

LRBB wire: results of failure-case study

B. Lindström, C. Wiesner, D. Wollmann CERN Many thanks to: R. Bruce, L. Ceccone, R. Mompo, A. Poyet, A. Rossi, G. Sterbini, J. Uythoven, M. Zerlauth

176th SPS and Machine Protection Panel Meeting - 20190329

BBCW – setup

- 2 parallel, straight, wires at distances +- 5.7 13 mm from beam
 - TCTs at nominal positions (7.8 sigma), implying ~11.2 mm hor and ~9.9 mm ver
- Already in: TCTPV.4R1.B2 and TCTPH.4R5.B2
- Also install in either:
 - 1. TCTPV.4L1.B1 and TCTPH.4L5.B1
 - 2. TCTPH.4L1.B1 and TCTPV.4L5.B1
- Wires are hard-wired in series, 1 PC per set of wires
- 1000* mm long, 2.5 mm diameter, current up to 350 A
- Optics: LHC Run II pp 2018 collision 0.25/0.30 cm beta*
 - Run III optics not yet published

*1000 mm long according to "LRBB – readiness of hardware and installation", A.Rossi, 23rd HL-LHC TCC meeting, Jan 19 2017

984 mm long according to "Compensation of the Long-Range Beam-Beam Interaction in the LHC", A.Poyet, Master thesis 2017

Collimator Beta Functions

Collimator	Beta x [m]	Beta y [m]
TCTPV.4L1.B1	2199.74	1557.71
TCTPH.4L5.B1	2165.16	1466.13
TCTPV.4R1.B2	2182.42	1511.57
TCTPH.4R5.B2	2147.97	1421.38
TCTPH.4L1.B1	2165.16	1466.12
TCTPV.4L5.B1	2199.74	1557.71

- 25 cm optics
- Similar beta functions, no significant difference between the wires in terms of failures, except for collimator margins (phase advance dependence)

Current decay time constant

Fitting an exponential decay to the measured current decay

Nominal magnetic field

- From Biot-Savart, assumed infinitely thin wire and free vacuum
- +- 10 mm, 350 A

Multipolar decomposition

Order n	Normal [T/m^n]	Skew [T/m^n]
0	0	0
1	1.4	0
2	0	0
3	-14000	0
4	0	0
5	1.3e8	0
6	0	0
7	-1.2e12	0

- +- 10 mm, 350 A
- c.f. Q4/Q5 gradient: 160 T/m
- Orange: original field Blue: multipoles

Potential failure scenarios

- PC trip both wires loose current simultaneously
 - Beta beating
 - Tune shift
 - Orbit distortion if beam not centered in the TCT
- Single wire short, one wire still powered (not likely in RunIII)
 - Dipolar kick
 - Beta beating
 - Tune shift
- Incorrect polarity on one wire
 - Circuit is hardwired, both wires in single cicuit, same PC, this failure should be detected during commissioning and corrected
 - Procedure for commissioning / interventions
 - Strong dipolar kick
- PC current is interlocked at 350 A max, but can potentially deliver up to 600 A

PC Trip – orbit distortion

- TCTs are normally centered around the beam orbit, but up to 1 mm offset is allowed
 - Quadrupolar field change gives a kick

PC Trip – tune shift

- Nominal tunes: Qx 62.31 Qy 60.32
- No risk of third order resonance

PC Trip – beta beating

- After ~50 ms
- General beta beating limit at 10 %

TCT – TCDQ margin

- 2018 nominal parameters:
 - TCT: 7.8 sigma
 - TCDQ: 7.3 sigma
- At 30 cm optics, 0.58-0.76 sigma more margin
- b1 less critical than b2 due to MKD – TCDQ phase advance, which gives an extra ~0.1 sigma margin for b1 (not included in plots)

*normalized emittance: 3.5 µm.rad

TCT – TCDQ margin

- 2018 nominal parameters:
 - TCT: 7.8 sigma
 - TCDQ: 7.3 sigma
- Optional installation points:

*normalized emittance: 3.5 µm.rad

TCP – TCSG – TCSP margins

Interlock delay measurement

- Interlock chain: PC -> FGC -> PC -> WIC -> BIS
- PC: fault signal to FGC: ~14 μs

Interlock delay measurement

- Interlock chain: PC -> FGC -> PC -> WIC -> BIS
- PC: fault signal to FGC: ~14 μs
- FGC: sees fault signal and closes current loop:

Interlock delay measurement

- Interlock chain: PC -> FGC -> PC -> WIC -> BIS
- PC: fault signal to FGC: ~14 µs
- FGC: sees fault signal and closes current loop: ~1.5 ms (?)
 - Measurement needs to be repeated with a real WIC
- WIC detects closed current loop in PC: ~6 µs

Summary

Optics and wire settings:	25 cm beta*		30 cm beta*
	350 A, 5.7 mm	350 A, 11/10 mm	350 A, 11/10 mm
single wire short,	12.1 mT	7 mT	7 mT
dipolar kick	1.4 sigma	0.8 sigma	0.7 sigma
PC trip, beam offset by 1 mm	4.4 mT	1.4 mT	1.4 mT
	0.5 sigma	0.16 sigma	0.14 sigma
tune shift	hor: 0.035	hor: 0.011	hor: 0.093
(deltaQ)	ver:0.025	ver: -0.008	ver: -0.006
beta beating	hor: 0.24	hor: 0.08	hor: 0.07
	ver: 0.17	ver: 0.06	ver: 0.05
TCT/TCDQ	b1: -1.1	b1: 0.09	b1: 0.73
margin (sigma)	b2: -0.8	b2: 0.11	b2: 0.99

all values, 50 ms after failure start

Conclusions

- If both wires are powered correctly, no strong kicks expected for a PC trip
- TCT to TCDQ margins ~0.1 sigma
- Interlock delay needs further measurement, but likely >1.5ms
 - Sufficient or does it need to be faster?
- To ensure correct wire polarities, need a procedure for:
 - Commissioning
 - What to check/validate after any wire intervention
 - e.g. validate with low intensity beam and wire current

5.7 mm – 350 A – TCTPV.4L1.B1

Single wire short – kick

Dipolar field: 7 mT

One wire with opposite polarity

If one wire opposite polarity: 14 mT kick at zero-position

Delay measurement

Delay measurement