
Refactoring Geant4 stepping: 
a discussion

Andrei Gheata
Geant4 Task Force for R&D meeting

April 2, 2019



Rationale

• Instruction-level locality benefits proven by GeantV R&D for at least
some important stepping hotspots
• Magnetic field propagation, MSC, some “hot” physics models

• Usage of accelerators (like GPGPU) in simulation needs massive data 
and instruction level parallelism
• Tracks doing the same thing…
• Hard to achieve due to current G4 stepping sequencing

• The above require track-level parallelism ability
• Exposing step-level parallelism for certain computation phases

• Is it possible?
• Short-term R&D



Possible approach
• Intercept charged tracks during 

transportation process
• Basketize before 

FieldManager::ComputeStep

• After basketizer, copy track info relevant 
for field propagation to SOA
• charge, position, momentum

• Dispatch to vectorized field propagator, 
then gather outputs to original tracks

• Stack tracks for further sequential 
processing

• Extension to MSC possible, but more 
complex, handling multiple basketizers
needs GeantV-like scheduling

• User implications on track sequencing to 
be discussed

Main stack

G4SteppingManager

G4 processes

G4Transportation

Continue stepping

Field propagator 

stack

Vectorized field 

implementation 

(GeantV)

Basketizer

FieldManager

::ComputeStep

23rd Geant4 Collaboratio
n M

eetin
g

Lund, 2
7-31 August 

2018



But how to pause/resume tracks with ~no 
overhead?
• Track/step state now embedded in the state of the stepping manager
• Stepping interface advances the existing state

• Some mixture of the step state in physics (processes/models)
• Much lower or no mixture of step state in higher-level managers
• Tracking manager, Event/Run managers

• Can we have a fully backward-compatible Geant4 (from user 
perspective) making the track/step state ‘volatile’ from managers
• Handled explicitly in internal interfaces

• De-coupling state is a pre-requisite for any track/step-level parallelism 
attempt 



Managers and state

G4RunManager G4EventManager

G4TrackingManager

fpTrack

G4SteppingManager

fTrack
fStep

… state info for 
geometry/physics/…

G4Track

Position,
momentum,
touchable, …

G4Step

Pre/PostStep
step length, 

…

Stepping() => Stepping(G4Track*)

ProcessOneTrack(G4Track*)



Feasible? How long?

• Technically possible, but non-adiabatically
• Requires synchronized changes in most managers

• Working on a fork?
• Proof of principle should not take more than a couple of months FTE

• Changing signatures to pass externally track/step info
• Cutting-out the state from managers/models

• User interfaces: no change in this phase
• Also no expected performance benefits, just introducing a design that 

disentangles state from code



What after?

• Multiple specialized stacks straightforward
• Grouping tracks by certain locality criteria

• Interrupt transport of a track and resume with no overhead
• Gathering of “baskets” for some hotspots possible

• Sub-event parallelism possible below primary level
• E.g. for use-cases where even a single primary can cause memory havoc

• Adopting track-level parallelism within and event will break the step sequencing
• Some implications on user code
• More important implications on reproducibility in MT/accelerator mode

• More concurrent events (owned by threads) needed to enhance locality
• Brings more complexity to user code (need to manage tracks from mixed events)
• A bit diferent PRNG approach for reproducibility (e.g. RNG state/engine per event)

• We know how to do it…



Discussion

• Pro’s and con’s
• Technical issues
• Volunteers…


