
Jonathan R. Madsen

Next Steps for 
Geant4 Tasking 

Framework

jrmadsen@lbl.gov
Geant4 R&D Task Force
April 29, 2019

mailto:jrmadsen@lbl.gov


Why Tasking Library?
• Call my library PTL (Parallel Tasking Library)

• https://github.com/jrmadsen/PTL/tree/implicit-manager-interface
• TBB is fast and excellent library

– Faster than my library for very deep recursion à uses fibers
• Using TBB would mean a fundamental MT dependency

– Complicate build/testing à version checking, API changes, etc.
– More difficult to track down MT issues

• Using PTL would give full control i.e. internal CLHEP
– Simplified testing, ability to customize to our needs
– We don’t have complicated tasking (e.g. flow-graph, deep recursion)
– Compatible with TBB, if desired
– Extra goodies à better signal handler, GetEnv<T> interface

https://github.com/jrmadsen/PTL/tree/implicit-manager-interface


Short- and Intermediate-term Goals
• Make the library available (could be done ~immediately)

– Build option (-DGEANT4_BUILD_THREADPOOL=ON)
– Keep existing MT but allow thread-pool to be created by master 

G4RunManager à G4RunManager::GetThreadPool()
• Visualization would use this initially à simplified parallel viz
• Users could supplement their pre-/post-processing work-flow

• Sub-event parallelism 
– R&E WG goal

• Eliminate G4MTRunManager 
– Thread-pool with zero threads would simply execute functions 

instead of bundling function into task and placing in queue à
significant code simplification!



Down the road…

• It is a general consensus that GPUs are here to stay
– Certain forms of transport have demonstrated to work well on GPU, e.g.

medical physics
• The problem was those implementations were not compatible with 

Geant4 à static polymorphism
– Philippe, Soon, and I (+others) are working on solution as part of U.S. 

Department of Energy Exascale Computing Project (ECP)
– It is generally known/believed that we will need to:

• Significantly hide latency via async (overlap memory copies, kernel 
launches, etc.)

• Balance work between CPU (hadronic) and GPU (EM, optical)
• Tasking provides load-balancing



Implementation Requirements
• Biggest hurdle w.r.t. to Geant4 for sub-event parallelism is RNG

– Thread-local generators need to separated from threads
• Three possible solutions:

1. High-level reference counting + protected inheritance
• Action class instances, etc. would have unique seed
• G4UniformRand(), etc. would be protected member function instead of 

global function
• User code would be mostly unaffected

2. Reseeding global generators when thread picks up sub-event
• May require RNGs to allow “skip-ahead”

3. More generators
• Instead of run-seeds + event-seeds, need to add another layer

• Other recommendations welcome – we need to minimize user code changes



First Steps

• Before undergoing a migration to tasking, need to make sure performance is fully quantified à
performance testing

– Docker workflow
– TiMemory package (introduced last G4 release) has undergone a re-write and is 

significantly improved
• Completely modular: 11 timers, 14 resource usage metrics, PAPI counters
• Header-only (for C++) 

• I would appreciate volunteers that would be willing to run benchmark problems and 
submit them to performance dashboard at NERSC – please email me: jrmadsen@lbl.gov

– Benchmarks could be advanced/extended examples
– Build the container for your code using base image (provided) and run

• docker run –it Example-XYZ:baseline example-xyz bench.mac
• Collection of performance metrics would be automated along with submission to

dashboard

https://github.com/jrmadsen/TiMemory/tree/graph-storage-redesign
mailto:jrmadsen@lbl.gov?subject=Geant4%20Performance%20Benchmarking&&D%20Performance%20Testing&D%20Performance%20Testin&D%20Performance%20Testi&D%20Performance%20Test&D%20Performance%20Tes&D%20Performance%20Te&D%20Performance%20T&D%20Performance%20&D%20Performance&D%20Performanc&D%20Performan&D%20Performa&D%20Perform&D%20Perfor&D%20Perfo&D%20Perf&D%20Per&D%20Pe&D%20P&D%20&D&


Thank You


