Next Steps for
Geant4 Tasking
Framework

Jonathan R. Madsen

jrmadsen@lbl.gov
Geant4 R&D Task Force

T April 29, 201
@ ENERGY sione P , 2019

mailto:jrmadsen@lbl.gov

Why Tasking Library? NEF

* Call my library PTL (Parallel Tasking Library)
* https://github.com/jrmadsen/PTL/tree/implicit-manager-interface

 TBBis fast and excellent library
— Faster than my library for very deep recursion - uses fibers
* Using TBB would mean a fundamental MT dependency
— Complicate build/testing - version checking, API changes, etc.
— More difficult to track down MT issues
* Using PTL would give full control i.e. internal CLHEP
— Simplified testing, ability to customize to our needs
— We don’t have complicated tasking (e.g. flow-graph, deep recursion)
— Compatible with TBB, if desired
— Extra goodies - better signal handler, GetEnv<T> interface

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

https://github.com/jrmadsen/PTL/tree/implicit-manager-interface

Short- and Intermediate-term Goals NEeF

Make the library available (could be done ~immediately)
— Build option (-DGEANT4_BUILD_THREADPOOL=0N)

— Keep existing MT but allow thread-pool to be created by master
G4RunManager - G4RunManager::GetThreadPool()

Visualization would use this initially = simplified parallel viz
Users could supplement their pre-/post-processing work-flow
Sub-event parallelism
— R&E WG goal
Eliminate G4AMTRunManager

— Thread-pool with zero threads would simply execute functions
instead of bundling function into task and placing in queue 2>
significant code simplification!

Office of

U.S. DEPARTMENT OF
& ENERGY scionco

Down the road... Ne

* Itis a general consensus that GPUs are here to stay

— Certain forms of transport have demonstrated to work well on GPU, e.g.
medical physics
* The problem was those implementations were not compatible with
Geant4 - static polymorphism

— Philippe, Soon, and | (+others) are working on solution as part of U.S.
Department of Energy Exascale Computing Project (ECP)

— It is generally known/believed that we will need to:

* Significantly hide latency via async (overlap memory copies, kernel
launches, etc.)

* Balance work between CPU (hadronic) and GPU (EM, optical)
* Tasking provides load-balancing

Office of

U.S. DEPARTMENT OF
ENERGY Science

Implementation Requirements NEeR

Biggest hurdle w.r.t. to Geant4 for sub-event parallelism is RNG
- Thread-local generators need to separated from threads
Three possible solutions:
1. High-level reference counting + protected inheritance
Action class instances, etc. would have unique seed

G4UniformRand(), etc. would be protected member function instead of
global function

User code would be mostly unaffected
2. Reseeding global generators when thread picks up sub-event
May require RNGs to allow “skip-ahead”
3. More generators
Instead of run-seeds + event-seeds, need to add another layer

Other recommendations welcome — we need to minimize user code changes
Office of

U.S. DEPARTMENT OF
ENERGY Science

First Steps NEF

+ Before undergoing a migration to tasking, need to make sure performance is fully quantified -
performance testing

— Docker workflow

— TiMemory package (introduced last G4 release) has undergone a re-write and is
significantly improved
« Completely modular: 11 timers, 14 resource usage metrics, PAPI counters
+ Header-only (for C++)

+ 1 would appreciate volunteers that would be willing to run benchmark problems and
submit them to performance dashboard at NERSC - please email me: jrmadsen@Ibl.gov

— Benchmarks could be advanced/extended examples
— Build the container for your code using base image (provided) and run

« docker run —it Example-XYZ:baseline example-xyz bench.mac

+ Collection of performance metrics would be automated along with submission to
dashboard

PR, U.S. DEPARTMENT OF OfflCe Of

ENERGY science

https://github.com/jrmadsen/TiMemory/tree/graph-storage-redesign
mailto:jrmadsen@lbl.gov?subject=Geant4%20Performance%20Benchmarking&&D%20Performance%20Testing&D%20Performance%20Testin&D%20Performance%20Testi&D%20Performance%20Test&D%20Performance%20Tes&D%20Performance%20Te&D%20Performance%20T&D%20Performance%20&D%20Performance&D%20Performanc&D%20Performan&D%20Performa&D%20Perform&D%20Perfor&D%20Perfo&D%20Perf&D%20Per&D%20Pe&D%20P&D%20&D&

Thank You

