E-field box 

MCP 

IPM support  
& UV lamp 

Ø250 mm 

E-field separation disks 
View port Ø150 mm 

electrodes 

175mm 

Vertical IPM  

Vertical camera 

Realization at  GSI synchrotron: 
One monitor per plane 
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Ionization Profile Monitor Realization 

 

 

 

 

 

 IPM measure 

Horizontal camera  

Horizontal  IPM:  

E-field box 

MCP 

IPM support  
& UV lamp 

Ø250 mm 

E-field separation disks 
View port Ø150 mm 

electrodes 

175mm 

Vertical IPM  

Vertical camera 

Realization at  GSI synchrotron: 
One monitor per plane 

The realization for the  heavy ion storage ring ESR at GSI: 
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The emittance 𝜀 =  𝑑𝑥𝑑𝑥′is defined via the position deviation and angle in lab-frame 

  

After acceleration the longitudinal velocity is increased   angle   is smaller 
The angle is expressed in momenta: x’ = p / p||  the emittance is <xx’> = 0 :    =  x  x’   =   x  p / p||  
 under ideal conditions the emittance can be normalized to the momentum p ||  =   m  c 

  normalized emittance norm =      is preserved  with the Lorentz factor   and velocity  =v/c 

Example: Acceleration in GSI-synchrotron for C6+ from  

6.7  600 MeV/u  ( = 12  79 %) observed by IPM 

theoretical width: 𝑥 𝑓 =
𝛽𝑖 ∙ 𝛾𝑖

𝛽𝑓 ∙ 𝛾𝑓
∙ 𝑥 𝑖 

                                 = 0.33 ∙ 𝑥 𝑖  

measured width:    𝑥 𝑓 ≈ 0.37 ∙ 𝑥 𝑖 

 

‘Adiabatic’ Damping during Acceleration 

slow v 

v|| 

v 

before acceleration 

fast 
v 

after acceleration 

v 

v|| 

IPM is well suited 

for long time observations  

without beam disturbance  

 mainly used at proton synchrotrons. 

acc. 

injection extraction 

IPM 

synchrotron with 
acceleration 

 OTR 
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Outline:      

 Scintillation screens:  

   emission of light. universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor:  

    secondary particle detection from interaction beam-residual gas   

 Optical Transition Radiation:  

    crossing material boundary, for relativistic beams only  

 Synchrotron Light Monitors  

 Summary 

Measurement of Beam Profile 
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Optical Transition Radiation: Depictive Description 

Optical Transition Radiation OTR for a single charge e: 

Assuming a charge e approaches an ideal conducting boundary e.g. metal foil  
 image charge is created by electric field 

 dipole type field pattern 

 field distribution depends on velocity   and Lorentz factor   due to relativistic trans. field increase  

 penetration of charge through surface within t < 10 fs: sudden change of source distribution  

 emission of  radiation with dipole characteristic     

perfect  
metal 

vacuum 

charge e 
velocity  

E-field  
pattern of 
dipole type 

image  

charge -e 

velocity - 

perfect  
metal 

vacuum 

charge e 
velocity  

image  

charge -e 

velocity - 

perfect  
metal 

vacuum 

charge e 

inside 

metal 

‘dipole  
radiation’ 

 

 max 1/ 

sudden change charge distribution 

rearrangement of sources  radiation 

Other physical interpretation: Impedance mismatch at boundary leads to radiation 

 
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Optical Transition Radiation OTR can be described in classical physics: 

approximated formula 

for normal incidence 

& in-plane polarization:  

Angular distribution of radiation in optical spectrum: 

 lope emission pattern depends on velocity or Lorentz factor  

 peak at angle   1/ 

 emitted energy i.e. amount of photons scales with W   2   

 broad wave length spectrum (i.e. no dependence on ) 

 suited for high energy electrons 

 222

22222

cos1

cos  sin

 

2

 







 




c

e

dd

Wd

Optical Transition Radiation: Depictive Description 

W: radiated energy 

: frequency of wave 

perfect  
metal 

vacuum 

‘dipole  
radiation’ 

 

 max 1/ 

 

charge e 

inside 

metal 

sudden change charge distribution 

rearrangement of sources  radiation 
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Technical Realization of Optical Transition Radiation OTR 

 

 

 

 

 

OTR is  emitted by charged particle passage through a material boundary. 

 Insertion of thin Al-foil under 45o  

 Observation of low light by CCD. 

Photon distribution: 

within a solid angle d and  

Wavelength interval begin to end   222

222

log
2
























 
end

begin
beam

photon

c

e
N

d

dN

 Detection: Optical 400 nm <  < 800 nm 

   using image intensified CCD 

 Larger signal for relativistic beam   >> 1 

 Low divergence for   >> 1  large signal 

  well suited for e- beams 

  p-beam only for Ekin > 10 GeV     > 10 
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OTR-Monitor: Technical Realization and Results 

Example of realization at TERATRON: 

 Insertion of foil  
     e.g. 5 m Kapton coated  with 0.1m Al 
Advantage: thin foil  low heating & straggling 
           2-dim image visible 

 

Courtesy V.E. Scarpine (FNAL) et al., BIW’06  

 = 0.66 mm 

 = 1.03 mm rad-hard 
camera 

Beam pipe 

Window 

Filter 
wheel 

Lens 

Results at FNAL-TEVATRON synchrotron  

with 150 GeV proton  
Using fast camera: Turn-by-turn measurement 
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Optical Transition Radiation compared to Scintillation Screen 

Installation of OTR and scintillation screens on same drive:  

Courtesy of U. Iriso et al., DIPAC’09  

Example: ALBA  LINAC 100 MeV 

Results: 

 Much more light from YAG:Ce 

     for 100 MeV ( =200) electrons 

     light output IYAG  10 5 IOTR 

 Broader image from YAG:Ce  

     due to finite YAG:Ce thickness  

OTR 
YAG:Ce 

OTR 

YAG:Ce 
projection 

OTR projection 
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Comparison between Scintillation Screens and OTR 

 

 

 

 

 

OTR: electrodynamic process → beam intensity linear to # photons, high radiation hardness 

Scint. Screen:  complex atomic process → saturation possible, for some low radiation hardness 

OTR: thin foil Al or Al on Mylar, down to 0.25 μm thickness 

           → minimization of beam scattering (Al is low Z-material e.g. plastics like Mylar) 

Scint. Screen: thickness  1 mm inorganic, fragile material, not always radiation hard 

OTR: low number of photons → expensive image intensified CCD 

Scint. Screen: large number of photons → simple CCD sufficient 

OTR: complex angular photon distribution → resolution limited 

Scint. Screen: isotropic photon distribution → simple interpretation 

OTR: large γ needed → e−-beam with Ekin > 100 MeV, proton-beam with Ekin > 100 GeV 

Scint. Screen: for all beams 

 

Remark:  OTR not suited for LINAC-FEL due to coherent light emission (not covered here) 

 but scintillation screens can be used. 
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Outline:      

 Scintillation screens:  

   emission of light, universal  usage, limited dynamic range  

 SEM-Grid: emission of electrons, workhorse, limited resolution   

 Wire scanner: emission of electrons, workhorse, scanning method   

 Ionization Profile Monitor:  

    secondary particle detection from interaction beam-residual gas   

 Optical Transition Radiation:  

    crossing optical boundary, for relativistic beams only   

 Synchrotron Light Monitors 

    photon detection of emitted synchrotron light in optical and X-ray range 

 Summary 

Measurement of Beam Profile 
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Synchrotron Light Monitor 

 

 

 

 

 

An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light 
see lecture of Lenny Rivkin  

This light is emitted  

into a cone of   

opening 2/ in lab-frame. 

Well suited for rel. e- 

 For protons:  

Only for energies Ekin > 100 GeV  

The light is focused to  a 
intensified CCD. 

Advantage:  

Signal anyhow available! 

orbit of electrons 
orbit of electrons 

dp/dt dp/dt 

radiation field 
radiation field 

power: P   4/  2 

Rest frame of electron: Laboratory frame: 
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Realization of a Synchrotron Light Monitor 

Extracting out of the beam’s plane by a (cooled) mirror 

→ Focus to a slit + wavelength filter for optical wavelength 

→ Image intensified CCD camera 

Example: ESRF monitor from dipole with bending radius 22 m  (blue or near UV) 

injection extraction 

SRM 

synchrotron 

 beam 

dipole 

optical table  

e- beam 

Courtesy K. Scheidt et al., DIPAC 2005 
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Result from a Synchrotron Light Monitor 

Example: Synchrotron radiation facility APS accumulator ring and blue wavelength: 

Advantage: Direct measurement of 2-dim distribution, good optics for visible light 

Realization: Optics outside of vacuum pipe 

Disadvantage: Resolution limited by the diffraction due to finite apertures in the optics. 

B.X. Yang (ANL) et al. PAC’97  

injection extraction 

SRM 

synchrotron 
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‘Adiabatic Damping’ for an Electron Beam  

The beam emittance in influenced by: 
 Adiabatic damping  
 Longitudinal momentum contribution 

     via dispersion ∆𝑥𝐷(𝑠) = 𝐷(𝑠) ∙
∆𝑝

𝑝  

     total width Δ𝑥𝑡𝑜𝑡(𝑠) =  𝜀𝛽(𝑠) + 𝐷(𝑠) ∙
∆𝑝

𝑝
 

 Quantum fluctuation due to light emission 

Example: Booster at the light source ALBA  acceleration from 0.1  3 GeV within 130 ms 

Courtesy U. Iriso  & M. Pont 
(ALBA) et al. IPAC 2011  

v
e
rt

. 
y
 [

m
m

] 

hor. x [mm] 

injection extraction 

SRM 

synchrotron 

Profile measure by synchrotron light monitor: 
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The Artist View of a Synchrotron Light Monitor 
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Diffraction Limit of Synchrotron Light Monitor 

 

 

 

 

 

Limitations:  
Diffraction limits the resolution 
due to Fraunhofer diffraction 

 
case lfor typica μm  100         

/6.0
3/12



 

Improvements: 

 Shorter wavelength:  

     Using X-rays and an aperture of Ø 1mm 
      → ‘X-ray pin hole camera’,  
    achievable resolution    10 m 

 Interference technique:  

    At optical wavelength  

    using a double slit 

    → interference fringes  
achievable resolution    1 m. 

with wavelength   
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X-ray Pin-Hole Camera 

The diffraction limit is                                            shorter wavelength by X-rays.   3/12 /6.0  

 

 

 

 

 

Example: PETRA III Courtesy K. Wittenburg, DESY 

X-ray 

optics 

CCD 

Monochromat

or 

electron beam 

X-ray beam 

 = 44 µm 


 =

 3
2
µ

m
 

Example: PETRA III result: 
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Double Slit Interference for Radiation Monitors 

 

 

 

 

 

The blurring of interference pattern due to 

finite size of the sources  

spatial coherence parameter  delivers rms beam size 

i.e. ‘de-convolution’ of blurred image! 

 highest resolution, but complex method 

Typical resolution for three methods: 

 Direct optical observation:   100 µm  

 Direct x-ray observation :        10 µm 

 Interference optical obser:       1 µm 

Courtesy of V. Schlott PSI 

Ideal double slit interference pattern: 
x 

P(x) 

Blurring by finite source size:  
x 

P(x) 
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Summary for Beam Profile Measurement 

 

 

 

 

 

Different techniques are suited for different beam parameters: 

e−-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm 

Intercepting  non-intercepting methods 

Direct observation of electrodynamics processes: 

 Optical synchrotron radiation monitor: non-destructive, for e−-beams, complex, limited res. 

 X-ray synchrotron radiation monitor: non-destructive, for  e−-beams, very complex 

 OTR screen: nearly non-destructive, large relativistic γ needed, e−-beams mainly 

Detection of secondary photons, electrons or ions: 

 Scintillation screen: destructive, large signal, simple setup, all beams 

  Ionization profile monitor: non-destructive, expensive, limited resolution, for protons 

Wire based electronic methods: 

 SEM-grid: partly destructive, large signal and dynamic range, limited resolution 

 Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan. 
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Measurement of transverse Emittance 

 

 

 

 

 

The emittance characterizes the whole beam quality, assuming linear 

behavior as described by second order differential equation. 

It is defined within the phase space as:  

The measurement is based on determination of: 

   Either profile width σx and angular width σx′ at one location   
   Or profile width σx at different locations and linear transformations. 


A

x dxdx '
1




Synchrotron: lattice functions results in stability criterion  

 beam width delivers emittance:  

 
)(

   and  )(
)(

1
2

2
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p
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x
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





 















 


Different devices are used at transfer lines: 

 Lower energies Ekin < 100 MeV/u: slit-grid device, pepper-pot 

    (suited in case of non-linear forces). 

 All beams: Quadrupole variation, ’three grid’ method using linear transformations 

    (not well suited in the presence of non-linear forces) 
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Trajectory and Characterization of many Particles 

 Single particle trajectories are 
forming a beam 

 They have a distribution of 

start positions and angles  

 Characteristic quantity is 

the beam envelope 

 Goal:  

Transformation of envelope 

 behavior of whole ensemble 
 see lecture of Wolfgang Hillert  

Courtesy K.Wille 

Focus. 
quad. 

Focus. 
quad. 

drift 

 

drift 

 

envelope of all particles 

single particles  
trajectory 
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Definition of Coordinates and basic Equations 

The basic vector is 6 dimensional:  
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
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


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deviation momentum

deviation allongitudin

divergence vertical

deviation spatial vert.

divergence horizontal

deviation spatial hori.

    
'
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l
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sx

The transformation of a single particle from a location s0 to s1 is given  by the 
Transfer Matrix R:   )(  R(s)  )( 01 sxsx 
The transformation of a the envelope from a location s0 to s1 is given  by the  
Beam Matrix  : (s)R   )(σ  R(s)  )(σ T

01  ss

6-dim Beam Matrix  with decoupled  hor.,  vert.  and long. plane:    

Horizontal  

beam matrix: 

𝝈𝟏𝟏 =  𝒙𝟐  

  𝝈𝟏𝟐 = 𝒙 𝒙′  

  𝝈𝟐𝟐 =  𝒙′𝟐  

Beam width for   
the three  
coordinates: 

 𝒙𝒓𝒎𝒔 =  𝝈𝟏𝟏 

 𝒚𝒓𝒎𝒔 = 𝝈𝟑𝟑 

 𝒍𝒓𝒎𝒔 = 𝝈𝟓𝟓 

𝛔 =  

𝝈𝟏𝟏 𝝈𝟏𝟐 𝟎 𝟎 𝟎 𝟎
𝝈𝟏𝟐 𝝈𝟐𝟐 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝝈𝟑𝟑 𝝈𝟑𝟒 𝟎 𝟎
𝟎 𝟎 𝝈𝟑𝟒 𝝈𝟒𝟒 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝝈𝟓𝟓 𝝈𝟓𝟔
𝟎 𝟎 𝟎 𝟎 𝝈𝟓𝟔 𝝈𝟔𝟔

 

horizontal  
vertical 
longitudinal 
hor.-long. coupling  
 9 values 
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The Emittance for Gaussian and non-Gaussian Beams 

 

 

 

 

 

The beam distribution can be non-Gaussian, e.g. at: 

 beams behind ion source 

space charged dominated beams at LINAC & synchrotron 

 cooled beams in storage rings 

General description of emittance  
using terms of 2-dim distribution: 

It describes the value for 1 standard derivation  

222 '' xxxxrms 

Variances Covariance 

i.e. correlation 

Care:  

No common definition  

of emittance concerning  

the fraction f  

)1ln(2)( ff rms  

For Gaussian beams only: εrms  ↔  interpreted as area containing a fraction f of ions:    

Emittance (f)  Fraction f 

1  rms 15 % 

  rms 39 % 

2  rms 63 % 

4  rms 86 % 

8  rms 98 % 
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The Slit-Grid Measurement Device 

 

 

 

 

 

Slit-Grid: Direct determination of position and angle distribution. 

Used for protons with Ekin < 100 MeV/u  range R < 1 cm. 

Slit: position P(x) with typical width: 0.1 to 0.5 mm 

Distance: typ. 0.5 to 5 m (depending on beam energy 0. 1 ... 100 MeV) 

SEM-Grid: angle distribution P(x′) 

LINAC RFQ 

SEM-Grid Slit  

0.5...5 m  
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Display of Measurement Results 

 

 

 

 

 

The distribution is depicted as a function of 
position [mm] & angle [mrad] 
The distribution can be visualized by  
 Mountain plot 
 Contour plot 

Calc. of 2nd moments <x2> , <x’2> & <xx’>  

Emittance value εrms from  

 

 

 Problems:  

 Finite binning results in limited resolution 

 Background  large influence on <x2>, <x’2> and <xx’>  

Or fit of distribution with an ellipse  

 Effective emittance only 

Beam: Ar4+, 60 keV, 15 μA  

at Spiral2 Phoenix ECR source. 

P. Ausset, DIPAC 2009 

222 '' xxxxrms 

Remark: Behind a ion source the beam might very non-Gaussian 

due to plasma density and aberration at quadrupoles 
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Outline:      

 Definition and some properties of transverse emittance   

 Slit-Grid device: scanning method  

    scanning slit  beam position & grid   angular distribution   

 Quadrupole strength variation and position measurement 

    emittance from several profile measurement and beam optical calculation       

Measurement of transverse Emittance 
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Emittance Measurement by Quadrupole Variation 

 

 

 

 

 

From a profile determination, the emittance can be calculated via linear transformation, 

if a well known and constant distribution (e.g. Gaussian) is assumed. 

 Measurement of beam width 

      x2
max = σ11(1, k) 

matrix R(k) describes the focusing. 

 With the drift matrix the transfer is  

     R(ki ) = Rdrift  Rfocus(ki )  

 Transformation of the beam matrix  

     (1,ki) = R(ki )   (0)  RT (ki ) 

Task: Calculation of  (0)  

at entrance s0 i.e. all three elements 
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Measurement of transverse Emittance 

 

 

 

 

 

Example:  Square of the beam width at  
ELETTRA 100 MeV e- Linac, YAG:Ce: 

Using the ‘thin lens approximation’ i.e. the quadrupole has a focal length of f:  
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Measurement of the matrix-element 𝟏𝟏(1,K) from (1,K) = R(K)∙(0)∙RT(K)  

G. Penco (ELETTRA) et al., EPAC’08 

Focusing strength K [m-1] 

For completeness: The relevant formulas  

The three matrix elements at the quadrupole:  
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Summary for transverse Emittance Measurement 

 

 

 

 

 

Emittance is the important quantity for comparison to theory. 

It includes size (value of ε) and orientation in phase space (ij or α,  and γ) 

three independent values 𝜀𝑟𝑚𝑠 =  𝜎11 ∙ 𝜎22 − 𝜎12 = < 𝑥2 >∙< 𝑥′2 > −< 𝑥𝑥′ >2    

assuming no coupling between horizontal, vertical and longitudinal planes 

Transfer line, low energy beams → direct measurement of x- and x′-distribution: 

 Slit-grid: movable slit → x-profile, grid → x′-profile 

Transfer line, all beams → profile measurement + linear transformation: 

 Quadrupole variation: one location, different setting of a quadrupole 

    Assumptions:  well aligned beam, no steering 

              no emittance blow-up due to space charge 

Remark: non-linear transformation possible via  tomographic reconstruction 

Important remark: For a synchrotron with a stable beam storage,  

                                        width measurement is sufficient using 𝑥𝑟𝑚𝑠 = 𝜀𝑟𝑚𝑠 ∙ 𝛽 
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Measurement of longitudinal parameter:     

Bunch length measurement  at  

 Synchrotron light sources 

 Linear light sources  

 Summary 

Longitudinal  transverse correspondences: 

 position relative to rf           transverse center-of-mass 
 bunch structure in time          transverse profile  
 momentum or energy spread    transverse divergence 
 longitudinal emittance          transverse emittance.      

Measurement of longitudinal Parameters 
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Bunch Length Measurement for relativistic Electrons 

 

 

 

 

 

Electron bunches are too short (t  < 100 ps) to be covered by the bandwidth of 

pick-ups (f  < 3 GHz  trise > 100 ps) for structure determination. 

 Time resolved observation of synchr. light with a streak camera: Resolution  1 ps. 

injection extraction 

Streak camera 

e- synchrotron acc.  
freq. frf  rf cavity 

Scheme of a streak camera 
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Technical Realization of a Streak Camera 

Hardware of a streak camera 

Time resolution down to 0.5 ps:  

acceleration focusing deflection 

 30 cm 

Input optics 

Streak tube CCD 
camera 

 60 cm 
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Technical Realization of a Streak Camera 

Hardware of a streak camera 

Time resolution down to 0.5 ps:  

acceleration focusing deflection 

 30 cm 

Input optics 

Streak tube CCD 
camera 

 60 cm 
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Results of Bunch Length Measurement by a Streak Camera 

 

 

 

 

 

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale)  

and a slower scan in horizontal direction (24 μs). 
Example: Bunch length at the synchrotron light source SOLEIL for Urf = 2 MV 

                 for slow direction 24 μs and scaling for fast scan 360 ps: measure t = 35 ps. 

Slow Scan: 

F
a
s
t 
S

c
a
n
: bunch length 

2t = 70 ps 

Short bunches are desired by 
the users  
Example: Bunch length t  
as a function of stored current  
(i.e. space charge de-focusing)  
at SOLEIL  

Courtesy of M. Labat et al., DIPAC’07 

injection extraction 

Streak camera 

e- synchrotron acc.  
freq. frf  rf cavity 
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The Artist View of a Streak Camera 

 

 

 

 

 

 conclusion 
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Bunch Length Measurement by electro-optical Method 

 

 

 

 

 

For Free Electron Lasers  bunch length below 1 ps is achieved  
 Below the resolution of streak camera 

 Short laser pulses with t    10 fs and electro-optical modulator 

Electro optical modulator:  birefringent, rotation angle depends on external electric field 

Relativistic electron bunches: transverse field E, lab = γE, rest carries the time information  

Scanning of delay between bunch and laser  time profile after several pulses.  

From S.P.Jamison et al., EPAC 2006 

LINAC LINAC 

EO monitor 

Undulator 

Bunch compressor 
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Bunch Length Measurement by electro-optical Method 

 

 

 

 

 

For Free Electron Lasers  bunch length below 1 ps is achieved  

Short laser pulse  broad frequency spectrum (property of Fourier transformation)  

Optical stretcher: Separation of colors by different path length  single-shot observation 

Courtesy S.P.Jamison et al., EPAC 2006 

LINAC LINAC 

EO monitor 

Undulator 

Bunch compressor 
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Realization of EOS Scanning  

 

 

 

 

 

Setup of a scanning EOS method.  

Delay line 

X. Yan et al, Phys. Rev. Lett. 85, 3404 (2000) 

Using 12fs pulses  from 

Ti:Al2O3 laser at 800nm and  

ZnTe crystal 0.5mm thick  

with a e- - beam  46MeV of  200pC 
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Hardware of a compact EOS Scanning Setup 

B. Steffen et al, DIPAC 2009 

B. Steffen et al., Phys. Rev. AB 12, 032802 (2009) 

crystal 

beam 

Example: Bunch length at  FLASH  

100 fs bunch duration = 30 µm length  

  2 = 110 fs 



Peter Forck, CAS 2019, Vysoké Tatry  Beam Instrumentation & Diagnostics, Part 2 62 

Summary of longitudinal Measurements  

 

 

 

 

 

Devices for bunch length at light sources: 

Streak cameras:    

 Time resolved monitoring of synchrotron radiation 

    → for relativistic e−-beams, tbunch < 1 ns 

   reason: too short bunches for rf electronics.  

Laser scanning:          

 Electro-optical modulation of short laser pulse 

    → very  high time resolution down to some fs 



Peter Forck, CAS 2019, Vysoké Tatry  Beam Instrumentation & Diagnostics, Part 2 63 

Conclusion for Beam Diagnostics Course  

 

 

 

 

 

Diagnostics is the ’sensory organ’ for the beam. 
It required for operation and development of accelerators 

Several categories of demands leads to different installations: 

 Quick, non-destructive measurements leading to a single number or simple plots 

 Complex instrumentation used for hard malfunction and accelerator development 

 Automated measurement and control of beam parameters i.e. feedback 

The goal and a clear interpretation of the results is a important design criterion. 

General comments: 

 Quite different technologies are used, based on various physics processes 

 Accelerator development goes parallel to diagnostics development 

Thank you for your attention! 
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General Reading on Beam Instrumentation 

 H. Schmickler (Ed.) Beam Instrumentation,  Proc. CERN Accelerator School,  Tuusula 2018  in prep. 

 D. Brandt (Ed.), Beam Diagnostics for Accelerators, Proc. CERN Accelerator School, Dourdan, 

     CERN-2009-005, 2009;  

 Proceedings of several CERN Acc. Schools (introduction & advanced level, special topics). 

 V. Smaluk, Particle Beam Diagnostics for Accelerators: Instruments and Methods,  

      VDM Verlag Dr. Müller, Saarbrücken 2009.  

 P. Strehl, Beam Instrumentation and Diagnostics, Springer-Verlag, Berlin 2006.    

 M.G. Minty and F. Zimmermann, Measurement and Control of Charged Particle Beams,  

      Springer-Verlag, Berlin 2003. 

 S-I. Kurokawa, S.Y. Lee, E. Perevedentev, S. Turner (Eds.), Proceeding of the School on Beam 

      Measurement, Proceedings Montreux, World Scientific Singapore (1999).  

 P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics, JUAS School, JUAS Indico web-site. 

 Contributions to conferences, in particular to International Beam Instrumentation Conference IBIC. 
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 Backup slides 
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Example: Variation of vertical injection angle by magnetic steerer 
Beam: C6+  at 6.7 MeV/u acc. to 600 MeV/u, up to 6109 ions per fill 

with multi-turn injection, IPM integration 0.5 ms i.e.  100 turns 

Emittance Enlargement by Injection Mis-steering 

Vertical profile  at injection: Horizontal profile at injection: 

Horizontal profile after acc.: Vertical profile after acc.: 

before  
acc. 

after acc. 

Emittance conservation requires  
precise injection matching 
Wrong angle  
of injected beam:  
 injection into outer  
    phase space  large  
    -amplitude i.e. large beam 
 might result in  
    ‘hollow’ beam 
 filling of acceptance 
    i.e. loss of particles 
 Hadron beams: larger  
emittance after acceleration    

injection extraction 

IPM 

synchrotron 

vertical 

steerer 

injection:

angle 

mismatch 

Schematic simulation: 
Courtesy M. Syphers 

misplace injection filamentation larger emittance  

x 
x’ 
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100 ns delayed emission   
 no OTR as expected (classical process) 
 emission by scint. screen due to lifetime 
      correct profile image!     

67 

Coherent Optical Transition Radiation 

Observation of coherent OTR for compressed bunches at LINAC based light sources   

Reason: Coherent emission if bunch length  wavelength (tbunch=2 fs  lbunch =600 nm)  

or bunch fluctuations  wavelength 

Contrary of M. Yan et al., DIPAC’11 & S. Wesch, DIPAC’11   

prompt emission for OTR and scint. screen  
 coherent and in-coherent OTR     

OTR screen      scint. screen      

Parameter reach 
for most LINAC-based FELs! 

Beam parameter: FLASH, 700 MeV, 
0.5 nC, with bunch compression 

beam 

photons 

OTR 
screen 

in-coherent emission 

beam 

photons 

OTR 
screen 

coherent emission 


